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FOREWORD

It has beenpleasureforme to follow theprogressEr.AshishArorahas madein teachingand professional career. In the last about
two decadeshe has activelycontributed in developingseveralnew techniques for teaching &amp; learning of Physicsand driven
important contribution to Science domain through nurturing youngstudents and budding scientists. PhysicsGalaxy is one such
example ofnumerous efforts he has undertaken.

The 2nd edition of Physics Galaxy provides a good coverage ofvarious topics of Mechanics, Thermodynamics and Waves,
Optics&amp; ModemPhysicsandElectricity&amp; Magnetismthroughdedicated volumes. It wouldbean importantresource
for studentsappearing in competitiveexamination fOT seeking admission in engineering and medical streams. "E-version" ofthe
book is also being launched to allow easy access to all.

Thestmcture ofbook is logical and the presentation is innovative. Importantly the book covers some ofthe conceptson the basis
of realistic experiments and examples. The book has been written in an informal style to help students leam faster and more
interactively with better diagrams and visual appeal of the content. Each chapter has variety of theoretical and numerical
problemsto test the knowledgeacquiredbystudents. The bookalso includessolutionto all practice exercises with severalnew
illustrations and problems for deeper learning. - /

Iam sure the.book will widen.the horizons ofknowledge inPhysics and will be found very useful bythestudents for developing
in-depth understanding of the subject.

May OS, 2016

Prof. Sandeep Sancheti
Ph.D. (U.K.). B.Tech.FIETE, MIEEE

President Manipal University Jaipur



PREFACE

For a science student, Physics is the most important subject, unlike to other subjects it requires logical reasoning and high
imagination ofbrain. Without improvmg the level ofphj^ics it isyery difficult to achieve agoal in the present age.ofcompetitions.
To score better, one does not require hard working at least.in phj^ics. Itjustrequires asimple imderstandjng and'approach to
think aphysical situation. Actuallyphysics is the surrounding ofour everyday life. All the six parts ofgeneral physics-Mechanics,
Heat, Sound, Light, Electromagnetism and Mod^ Phj^ics are theconstituents .ofbur surroundings. Ifypu \vish to make the
.conceptsjjfphysics sfrong, .you.should.try,to.imderstand:Core concepts ofphysics in practical approachrather than ffieoretical.
Whenever you try to solve aphysics problem, first create.a hypoffietical approach ratherthan theoretical. Whenever you try.to
solve aphysics problem, first create ahypothetical world in your imagination about-the problem and tryto thinkpsychologically,
what the next step should be, the best answer would be given by your brainpsychology. For making physics strong in all respects
and you should try to merge and understand all the concepts with the brain psycholo^cally. -

The book PHYSICS GALAXY is designed in a totally different and fi*iendly approach to develop the physics concepts
psychologically. The book is presented in four volumes, which covers almost all the core branches of general physics. First

Mechanics. It is the most important part ofphysics. The things you will leam in this book-vdll form amajor
foiindation for understanding of other sections of physics as mechanics is used in all other branches of physics as a core

•' fundamental.^-Inthis.bbok everypart ofmechanics is explained in asimple and interactive experimental way. The book is divided
in seven major chapters, covering the complete kinematics and dynamics ofbodieswith both translational and rotational motion
then ^avitation and complete fluid statics and dynamics is covered with several applications.

The best way ofunderstanding physics is the experiments and this methodology I am using in my lectures and I found that it
helps students alot in concept visualization. In this book Ihave tried to translate the things as Iused in lectures. After every
important section there are several solved examples included with simple and interactive explanations. It might help akudent in
away that the student does not require to consult any thing with the teacher. Everything is self explanatory and in simple
language.

One important factor in preparation ofphysics Iwish to highlight that most ofthe student after reading the theory ofaconcept
start working out the numerical problems. This is not the efficient way ofdeveloping concepts in brain. To get the maximum
benefit ofthe book students should read carefully the whole chapter at least three or four times with all the illustrative examples
and with more stress on some illustrative examples included in the chapter. Practice exercises included after every theory section .
in each chapter is for the purpose of in-depth understanding of the applications ofconcepts covered. Illustrative examples are
explaining some ftieoretical concept in tiie fonn ofan example. After athorough reading ofthe chapter students can start thinking
ondiscussion questions andstartworking onnumerical problems.

Exercises given atthe end ofeach chapter are for circulation ofall .the concepts in mind. There are two sections, first isthe
discussion questions, which are theoretical and help in understanding the concepts at root level. Second section is ofconceptual
MCQs which helps in enhancing the theoretical thinking ofstudents and building logical skills in the chapter. Third section of
numerical MCQs helps in the developing scientific and analytical application ofconcepts. Fourth section ofadvance MCQs with
one or more options correct type questions isfor developing advance and comprehensive thoughts. Last section isthe Unsolved
Numerical Problems which includes some simpleproblems and some tough problems which require the building fundamentals of
physics fi-om basics toadvance level problems which areuseful inpreparation ofNSEP, INPhO orIPhO.

In this second edition ofthe book I have included the solutions to all practice exercises, conceptual, numerical-and advance
MCQs to support sftidents who are dependent on their selfstudy and not getting access to teachers for their preparation.

This book has taken ashape just because ofmotivational inspiration by my mother 20 years ago when Ijust thought to write
something for my sttidents. She always motivated and was on my side whenever I thought to develop some new learning
methodology for my students.



Idon't have words for my best friend my wife Anuja for always being together with me to complete this book in the unique style
and format.

I would like to pay my gratitude to Sh. Dayashankar Prajapati in assisting me to complete the task in Design Labs of
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At last but tiie most important person, my father who has devoted his valuable time to finally present the book in such aformat
anda simple language, thanks isa very small word for hisdedication in thisbook.

In this second edition! have tried my best to make this book error free but owing to the nature ofwork, inadvertently, there is
possibilityoferrors left untouched. Ishall be grateful to the readers, ifthey point out me regarding errors and oblige me bygiving
their valuable and constructive suggestions via emails for further improvement ofthe book.
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Alarge part ofour everyday experience, aswell asbur scientific
experience, concerns things that move. For this reason, the
study ofmotion is one ofthe most basic studies in physics.
The study ofmotion is divided into two parts, Kinematics and
Dynamics. Kinematics describes the positions and motions of
objects in space as a function oftime but does not consider the
causes ofmotion. The study of thecauses ofmotion arecalled
dynamics.

Kinematics provides the means for describing the motions of
various tl^gs. Because ofaccuracy and generality, mathematics
is the natural use for kinematics. However, the ideas and
techniques of kinematics that described here are used
throughout the book. The range of these applications'runs
from gravity to thermodynamics and electricity to modem
physics.

We begin our study ofkinematics by considering motion in
only one dimension br rectilinear motion. The advantage ofthis
is the introduction ofall the necessary concepts in their simplest
form. In further sections we will learn how to apply these
concepts to two dimensional motion.

LI Speed

When you say that acar is moving at aspeed of20 meters per
second (20 m/s), everyone knows what you mean; the car will
go 20 min 1sprovided itmaintains this speed. In0.5 s the car
will go 0.5 X20 = 10 m, and in 2sitwill go 2x20 =40 m. In
general, the distance acar travels ifits speed does not change
is

Kinematicsj

ofmotion with the magnitude, unlike to speed which has only
the magnitude (scalar). As velocity is a vector quantity, an
object's average speed is often not equal to its average velocity,
even in magnitude. Now we come to an exact definition of
velocity.

Refer to figure-1.1. An object is carried from pointAto point B
through the path shown by dashed curve. The displacement
fromyf to Bis shown as the vector rbetween the two points. As
shown, the displacement is Ir | towards E30^N apd isa vector
quantity. We define the average velocity ofthe object as it is
carried from .4 toBby

Average velocity= displacement vector
time taken

_ r

V = —

t

Path" 100 cm

Figure 1.1

...(1.1)

Distance traveled = speed x time taken
Solvingfor speed, we find

Speed =
Distance traveled

time taken

Here bar above the vis used to indicate that this is an average
velocity. The direction ofvis same as the displacement vector.

Let us take anumerical example. In the figure shown the distance
ofstraight line from.^ to Bis 80 cm and an object takes 20 sto go
from AtoB through 100 cmpath, then we have-

A , • SO
Average velocity = — =4cm/sE30°N

However the average speed is

We use the same equation to define the average speed ofacar
whose speed is not constant. Ifthe car goes 5km in 3hrs, with
a variable speed then its average speed is

Average speed =
5000

3x3600
—0.463 m/s

Notice that speed has no direction. It is a scalar quantity. A
car's speedometer measures that how fast the car is going but it
tells usnothing about the direction of travel.

1.2 Average Velocity

In everyday conversation, we use the terms speed and velocity
interchangeably. In physics, however, these two quantities have
different meanings. Velocity ofan object includes the direction

100
Average speed = —= 5cm/s

1.3 Instantaneous Velocity

When an object is released at aheight, it falls under gravity. If
we observe its motion, it covers unequal (increasing) distances
in equal intervals of time. In such cases we say the velocity of
the object is increasing, such avelocity at a single point is
called the instantaneous velocity.

As the object is released, its direction of velocity is clear i.e.
downward, in the direction ofits motion. Look at figure-1.2. To
find the velocity ofthe object roughly during its fall at point C,
we consider the small section ofpath AB{/Sr). Ifobject covers
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this distance in durationA/ the average velocity of the object
from^to5is

V =•

At
...(1.2)

This is not the exact velocity at C as velocity is continuously
increasing. If we makethe durationA/smaller,the points andB
willbe muchcloser to Cand the averagevelocityofthe ball will
be quite closer to the ball's actual velocity at C. If the duration
is so, small that we can write At -=>• 0, then A and B will be so

close,to C that the average velocity, we compute is almost
exactly equal to the velocity at C. We call the velocity at C the
instantaneous velocity at that point and represent it by v.
Mathematically we can define the instantaneous velocity as

^ ^ lim ^
A/-»0

dr

H

The symbol is read "in the limiting case

where At tends to zero." It represents
mathematically the experimentalprocedure in
which At is made so small that the average
velocity between.(4 and5becomes essentially
the instantaneous velocity at C. This is
represented mathematically in differential
form as

dt
V -

There is one more interesting relation
between instantaneous velocity and speed.
When we make At very small, the object
cannot change its direction of motion

appreciably during the time it takes go to from

A to B. As a result, the straight line distance
from 4 to 5 equals the path length covered
by the object as it goes from.,4 to B. Therefore,
because the path length and the
displacement have the same magnitude, the
instantaneous velocity and the speed at C
also have the same magnitude. Thus we see
that'the magnitude of the instantaneous
velocity at a point is equal to the speed at
that point.

A •

C-
B-

...(1.3)

r = 0

Ar

Figure 1.2

The historical definition of instantaneous velocity is : "The

velocity oftheparticle at an instant ofitsjourney". Ifwe define
the instantaneous velocity of a particle from the point of view
of a practical situation of motion of a particle, the situation
would be somewhat different and might be more accurate.

In fact velocity is the rate ofchange ofposition of the particle
and it is not possible to evaluate the rate at which position

changes at an instant, because at an instant the position of
particle doesnot change.To evaluatethe instantaneousvelocity
we consider an elemental distance dx in the neighborhood of
that instant at which we are required to evaluate the
instantaneous velocity. If this distance dx is covered by the
particle in time dt, it shows that the average velocity of the
particle in the small duration dt is dxidt. This dt is the duration
in the neighborhood of the time instant t = t. (say from t = t\.o
t = t + dt). Now this velocity dxIdt can be said as instantaneous

velocity at time ?=/.

This Instantaneous velocity can be written as

dx

dt
v = [Time derivative ofdisplacement]

Instantaneous velocity of a particle in its motion can be a
constant or may vary with time and displacement. We consider

some examples for understanding the numerical concepts
associated with kinematics problems withVniform motion i.e.
with constant speed motion.

# Illustrative Example 1.1

Road dist^ce fromJaipurtoAjmer is 135km.Howlongcanone
afford to stop for lunch if he can drive at an averagespeed of
72 kph on the highway, ifhe has to reach in 2Vz hr.

Solution

Total time taken from Jaipur to Ajmer for non-stop driving is =
135

' = 1 hr 52.5 min

Extra time available for lunch is = 2 hr 30 min -1 hr 52.5 min =

37.5 rains.

a Illustrative Example 1.2

A10 hr tour is made at an average speed of 40 lq)h. Ifduringthe
first half of the distance the average speed of the bus was
30 kph, what was the average speed for the second half of the
trip?

Solution

Total distance the bus covered is = 40 kph x 10 hr = 400 km
For first half bus speed was 30 Iqih, thus time taken to cover

200
200kmis= =6.66 hr.

Thus bus covered remaining 200 km during 3.37 hr, its average

200 '
speed is = = 60 kph



Illustrative Example 1.3

A carrier train, when it is 100 km away from the station, going at
a constantspeed of 70 kph towards the station. At this instant
a fast bird from its engine flies towards the station at 100 kph
net speed. When the bird gets to the station, it turns back and
flies again towards the train, when it reaches engine, it again
turns and heads towards the station. If bird keeps on flying in
such a manner, find the distance travelled by the bird before
train reaches the station ? How many trips, it made in this
duration between station and the train ?

Solution

100
Time takenby the train to reach the stationis = = 1.43hr

In this duration bird travels a distance = 100 x 1.43 = 143 km.

As here distance travelled by the bird is continuously reducing
after each trip, time of successive trips is also reducing. When
train is just approaching the station, the trip length is negligible
or tends to zero and hence time oftrip is also negligible or tends
to zero, thus theoretically it takes infinite trips.

# IllustrativeExample1.4

An athlete starts running along a circular track of50 m radius at
a speed 5 m/s in the clockwise direction for 40 s. Then the
athlete reverses direction and runs in the anticlockwise direction

at 3 m/s for 100 s. At the end, how far around the track is the
runner from the starting point ?

Solution

During first run she covers a distance
5 X 40 = 200 m and in its second

opposite run, she covers a distance
3 X 100 = 300 m. Thus at the end she is

100 m away from her starting point in
anticlockwise direction as shown in

figure-1.3. Figure 1.3

The displacement of the runner from the starting point A is
given by vector ^C. It is calculated as

The angle subtended by the arc at centre is

arc AC 100

radius 50

Length of cotdAC is given by

= 2rad= 114.6'

2/? sin - = 2 X 50 X sin 57.3° = 84.15 m.

Kinematicsi

# Illustrative Example 1.5

A steamergoing downstream overcame a raft at a pointP. 1 hr
later it turned back and after some time passed the raft at a
distance 6 km from the pointP. Find the speed of river if speed
ofriver relative to water remains constant.

Solution
|.

Let u and v kph be the velocities of the steamer and the river
flow. When steamer is going downstream, its velocity is
(w + v) kph due to river flow.

During 1 lir, distances travelled by the steamer and raft are
(m + v)km and wkmrespectively.

Now when steamer returns (say from point M), its velocity
become (v - u) kph as it in upstream direction, and say after
time t it crosses the raft at point Q, which is 6 km from P, then
the distance MQ is (v - u)/ km and PM is (m + ut) km. From
figure-1.4 wehave '

! w + v= w + w/+

p
t = 0

or

Also we have

or

or

+ V

u + ut. vt

Figure 1.4

u + ut = 6

2u = 6

« = 31q)h

/ = 1 hr

# Illustrative Example 1.6

Two ships, 1 and 2, move with constant velocities 3 m/s and
4 m/s along two mutuallyperpendicular straight tracks toward
the intersection point O. At the moment ? = 0 the ships were
located at the distances 120 m and 200 m from the point O. How
soon will the distance between the ships become the shortest

and what is it equal to ?

Solution

At an intermediate |time instant /, let the positions of the ships
1 and 2 are (120 - 3f) and (200 - At) respectively as shown in
figure-1.5. At this instant distance between them is

/= 7(120-3?)^ "+(200-40'
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2
4 mys

4t

{/
200-

3 m/s /
1 3/ 120-3t O

Figure 1.5

This distance / is minimum at some instant say at t = it is
given byusing theconcept ofmaxima-minima, it leads to find
dl
^ =0, which gives us

2(120-3/).(-3) + 2(2Q0-40.(-4)

2^(120-30^+(200-4f)^
25r-1160 = 0or-

or

1160
t- — =^46As = t^

The shortest distance between the ships now isgiven by

^inin =VC120-3x46.4)^ +(200-4x46.4)^ =24m

Practice Exercise 1.1

inthe field ata distance / from the highway. It is given that the
car velocity decreases in the field r| time than on the highway.
At what distance from the point Dcar must turn offthe highway
into the field for minimum time ?

Highway
D

Figure 1.6

•]

(vi) Two junglemen are standing at the two opposite banks of
ariver ofwidth 7' facing each other. One ofthem starts beating
a drum and sound reaches to the other one after time he
starts. Thensecondone startsbeating the drumand now first
one hear the sound after time Calculate the velocity ofsound
relative to airand the velocity ofwind, ifitisblowing from first
bank to theother bankat rightangle to theriverflow.

(vi!) A rectangularreservoirhas a 1km difference betweenits
sides. Two fisherrhen simultaneously leave onevertex of the
rectangle for a point located at the opposite vertex. One
fisherman crosses the reservoir ina-boat, the other walks along
the bank. Find the size of the reservoir if each ofthem has a
speed of 4 km/hr and one of them arrives half an hour earlier
than the other.

[3 km X 4 km]

(viii) A car ismoving ata constant speed of40km/hr along a
straight road which heads towards a large vertical wall and
make asharp 90° turn by the side ofthe wall. Afly flying ata
constant speed of 100 km/hr, starts from the wall towards the
carataninstant when the caris20kmaway, flies until it reaches
the glasspane of the car and returns to the wall at the same
speed. It continues to fly between the car and the wall till the
car makes the 90° turn, (a) What isthe total distance the fly has
traveled during this period ? (b) How many trips has it made
between the car and the wall ?

[50 km, oo]

(i) Two bicycle riders made a30 km trip inthe same time. Cyclist
A travelled non-stop at anaverage speed of 20 kph. Another
cyclistB travelledwith a lunchbreak of 20 min.Whatwas the
averagespeed of 5 for the actualriding ?

[25.75 kph]

(ii) The light speed is 3.0 x lO^m/s, and the sound speed is
340 m/s. Find the value ofcount N, if "A child start counting
after every second, he sees a bomb blast 1km away and stops
when he hear its'blast sound."

[3]

(iii) Two cars travelling inparallel lanes at90 kph and 72 kph.
Assuming each car to be 5 mlong, find the time taken during
the overtake and the total road distance used for the overtake.

[2 s, 55'm]

(iv) Apoint traversed half the distance with avelocity Vq. The
remaining part ofthe distance was covered with velocity v, for
halfthe time, and with velocity for the other half ofthe time.
Find the mean velocity of the pointaveraged overthe whole
time ofthe motion.

[2V{|(v, + V2)/(2vo + Vi + V;)]

(v) Frorapointv4 located onahighway asshown infigure-1.6,
one hasto reach by caras soon as possible to point B located

1.4 Variation in Instantaneous Velocity

As we have discussed that instantaneous velocity ofaparticle
can be a constant or may vary with time or displacement. In
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vector form representation, depending on the variation, sign of
velocity vector changes as

Ifwith time a:is decreasing then we use

dx
v = -

dt

Ifwith time x is increasing then we use

dx
v =

dt

The concept of instantaneous velocity is useful in solving
problems, when velocity ofagiven object is not constant. For
example we consider an example ofevaluating average velocity,
there are some cases in whichone of the two data (displacement
and time taken) isnot give soit should be evaluated from the
other information given in the problems. As there are two
possible situations, which are discussed here

(a) Displacement is not given and only initial and final time
instant {t^ and /j) are given.

In any case the instantaneous velocity of a particle can be
givenin either of the threeforms.

(1) v=constant, (ii) v=/(x)[depends on displacement], (hi)
V=/(0 [dependon time]
In each case wecan putvasdxtdt and then by integrating the
differential equation v= dxidt we can get the required data.

Case (i): Ifv=constant,'then this isthe average velocity as if
velocity does not change, the average velocity remains same
as instantaneous velocity.

dx
Case(ii): Ifv=/(x)thenweuse— =/(x)

Againwe can take three cases as

Case (i): Ifv=constant then this is the average velocity as if
velocity does not change the average velocity remains same as
instantaneous velocity.

Case(li): Ifv-/(x)thenwecandirectlygetr2-^,bymtegrating

*2 , h

f—

Here limits ofintegration are corresponding to the position of
particleat times and

*2 'l

Case(iii): Ifv-/(/) then by integrating j/(0 we
0 0

;

get the value of/j and similarly by changing the limits we can
get ^2 also.

dx

7w

^ 'l
=dtand on integrating | ——- =jdr, we get the

0 0

value of and similarlyby changing the limitswe can get Xj
also. Here lower limits correspond to the starting point, when
/ = 0,X= 0 and the upper limits correspond when the time is /j,
and particle's coordinate will be x = Xj.

Case (ill) : If v =/(0 then we can directly get Xj - Xj by
*2 '2

integrating ^dx=̂ f{t) dt.
X, /i

Herelower limits correspond to theposition, when particle isat
X=Xj and time is t=r, and the upper limits correspond when the
time ist^, and particle's coordinate will bex=X2.
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1.5 Acceleration
s

Inprevious section, we have discussed the motion ofa car. Its
velocity may change or it may remains constant. We have
defined the instantaneous velocity, which gives an idea about
how fast the position ofan object changes with time. Similarly
it is reasonable to defmea termwhichgives an ideaabouthow
velocity of an object changes with time, it is termed as
acceleration. In a given duration of the motion of an object
average acceleration and instantaneous acceleration can be
defined as

Total changein velocity Av •
Average Acceleration = taken " M

As ifaparticle ismovingwithinitial velocity u and after time /
its final velocity becomes v , wehave its average acceleration
is

v-w

a =
t

1- Av dv
Hence Instantaneous Acceleration = ~At ^

[Timederivative ofvelocity]

(b) If time duration is not given, only v, and x, are given In some cases when velocity changes, we must define the
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acceleration of the object. Velocity may increase or decrease
depending on the case of problem. When acceleration of an
object is positive, the velocity of it is increasing but if it is
negative, it will be decreasing. In this particular case, we say
that the body has decelerated, but deceleration is an obsolete
term and it is more precise to use the term acceleration with the
appropriate sign to show the direction and behavior of the
motion.

Indifferential form instantaneous acceleration can begiven in
three ways asit is the time derivative ofvelocity and the second

.derivative ofdisplacement as

dv d^r

dt dt^

One more form can be generated as

_ dv dx dx dv dv
dt dx dt dx ^dx

...(1.4)

...(1.5)

These' forms are speed equations to obtain the different
parameters related to motion of an accelerated particle (both
uniformly accelerated and non-uniformly accelerated).

1.6 Speed Equations

"Speed Equations are used for solving the problems of
kinematics."

In general we use three differential form of equations for
problems ofkinematics as

(i) v =

(ii) a-.

dx

dt

dt

.. dv
(m) a = v —

dx

Equation-(i), we've already discussed in section 1.2, it can be
usedwhenever the velocity of a particle is givenas a function
oftime ordisplacement. To understand the practical importance
ofequation (ii) and (iii), we discuss an illustrative example.

# Illustrative Example 1.7

Solution

dv •
Herewe first useequation-(ii) as « "

or dv = a dt

V /

On integrating we'll have ^dv=^adt •
u 0

Here lower limits of integration corresponds to the starting
position that atr=0,velocity isv=wand upper limits correspond
to a generaltime t = t whenvelocitybecomesv.

I

w= jadt ...(1.6)

Ifa isa function oftime we can integrate above expression and
if it is a constant, it will give us

v = u +at ...(1.7)

This equation is the standard speed equation, no-(l) and it is
only applicable for constant acceleration cases.

Now we use equation-(iii) as

dv

" ^dx
Vdv= a dx

On integration we'll have
V S

^v dv =^a dx
u 0

:>

dx ...(1.8)

Ifa isafunction ofdisplacement we can integrate the expression
and if <7 is a constant it results

V = + las ...(1.9)

This equation is standard speed equation no-2 and it is only
applicable for constant acceleration cases.

From equations-(l .7), putting the value of vinequation-(1.9),
we get

On solving

(w + atf = u^ + las

S = Ut+ ...(I.IO)

A particle at origin starts towards positive direction ofx-axis,
with an'accelerationa. This accelerationcan be defined in three
ways; (a) a = constant; (b) a =/(x); and (c) a =-f{t). Find the
velocity oftheparticle asa function oftime. Also find velocity
of theparticle whenit is at adisplacement x from origin. Given
that the velocity of the particle at ?= 0 is v = w.

This equation relates to displacement of the particle with the
time ofmotion. Equations-(1.7), (1.9) and(1.10) arevalid only
for constant acceleration cases. If acceleration in a case is not

constant, we go for the differential forms of speed equations.



For the cases of constant acceleration, we also have a fourth
derived speed equation, which gives the distance traveled by
the object in n'̂ ' second after start. It isderived from equation-
(1.10), which gives the total displacement from start to
second. For n'̂ second displacement, wecanwrite

•?„ {nf} - [w (« - 1) - 2^ ^

s„= u+ —a{ln-\) ...(1.11)
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1.7 Uniformly Accelerated Motion

A simple typeof motion is motion withconstant acceleration.
When an'object moves with constant acceleration, the
acceleration is equal to the average acceleration. For problems
related to motion of objects with constant accelerations we use
the four speed equations

v = u +at

v^ = u^+ las

1 2
s=ut+ — at

s„=u+ ^a(2n-l)
In Numerical problemsof kinematics of constantacceleration
motion, we use some short-cut techniques to find the required
parameters, based on these speed equation. Next we discuss
these techniques with some examples.

# IllustrativeExample 1.8

A driver travelling at 90 kph applied the brakes for 5 s. If the
braking acceleration was 2 m/s^, what was herfinal speed ?

Solution

Before braking the initial speed ofcar is

w=90kph = 90x —=25m/s
lo

Retardation produced by brakes is a = - 2 m/s

When brakes are applied, car start retarding. After 5.0 s final

speed of car is given by

V = w + n/

or '..-^25-2x5=15m/s

# Illustrative Example 1.9

:kTnerrtatiosI

Aslowlymoving flatcar is12.0 mlong passing apoint atstraight
road at 10 kph. Aboy besidethe roadnear to thatpointtosses
rocks ontothe moving flatcar at therate of oneper second, (a)
If the first rock just hits the front edge of the car, how many
rockswill fall ontothat car ? (b) Howmany rockswill fall onto
that car ifthe car begins to accelerate at 0.5 m/s^, just as the first
rock hits the car ?

Solution

(a) Speedofflatcar is= 101q)h = 2.78m/s.
As the flatcar is 12.0 m in length, total time it takes to cross the

12point IS =-^=4.318

As fu-st rock hits the front edge of the car, let us take this time
/ = 0, thus in 4.0 s, five rocks will hit the car and fifthwill fall on
road.

(b) Ifcar begins to accelerate at0.5 m/s^, time taken to cross
the point is given by

or

s=iit+ — aP"
2

12=2.78^+^(0.5)/
or /+11.12r-48=0

or r = 3.32s

or r=-28.88s

As time here can not be negative, it takes 3.32 seconds to cross
the point, hence four rocks will fall on it.

# Illustrative Example l.IO

In a car race, car A takes a time of t sec. less than car B at the
finish and passes the finishing point with a velocity v more
than the car B. Assuming that the cars start from rest and travel
with constant accelerations a^ and a2 respectively, show diat
v= y[a^^.

1

Solution

In car race, cars starts from rest and accelerates with constant
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accelerations. Here we'll discuss an important concept of
uniformlyacceleratedmotion. If a body starts fromrest i.e.with
zero initial velocity and accelerates with an acceleration a. After
travelling a distance s, its velocity can be given by speed
equation

As we have w= 0,

or

+2o5

V= yjlas

For the time taken to travel this distance we use second

speed equation as '

Here again we have m= 0,

s = — at^
2

•••(A)

Similarly if a body starts with an initial velocity u and retards
with decelerationa, if after travellinga distances, its final speed
becomes zero, we have

Using- v'^=u^~2as

Here we have v = 0, thus u - -yjlas

Similarly the time it will take can be directly given as

In above cases students should note that to apply the results
given in equations-(A) and (B), either initial or final velocity of
the body must be zero and it should be uniformly accelerated.

In the question above car A starts with acceleration and car

B with acceleration If car B reaches the finishing point at
time T and with speed u, car A will reach at time T -1 and with

speed M+ Vas given in the question.

As both the cars starts from rest and covers same distance, say
Sy we have

For car.^

and

1

For car B

and

v+ u= y2i7i5

T-t =

u= yj2a2^

fir
T= J—

...(B)

From above equations eleminating the terms ofu and T, we get

v= -yjloiS -^2a2S

and t =

Dividing the above equations, we get

v= 7^^ t

# Illustrative Example Lll

A car and a truck move in the same straight line at the same
instantoftime from the samepoint. The car moveswith a constant
velocity of40 m/s and truck starts with a constant acceleration
of4 m/s^. Find the time t that elapses before the truck catches
the car. Find also the greatest distance between them prior to it
and the time at which this occurs.

Solution

After time t from start, the position ofcar from start is

5j=40r

and the position of truck from start is

^2=7(4);^
When truck catches the car

s^=-s,

or

or ? = 20 s

Before this the distance between them is

or

>2-^1

40/ = 2r^

5 = ^1 -52

s = AQt-l^

ds
This distance ismaximumwhen ~ = (usingmaxima-minima),

which gives

ds
— = 40-4^ = 0 •
dt

or r=10s

At r = 10 s, distance between them will be maximum, which is

given as

5^=40(10)-2(10)^ =200m

# Illustrative Example 1.12

A driver travelling at 30 kph sees the light turn red at the
intersection. Ifhis reaction time is 0.6 s, and the car can decelerate

at 4.5 m/s , find the stopping distance of the car. What would
the stopping distance be if the car were moving at 90 kph.
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Solution

Initial speed ofcar is = 30 kph = 8.3 m/s.

Reactiontime of driver is 0.6 s, it is the durationshe takes to put
the brakes on and in this duration car travels with the uniform

speed.

The distance travelled by the car during her reaction time is
= 8.34x0.6-5m.

Now after travelling 5 m, carstart decelerating at4.i5 m/s^. As
final velocity ofthe car is zero, when it comes to rest, we have

foritsinitial velocity u= •sj'ias •

The distance travelled by the car before coming to rest can be

(8.34)^
given asj=— = =7.71 m

2t7 2 X 4.5

Total stopping distance is = 5 + 7.71 = 12.71m/

Ifinitial speed of car were 90 kph or 25 m/s, the distance travelled

by car duringreaction time ofdriverwill become 25 x 0.6= 15m

(25)^
and the second distance will change as 5 = = 69.45 m.

2x4i

Total stopping distance is = 15 + 69.45 = 84.45 m
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Practice Exercise 1.2

(i) A bikestarts from restandaccelerates at 4 m/s^ for5.0s. It
then moves at constant velocity for 25.0 s, and then decelerates
at 2.0 m/s^ until it stops. Find the total distance that the
motorcycle has moved.

[650 m]

(ii) Fiate Sienacan acceleratefi^om 0 to 48 kph in 3.6 s and fi"om
Oto 96 I^hin 10.2 s Also, under constant acceleration fi"omrest

it crosses the 0.4 km markerat a speed of 140lq)h. (a) Calculate
the average acceleration needed get the speed 48 kph. (b)
Calculatethe averageacceleration duringthe time it requires to
go fi"om 48 to 96 kph. (c) What constant acceleration would be
required to get a speed of 140kph over the 0.4 km run starting
from rest ?

[(a) 3.7 m/s^ (b) 2.01 m/s^ (c) 1.89 m/s^]

Kinematics^

(iii) Two fiiends start bikes from one comer ofa square field of
edge L towards the diagonally opposite corner in the same
time t: They both start fi^om the same place and take different
routes. One travels along the diagonal with constant
acceleration a, and the other accelerates momentarily and then
travels along the edge of the field with constant speed v. What
is the relationship between a and v ?

•JlL

(iv) A truck travelling along a straight road at a constant speed
of72 kph passes a car at time t = 0 moving much slower.At the
instant the truck passes the car, the car starts accelerating at
constant 1 m/s^ and overtake the tmck 0.6 km further down the
road, fi"om where the car moves uniformly. Find the distance

between them at time ?= 50 s.

[300 m]

(v) A motorcycle and a car start from rest at the same place at
the same time and they travel in the same direction. The cycle
accelerates uniformly at 1m/s^ upto a speed of36 kph and the
car at0.5 m/s^ upto aspeed of54 kph. Calculate the time and the
distance at which the car overtakes the cycle.

[35 s, 300 m]

(vi) A driver, having a definite reaction time is capable of
stopping his car over a distance of 30 m on seeing a red traffic
signal, when the speed ofthe car is 72 kph and over a distance
of 10 m when the speed is 36 kph. Find the distance over a
distance over whichhe can stop the car if it were mnning at a
speed of 54 kph. Assume that his reaction time and the

deceleration of the car remains same in all the three cases.
,(

[18.75 m]

(vii) A point moving with constant acceleration fi-om^ to 5 in
thestraightlineABhas velocitieswand v at andB respectively.
Find its velocity at C, the mid point ofAB. Also show that if the
time from ^ to C is twice that from C to B, then v=l u.

]

(viii) A train is targeted to run from Delhi to Pune at an average
speed of 80 kph but due to repairs of track looses 2 hrs in the
first partof the journey. If then accelerates at a rate of20Iqjh^
till the speed reaches 100 kph. Its speed is now maintained till
the end ofthe journey. If the train now reaches station in time,
find the distance from when it started accelerating ?

[840 km]

(ix) A train of length 350 m starts moving rectilinearly with
constant acceleration 3 x 10"^ m/s^; / = 30 s afterthestartthe
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locomotive headlight is switched on (event-1) and 7'= 60 s after
that event the tail signal light is switched on (event-2). Find the
distance between these events in the reference frames fixed to

the train and to the Earth. How and at what constant velocity V

relative to the Earth must a certain reference frame F move for

the two events to occur in it at the same point ?

[242 m, 4.03 m/s]

(x) Twocars traveling towards each other on a straight road at
velocity 10 m/s and 12 m/s respectively.When they are 150 m
apart, both driversapply their brakes and each car decelerates
at 2 m/s^ until it stops. How far apart will they be when they
have both come to a stop ?

[89 m]

(xi) Two bodies move in the same straight line at the same
instant oftime from the same origin. The first body moves with

a constant velocity of 40 m/s and second starts with a constant
acceleration of 4 m/s^. Find the time t thatelapses before the
second catches the first body. Find also the greatest distance
between them prior to it and the time at which this occurs.

[20 s, 200 mts]

1.8 Free Fall

Weareallfamiliar to falling objects- forexample, apaperweight
that is accidentally knocked off the edge of a desk. Often in
describing the motion of the paperweight, we mayneglect air
resistance. If air resistance has a negligible effect on a falling
object, thenit isvalidtoassume thattheobject's acceleration is
entirely dueto gravity. In thiscasethemotion iscalled free-fall.
Treating themotion of thepaperweight as free-fall it is a yalid
approximation as long as it does not falltoo far. Evenforshort
falls, thisapproximation is not satisfied foran object suchas a
feather or a flat piece ofpaper.

GalileoGalileimade severalexperiments andstudiesof free-fall
and determined that the acceleration due to gravity is constant

and is same for different objects. The magnitude of this
acceleration is represented by the symbol g. Althoughg varies
slightly from placeto placeontheearth's surface, but thevalue
that is accurate for our use is

g = 9.8 m/s ...(1.12)

Numerical problems offreefallutilizethefourspeedequations,
replacing the value ofahy g.

V = M-.

.2 2V =u -2gh

...(1.13)

...(1.14)

h = ut- -gp-

/!„ =»+I (2n-l)

1-1;

...(1.15)

....(1.16)

Using the above equation, we now take some examples for
better understanding of concepts associated with freely falling
objects.

# IllustrativeExample 1.13

If a body travelshalf its total path in the last secondof its fall
from rest, find the time and height ofits fall. Takeg= lOra/s^,

Solution

IfFTbe the total height the body falls from rest, total time to fall

\2H
\&t =

It isgiventhatthebodyfallsHH distance in time(^ -1), ftius we

have ? - 1 = •
g

or from above equations, eleminating we have

or

or

or

ii(V2-l) = l
g

77= 58m

Total time offall is

# Illustrative Example 1.14

11^
10

= 3.4s

A personsittingonthe top of a tallbuildingis droppingballs at
regular intervals ofone second. Find the positions ofthe 3^*^, 4'*'
and 5^ball when the 6th ball is being dropped. Takeg = 10 m/s^

Solution

When 6^ ball is being" dropped, the positions of the other
(previously fallen) ballscanbe calculated by using the timeof
falling ofeach ball till this instant.

For5''̂ ball, it was dropped just one second before. Thus it has
1 2

fallen a distance = — gr = 5 m.
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For 4 ball, it was dropped two second before this instant. It

has fallen adistance = —(10)2^ =20ra.

For 3 '̂' ball, itwas dropped two second before this instant. Its
1 - . 'depth is = — (10)3 = 45 m.

# Illustrative Example 1.15

A smallparachutedropped from a 30 m high cliff falls freely
under gravity for 1.0s and then attains a terminalvelocity 1.2m/s.
20.0 s later a stone is dropped from the cliff. Will the stone catch
up with the parachute before it reaches the ground ?
(Take g = 10 m/s^)

Solution

Distance fallen by the parachute in first 1.Os is

Rest of the height30 - 5 = 25 m, it coverswithuniformspeed
1.2m/s. Thustimetakenby the parachute to reach the ground

25
is=—= 20.84 s.

Total time taken by the parachute to reach the ground is
= 1+20.84 s = 21.84s.

Stone is dropped after 20.0 s. Time taken to reach ground is

\2H 12x30
10

= 2.45 s

Total time taken bystone from thetime ofdropping theparachute
is 20+ 2.45 = 22.45 s

It is clear that stone requires time longer than the parachute
requires. Thus stone will not catch the parachute.

# Illustrative Example 1.16

A balloon is goingup with a uniformspeed 20 m/s. It was at a
height of 100 mfrom ground, when a stoneis dropped from its
basket. Find the time taken by the stone to reach the groimd
and the height ofthe balloon from the ground, when stone hits
theground. (Take g = 10m/s^)

Solution

As balloon is goingup, when stone is dropped, it will also has
thesame upward speed of20m/s. Soit will fu-st goupretarded
bygravity andfallbacktowards ground. Thepractical situation
is shown in figure-1.7.

Kinem^tiC^I

20 m/s

20 m/s

100 m

Figure 1.7 j

Here to find time we use second speed equation for free fall
motion

1 7
h = ut~ ~gr

Fromfigure, herewetake w= 20 m/sand^ -1GO m.

1We have I -100 =20^ (10)
Solving, it gives ,r = 6.89s or ?=-2.89s

Thus stone will take 6.89 s to reach the groundand it will follow
the path shown in figure by dotted line.

In this duration, balloon ascends a height

• =20x6.89=137.8m

Height of balloon from ground at the instant, stone hittingthe
groundis= 100+ 137.8 = 237.8 m.

# Illustrative Example 1.17

From the foot of a tower 90 m high, a stone is thrownup so as to
reach the top of the tower. Two second later another stone is
dropped from the top of the tower. Find when and where two
stones meet. (Take g = 10 m/s^)

Solution I

•First stone is thrownso as to reach the top of the tower, so its
initial velocity is

'• w=

= V2x 10x90 =42.5 m/s

Letus takethe time/ = /g, when the twostones meetat a height
h above the foot of the tower. The fust stone is travelled a
height h in the duration /g and the second stone has fallen a
distance (90-A) intime (?q-2). From speed equations, wehave

For first stone A=42.5?„-j(10)r=
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For,second stone

2

Adding above two equation.

or

22.5 =70

/o = 3.11 s

Thus height h is given as

90~h= -

/z=42.5(3.11)-- (10)(3.11)2

= 83.82 m

# Illustrative Example 1.18

A girl is standing in an elevator that is moving upward at a
velocity of5 m/s and acceleration 2 ra/s^, when she drops her
handbag. If she was originally holding the bag at a height of
1.5 mabove the elevator floor, how long will it take the bag to
hit the floor.

Solution

In such problems, generally called elevator problems we can
use the concept of relative acceleration. Here we solve the
problem with respect to elevator or we assume that we are
observing from inside ofelevator. Theconcept ofrelative motion
isdiscussed indetail insection 1.11 ofthis chapter. That much
ofdetail is not required here.

Imagine the situation, if you are standing in an elevator
accelerating up with anacceleration a. Ifyou are holding abox
inyourhand, itisalso accelerating upwith thesame acceleration.
If yourelease it free, it falls with acceleration g towards the
elevatorfloor, whichis comingup withacceleration a. Herewe
can say that the approach acceleration of box towards the
elevator floor is (g + a), and we assume that elevator floor is at
rest and box is going down with respect to floor with this
acceleration called relative acceleration. Similarly ifelevator is
going down, wetake relative acceleration (g- a).

In this problem, elevator isgoing upwith a velocity 5 m/s, and
an acceleration 2m/s^, when the bag is dropped. Bag's relative
velocity with respect to elevator floor is zero as both at that
instant have the same velocity but relative acceleration of the
bag is takenas 10+ 2 = 12m/s^.

The distance fallen by the bag is 1.5 m, as we are assuming
elevator is at rest.

• "... 2x1.5Thus time required is = . J = 0 5 s
V £7 V 12

NOTE : If we carefullyimagine thesituationfromoutsidethe
elevator, bag has covered the actual distance less than 1.5 m.
The situation will be more clear in mind with the next two
example.

# Illustrative Example 1.19

A truck starts from rest with an acceleration of 1.5 m/s^ while a
car 150 m behind starts from rest with an acceleration of2 m/s^.
How long will it take before both the truck and car side byside,
and howmuch distance is traveled by each?

Solution

If we take truck at rest, then with respect to truck the relative
acceleration of car is 2 - 1.5= 0.5 m/s^. Now car has to travel
150 m with initial velocity zero, hence it takes time

2x150

0.5
= 24.5 sec.

Distancetraveledby car in 24.5 sec is

^ 2 ^ 2=-at=~x2x (24.5)^ =600 m

Distance traveled by truck in 24.5 sec is

= 600-150 = 450m

# Illustrative Example 1.20

An elevator car whose floor to ceiling distance isequal to 2.7 m
starts ascending with constant acceleration 1.2 m/s^. Two
seconds after the start abolt begins falling from the ceiling of
the car. Find:

(a) the time after which bolt hits the floor ofthe elevator.
(b) the net displacement and distance traveled by the bolt,
with respect toearth. (Takeg=9.8 m/s^)

Solution

(a) If we considerelevatorat rest, thenrelativeacceleration of
the bolt is

£7^ =9.8 +1.2 = 11 m/s^

Initial velocity of the boltis 2.4 m/s andit is getting retarded
with 11 m/s^. With respect to elevator initial velocity ofbolt is 0
and it has to travel 2.7 m with 11 m/s^. Thus time taken can be
directly given as

2s - 2x2.7

(b) Velocity ofthe elevator after 2 sec is

v = at =1.2 X2 = 2.4 m/s upwards.



In 0.7 seconds distance traveled by the elevator is

/ = 2.4x0.7 + 0.5xl.2 xO.49

= 1.98 m

Thefinal displacement of theboltis2.7-1.98 = 0.72 m.

We can observe the actual motion of the bolt, it is shown in
figure-1.8. It first goes upand then gets back down and hitthe
floor of the elevator at a distance 0.72 m below the starting
point. To find thedistance wefind the distance ittravels before
coming torest at the topmost point ofits trajectory. Atthetime
ofdetachment of the bolt, its velocity is 2.4 m/s.

So its distance up to the top =— - ^ - 0.293 m

Total distance traveledbytheboltis = 0.293 x 2+ 0.72= 1.31 m

0.293 m

1.2 m/s2
0.72 m

1

1

1

. 1 ^
'l •

t-'l !2.4m/s|'i I
1

\

1
1

1

1
1

y

2.7 m

Figure 1.8
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(ill) Aparticle isprojected vertically upward from the ground at
timer= 0 andreaches a height at r= T. Showthatthegreatest
height ofthe particle is {gT^ +

(iv)~ Acircus artist maintains four balls in motion making each
in turnto rise to a height of 5 m from his hand. Calculate the
velocity with which heprojects the balls. Where will the other
three balls be at the instant when the fourth one is just leaving
his hand ?Take g = 10 m/s^.
[10 m/s, 3.75 m, 5.0 m. 3.75 m]

(v) A dog sees a flowerpot sail upand then back down past a
window 5 ft high. If the totaltimethepot is insight is 1.0sec,
find the height above the window that the pot rises. Take
g =32 ft/s^
[1/16 ft]

(vl) A ballprojected vertically upwards from A, the top of a
tower reaches the ground in /jseconds. Ifitisprojected vertically
downwardsfrom^^ with the samevelocity,it reachesthe ground
in seconds. If it falls freely from A,show that it would reach

(i) A ball is allowed to slip from rest down a smooth incline
plane, and the distances are marked every 2.0 s. If the second
mark is made 1.6 m from the starting point, where are the first

and fourth marks ?

[0.4 m, 6.4 m]

(ii) Water drops from thenozzle ofashower intothestallfloor
176.4mbelow. The drops fall at regularintervalof time, the first
drop striking the floor at the instant the fourth drop begins to
fall. Find the location ofthe individual drops when a drop strikes
the floor. Take g- 9.8 m/s^.
.[78.4 m,. 19.6 m]

the ground in seconds.

(vii) Jimmy isdoing anexperiment to measure the height ofa
tall building. Hedrops awatermelon from theroofthebuilding.
3.0 s later he hears the watermelon splash sound. What height
ofthe building hehad calculated. Take speed ofsoimd 340 m/s
and air resistance, on water melon can be neglected.
Takeg^ lOm/s^. i
[40.7 m]

(vlii) You are ontheroofofyour school building 60m, high.
You see your physics teacher 1.6 mtallwalking directly towards
the building at 2.m/s. You wish to throw an egg vertically
down at a speed 5m/sontoyour teacher's head. Where should
your teacher bewhen you throw the egg. Neglect airresistance.
Take g= 10 m/s^.
[6 m away from school building]

(Ix) Astudent goes tothea 100 mhigh floor ofKutubmeenar at
Delhi.Toverifythe lawofgravity, he startsfromawindowwith
zero initial velocity, with a stopwatch in his hand. After 3.0 s,
Batman comes to the same floor and jumps to save the boy.

What must be his initial velocity so that he'll just be able to
save theboy. Assume free fall forbothboyandBatman before
he catches the boy. Take g= 10 m/s^.
[60.5 m/s]

(x) Fromthetop of a tallbuilding(height27.3m),aboythrows
an apple upward, which strikes ground after 16 s. Take
g = 9.8 m/s^ find the speed ofapple with which itwas thrown
and the maximum height reached by it.

[76.8 m/s, 327.45 m]
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(xi) A rocket is fired vertically from rest and ascends with
constantnet vertical acceleration of 30 m/s^ for 1 minute. Its
fuel is thenallusedup and it continues as a freeparticle in the
gravitational field ofthe earth. Find:

(a) Maximum height reached;

(b) The total time elapsed from take offuntil the rocket strikes

the Earth. Take g = 10 m/s^.

[447.84 s]

1.9 Graphical Interpretation ofMotion

We now switch over to algebraic definition of displacement,
velocity and acceleration with a graphical interpretation.
Graphical analysisof motionsometimes appearsto be easierin
solving complex numerical problems ofkinematics, and because
of this we take this sectionmore carefullyand cautiously.

1.9.1 Displacement Versus Time Graphs

It is a generaltendencyin a plot to take the independentvariable
(generally time) on the x-axis, or abscissa and the dependent
variable on the y-axis, or ordinate. Generally displacement vs
time graphs of the moving particle (or body) helps in
interpretation of velocity and its behavior whether motion is
uniformlyaccelerated (positive or negative)or non-accelerated
(uniform velocity).

We have the differential relation in velocity and displacement
as V = dxidt

It shows that velocity is given by the slope(tan 0) of the x vs t
curve. Thissloperelationrevealsthatifx vj / curveis a straight
line than it implies that the slope of the curve is a constant and
hence it represents the uniform velocity motion, (shown in
figure-1.9(a)). If it is a horizontalstraight line, it representszero
slope'hence particle is at rest.(shown in flgure-1.9(b)).

Time

(a)

Figure 1.9

Time

(b)

15

Ifxvst graph is not a straight line, itmeans that ft is a non-
uniform motion. Ifslopeof thecurve (tangent) isanacute angle,
meansit is positiveandparticle is movingin positivedirection
ofx-axis or away fromorigin and by observation we can check
whetherslope is increasing or decreasing with time (shownin
figure-!. 10(a)). If we find the slope ofthe curve at two instants
/j and as shown in figure-1.10(a), weseethatslopeat time
is less than slope at time ty It shows that the velocity of the
particle is decreasing, hence the curve represents the
decelerated (negative acceleration) motion. If we have a look
at figure-1.10(b), againslopeisdecreasing withtime, but inthis
case slope is obtuse (i.e.negative), henceparticle is movingin
the direction of negative j:-axis or towards origin. Similarly
curves shown in figure-1.11(a) and 1.11(b)'represents the
accelerated motion, away from the origin and towards origin
respectively.

Time

(a) (b)

Deceleration away from origin Deceleration towards origin

Figure 1.10

h Time O h Time h

(a) (b)

Acceleration away from origin Acceleration towards origin

Figure 1.11

In all the above graphs, curves are drawn above the time
axis. It shows that all the time particle's x-coordinate is
positive. 'When particle moves on negative x-direction, or to
the left of origin, curve is drawn below the time axis as
x-coordinate of the particle become negative. To explain this,
we take up an illustrative example.
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# Illustrative Example 1.21

Consider the child standing on the top of a tower ofheight h,
shown infigure-l .12. Hethrows the ballupandthe ballfollows
the trajectory asshown infigure. Draw the displacement versus
time graph ofthe ball's motion during its flight. Take vertically
upwards direction as positive ^r-axis.

Figure 1.12

Solution

As wesee that the ball first goes upto the highest point of its
trajectoryandthenreturnindownward direction andfallon the
ground. During its upward motion it is getting retarded by g
and during its downward motion itisaccelerated byg,crossing
the origin (point ofprojection), and strike the ground with the
x-coordinate

The graph isdrawn in two parts-retarded journey from r= 0 to
?= r (if 7 be the time to reach the maximum height) and
accelerated journey and the curve ofaccelerated journey will
cross the timeaxis at time ITand reach thecoordinate-h at time
/q. Therespective curve is drawn in figure-1.13.

Time

Figure 1.13

1.9.2 Velocity Versus TimeGraphs

Velocity-Time curves give the information about the
acceleration, whether itis uniform ornon-uniform. Asweknow

Kinematics]

that theacceleration' is time derivative ofvelocity

a = dvldt.

Acceleration can be represented by the slope of the velocity-
time curve. If velocity-time curve is a straight line, means that"
the acceleration ofthe motion isuniform, and ifitisnot astraight
line itwill belong to a non-uniformacceleratioii.The acceleration
is decreasing or increasing and it can be judged by observing
the slope ofthe cuiye attwo ormore instants.

Consider thegraph shown infigure-1.14. Itrepresents themotion
ofaparticle moving non-uniformly ina straight line. Here fi-om
r = 0 to / = '/j, particle moves withconstant acceleration. From
t-t^Xo t = tj, it moves withuniform velocity and then with
variable acceleration. After time t= t^, the acceleration atany
instant (say /) canbe foimd by the slope of the curve at that
instant.

o = tan 9

'\ Time '2 '

Figure 1.14

Different possiblevelocitytimecurvesforuniformacceleration
are shown in figure-l. 15.

Time '•

(a)

Acceleration in positive
x-direction'

Time

(C)

Acceleration in negative
x-direction

Figure 1.15

Time

(b)

Retardation in positive
x-direction

Time

(d)

Retardation in negative
-x-direction
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The direction of the particle's velocity (towards positive
A:-direction or negative Ar-direction) determines the locationof
the curve, above the time axis orbelow the time axis. Figure-1.15
shows the velocity-time curves for different uniformly
accelerated motions.

# Illustrative Example 1.22

Draw, thevelocity-time graph forthe case explained inexample
1.21.

Solution

Respective graph is shown infigure-1.16. Astheball first goes
up(retardation in positive x-direction), then it falls down
(acceleration innegative x-direction).

Time

17

Several types ofnumerical problems become easy to solve by
graphical method. Forexplaining this wetake anexample.

# Illustrative Example 1.23

A car starting fi-om rest, first moves with an acceleration of
5 m/s for sometime and after moving with auniform speed for
some time starts decelerating at the same rate to come to rest in
a totaltime of25sec.If theaverage velocity of thecaroverthe
whole journey is 20 m/s, for how long does it move with a
uniform speed ?

Solution

Whole joumeyof car is divided into three parts,acceleration,
uniform motion and retardation. As acceleration and retardation

are same, with equal final and initial velocities, the distances
coveredinfirstandlastperiodwillbesame.Letthetimedurations
for the three parts be /j, and and letthe distances covered
be 5j, ^2 andj',. We also assume that the maximum velocity of
thecarinitsjoumeyisv. The respective velocity-time graph is
shown in figure-1.18

A ,

O hC h D

Figure 1.18

Average Velocity ofcar is

Time

_ Total Displacemrat
V =

Time taken

2s\ -f-5o
-^=20nVs

25'i+.?2~500m ...(1.17)

Figure 1.16

There is one moreutilityof velocity-time graph.It can beused
to evaluate the distance and displacement of the particle in a
givenduration. As we know in general terms displacement is
theproduce of velocity andtime, thiscanbe givenby thearea
under the velocity-time graph. Figure-1.17 shows a velocity-
time graph of a particle's motion. The portions of the curve
above time axis represent themotion of theparticle inpositive
x-direction and the portions of the curve below the time axis
represent the reverse motion in negativex-direction. To calculate
thetotal displacement andtlie distance traveled bytheparticle
in its motion, we find the area j,, and.S3. Here area and ^3 are
the distances traveled by the particle in positive x-direction
and$2 is the distance traveled in negative x-direction. Hence

Time

Figure 1.17

5, and ^2 can be takenby evaluating the areas of triangle OAC
and rectangle ABCD as

AreaoftriangleOi^Cis 5j=-^vrj
[v isthemaximum velocityof thecar]

Areaof rectangle ABCD is S2=v

As acceleration and retardation are 5 m/s^. We have slope of
lines OA and BE.

Total displacement = 5, + 5-- 5,

Total distance = -^3
tan9 = — = 5 ...(1.18)
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From equation-( 1.17) v?! +v/2=500 ... (1.19) Displacement of car = area of the triangle

From equations-(1.18) and(1.19) + /j/2 = 100 ... (1.20)

Total time ofmotion is25s 2/j+ ...(121)

On solving equations-(1.20) and (1.21), we get r, = 5 and 20,
using (1.21)we = 15 and-15, negativetimeheredoes not
have any significance, hence we take - 15 s, the duration for
which the car moves with uniform velocity.

# Illustrative Example 1.24

A car accelerates from rest at a constant rate a for sometime

afterwhichit decelerates at a constantrate p to cometo rest. If
the total time lapse is t seconds, evaluate (i) the maximum
velocity reached and (ii) the total distance traveled.

Solution

Such type of problems, in which first acceleration and then

retardation takesplace becomevery short, by using graphical
method. We draw thevelocity-time graph ofthesituation given
and it is given in figure-1.19. Let be themaximum velocity
attained in the motion, and^2 be thetime of accelerated and
retarded joumey. If 5.J and be the distances traveled by the
car in fu-st andlast motionweuse areasof the triangleshownin
figure to calculate the total distance traveled.

0 h ^ h

Figure 1.19

Acceleration ofcar in first motion is

V.

a = tanO = —

Retardation of car in last motion is

and

or

or

P =tan(})=-

^1 + ^2 = ^

V V

a p

v„ =
ap?

a + p

Time

1
V / =

2 2(a-Hp)

Similarto veldcitjMime graphs,we can plot acceleration-time
graphs. Acceleration-time graphs are not of much utility in
solving numerical problems, so acceleration-time graphs are
not beinggivenhere. Students are advisedto plot thesegraphs
in theirnote-book, withreference to velocity-time graphsgiven
in the previous section.

apr
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(1) A truckdriver,startingwith zerospeedat timezero, drove in
such a way that the speed time graph is approximately an
isosceles trianglewiththebasealongthe timeaxis.The maximum
speed was 30 m/s, and the total elapsed time was 50.0 s.-^What
distance did he travel.

[570 ra]

(ii) Figure-1.20 showsdisplacement-time graph of a particle.
Find the time duringmotionsuch that the average velocityof
the particle during that period is zero.

x{m)

[15.0 s]

5 10 15 20 25

Figure 1.20

(ii!) A train starts from station A with uniform acceleration

for some distance then goes with uniform retardation for
some more distance to come to rest at station B. The distance

between station A and 5 is 4 km and the train takes 4 minutes to

complete this joumey. If accelerations are in kmper minutes^
unit, show that;

11
—-h — = 2

(iv) Betweentwostationsa trainaccelerates uniformly at first,
thenmoves with constant speed and finally retards uniformly.
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If the ratios of time taken are 1 : 8 : 1andthegreatest speed is
60km/hr, find theaverage speed over thewhole journey.

[54 kph]

(v) A particle starts from rest and traverses a distance s with a

uniform acceleration and then moves uniformlywith the acquired
velocityovera furtherdistance 2 s. Finallyit comem restafter
moving through a further distance 3 s under uniform retardation.
Assuming the entirepath is a straight line, fmd the ratio of the
average speed over thejourneyto the maximum speedon the
way.

[3/5]

(vi) A particle starts with an initial velocity u towards + x
direction with an acceleration a after time /j, it starts retarding
with another acceleration a', comes to an instantaneous stop
and returns. It reaches its initial position at time t2- Draw the
approximate timedependence plotsforparticle's displacement
and velocity.

(vii) Aparticlemoves ina straightline.Figure-1.21 showsthe
distance traversed bytheparticle asa function of time /. Using
the graph, find (a) the average velocity of thepointduring the
time ofmotion, (b) the maximum velocity, (c) the. time /= /q
which theinstantaneous velocity is equal to the mean velocity
averaged over the first seconds.

[- 1.5 m/s^]

5
i-j

"3

/
/

/
/

/
/

/

0 10
time(s)

Figure 1.21

[(a) 10 cm/s, (b) 25 cm/s, (c) 16 s]

(viii) The velocity of a particle that moves in the positiveX-
directionvarieswith itsposition,as shownin figure-1.22. Find
its acceleration in m/s^ whenx = 6 m.

20

4 m/s

2 m/s

4 m 8 m

Figure 1.22

19^

(ix) The acceleration vs time of a particle moving along
+x direction is shownin figure-1.23. It startsat / = 0, fromrest.
Draw the position-time graph for the motion.

2 5

10 20 30 40 Time (s)
-5

Figure 1.23

1.10 Motionwith Time andDisplacementDependence

In previous sections we've already discussed that
instantaneous velocityand acceleration need not be a constant
inmotion ofabody moving inastraight line. These may depend
ontime ordisplacement andacceleration canalso begiven asa
function ofinstantaneous speed ofthe particle. Speed equations
foruniform acceleration cannotbeapplied tosolvesuchcases.
Whenever function ofacceleration orvelocity isgiven, wemust
use calculus to solve the differential speed equations already
discussed in section-1.6. To understand the concepts related
to variation in instantaneous velocityand acceleration we take
someillustrative andnumerical examples.

# Illustrative Example 1.25

Instantaneous velocity of a particle moving in a straight lineis
given as V=(4 -I- 4V/ )m/s. For the first five second ofmotion.
Then after velocityofit becomes a constant.Find the acceleration
of the particle at time t = 3.0 s and its displacement till this
instant.

Solution

As weknowthat acceleration of a particleis time derivative of
its instantaneous velocity.

For it we use
dv d r

or a =

and at time t = 3.0 s, acceleration is

a = —7= m/s^
V3

Tofinddisplacement, weknowthatvelocityis the timederivative
ofdisplacement, wehaveto integrate velocity usingdifferential
speed equation as
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or

dx r
v= — =4+4V/

dt

dx ={'\ +A4t)dt

Integrating the above expression from time r=0tot- 3.0 s,we
get the displacement, which varies from x=0to x=j:, for these
time instants.

x=x x=3

jiir =J {4+44i)dt
t=0 Jc=0

or =[12+13.85]=25.85 m

#Illustrative Example 1.26

Instantaneous velocity of an object varies with time as
y= ct - Find itsposition and acceleration asa function of
time, i^so find theobject's maximum positive displacement from
the origin.

Solution

Similar to theprevious example, foracceleration weuse

dv d o

For displacement we use

dx t
v=-=a-pr^

or dx ={a-^f')dt

Integrating within properlimits, wehave

* t

=J(a-p(')rfr
0 0

or x = at- — bt

# Illustrative Example 1.27

Solution

(a) As we've explained earlier, ifvelocity oracceleration ofa
particle isgiven as a fimction ofdistance ortime, we use calculus.
As here

dx j—

dx ,
-j==adt
\x

On integrating If =1""'0^^ 0

x=7aV
4

Kinematics'

...(1.22)

This gives usthe displacement ofthe particle asa function of
time. Ondifferentiating wegetvelocity as a function oftime, as

Acceleration as

dx I 2
v=- = -a^,

dv 1 2

...(1.23)

...(124)

Thevelocity ofaparticle moving inthepositive direction ofthe
xaxis varies asv=a Vx ,.where a isapositive constant. Taking
att = 0, the particle was at point x = 0, find:

(a) The velocity and the acceleration of the particle as a
function oftime.

(b) Theaverage velocity oftheparticle averaged over thetime
that it takes to cover first s metres ofthe path.

Equation-(1.24) shows that the acceleration ofthe particle isa
constant, it implies thathere we can also use speed equation
for constant accelerations as an alternative treatment.

Alternative treatment:

Aswe have v= a Vx , we have acceleration

dv 1 2

It shows that acceleration is a constant, then using

1 9 1 2v=u+at~0+{~ci)t—^at

In thismethod, we aregettingsameequation-(1.24)in a shorter
way and for such cases students are advised to check whether
the acceleration is constant or not. If it is not a constant, proceed
with calculus.

(b) Average velocity incovering fust s metre ofthe path is
_ S

V = —

t

Where t is the time to cover the displacements. It can be given
by equation-(l .22), as

J~s
t = 2

a

Thus average velocity is

_ ayjs
V
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# Illustrative Example 1.28

Apoint moves rectilinearly with deceleration which depends on
the velocity vofthe particle as a=kyfv , where is apositive
constant. Atthe initialmomentthevelocityof thepointis equal
to Vq'. What distance will itcover before itstops, and what time
it will take to cover that distance.

Solution

Inthe problem it isclear that acceleration here isnot constant
and itdepends onvelocity. Itmeans, we should use calculus as

dv r-
V-— =-kylv

ax

-Jv dv=-kdx

V *

On integrating ^•Jvdv =-^kdx

Substituting v = 0 and x = s

._2vo
3k

To find the time takento cometo rest, we use a = dvldt,as

dv /—

Vv

V I

On integrating J=-^kdt
•'0 ^ 0

2(^-yfv) =kt

Substituting v = 0 and t = T

2'v/vo
T=

# Illustrative Example 1.29

Solution

To find the instantaneous velocity of the object we use
dv

a=—= 3-2/
dt

or dv = {3'-2t)dt

21;

Ifthe initial velocity ofthe object istaken as v^, we integrate the
above expression from time 0to tand corresponding velocities
fromVq to V.

or

or

V t

jdv =^{3-lt)dt
V(J 0

v-v„ = 3/-/^.

v=Vq +3/-/^

Fordisplacement, wewrite

or

dx -y^=v„+3r-^
dx={v. +3t-I^)dt

As itisgiven that at/=0and /=5.0 s,object's displacement are
equal sayx = 0, then we have

0 5

jd^=|Cvo +3/-/^)rf/

or

or

or Vq = 0.832 m/s

v„{5)+t(5)'-^(5)' =0

An object moves such that isacceleration is given as a - 3- 2/.
Find the initial speed of the object such that the particle will
havethesamex-eoordinate at/=5.0 sasithadat /—0. Also find
the object's velocityat / = 5.0 s.

Nowwe have object's instantaneous velocity as

v = 0.832 + 3/-/^

At / = 5.0 s, instantaneous velocitycan be given as

v=0.832 +3(5)-(5)^=-9.17m/s

PracticeExercise 1.5

(i) The displacement xofaparticle moving in one dimension,
underthe action of a constant force is relatedto the time t by
the equation :

t —4x +3

where x is in metres and / is in seconds. Find the displacement
of the particlewhenits velocityis zero.

[0]

(ii) Instantaneous velocity ofaparticle moving in+x direction
3

is given as v=— .At /=0, particle starts from origin. Find
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the average velocity of the particle between the two points Consider the carriage train on rails Aand afarmer Bshown in
P(x =2)and2(x=4)ofitsmotionpath. figure-1.24,letthetrainmovewithavelocity K4 andthefarmer

[0 264 m/s] velocity Vb on train.

(iii) Acarmoves rectilinearly from stationAtothenext stop B
with an acceleration varying according to the law a = b- cx
where b andc are positive constants andx is its distance from
station /I. Find the distance between these stations if car stops

at station B and its starts from rest from A.

[2 6/c]

(iv) A particle moves along a straight line such that its
displacement at any time t is given hyx =t^-6?" +3/ +4. What
is the velocity of theparticle when itsacceleration is zero?

[- 9 m/s]

(v) A radiusvector of a pointvaries withtimei as

r =bt (1-aO

where 6 is a constant vector and a is a positive factor. Find :
(a) Thevelocity v andtheacceleration a of theparticle asa
functions oftime.

(b) The time interval A/ taken by theparticle to return to the
initial position, and the distance j covered during that time.

[i(l - lat), - lab , 1/a, blla]

(vi) Abox isthrown with velocity Vq ontop ofa rough table of
length /. Assume friction onthe object is such that during its
motion, its acceleration isgivenas a = - A:v, where is apositive
constant. Find the velocityof the box when it leaves the edge
ofthe table. Also find the time afler which it falls off the edge.

[V =v,-W,/=1

(vii) Aparticle startrevolution with initial speed u ina circular
path ofradius R. During revolution it isretarded due tofriction
and its acceleration isgiven as o=- cv^. Find the speed ofthe
particleaftercompleting onerevolution.

[m

1.11 Relative Motion

To imderstand the concept of relative motion we must know
first - What is a reference frame ?

A referenceframe is a platformwhereobserveris situatedor the
space with respect to which all measurements are taken. For
better understanding we explain it on the basis of following
example.

Figure 1.24

Herethe velocity of farmer as measured by an observer in the
earth or car C (driver) is given as -

Vbc =Vb + Va ...(1.25)

Thisis thevelocity of5 withrespect toC.Here reference frame
of farmer is the train and that of observer is earth. Always
remember that the velocity of an object (farmer)withrespect to
earth will be velocityof the object (farmer) on its frame(train)
added to the velocityof the reference frame of the object.

Now consider the situationshown in figure-1.25.It is similar to
previous case, but the difference is in observer. Now observer
is moving (lorry driver) with the velocity Vc

Figure 1.25

In this case thevelocityof farmeras observedby lorrydriveris
given as

Vbc= Vb + Va - Vc ...(1.26)

This gives the velocityof B with respectto C. It is clear from
equation-(1.26) that if observer is also moving on earth, with
respect to itself, all the stationary objects on earth will appear
tobe movingin backward direction withthe samevelocitywith
which it is moving and because of it in equation-(1.26), we've
subtracted Vc from the velocity of£ with respect to earth.

Now we'll discuss some of the applications concerned to the
relative motion, as given below



fkinematics

Web Reference atwww.physicsgalaxv.com

Age Group - High School Physics | Age 17-19 Years
Section-MECHANICS

Topic - Concept of RelativeMotion •
Module Numbers - 1, 2, 3, and 4

1.11.1 River Flow Cases

Considera river shownin figure-1.26(a), let the flowvelocityof

current be Ufand aswimmer jumps into^the river from apoint
A, from one bank of the river as shown, in a direction

perpendicular to the direction ofcurrent.

Due to the flow velocity of river the swimmer is drifted along
the river by a distance BC and the net velocity of the swimmer

will be Vr as shown along the direction .dC.

If we find the components of velocity of swimmer along and
perpendicular to the flow, these are :

Velocity along the river K = Ur
J

B-* drift-

Figure 1.26
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Velocityperpendicular to the river V

The net speed directly can be given by the velocity triangle as

V^+Uj

Here time taken to cross the river is f- ^
y

As the swimmer crosses the river with the velocity only,
velocity is only used to drift the motion ofthe swimmer due

to current in the river.

The drift carried along theriver flow is : j:= drift speed (VJ x
time taken to cross the river (()

d

~^fV
Now consider the casewhen the swimmerjumps from the point
A into the river making an angle 0 with the normal to the current
direction,as shownin figure-1.26(b). Due to thisthe net velocity
ofthe swmmer with respect to earth given by velocity .triangle
in figure, is given as :

V„et-V +Uf ...(1.27)

The velocity component along the river is

V^=Uj.-V&mQ

The velocity component in a direction perpendicular to the
current is

I^=Fcos0

The resultant velocity with which the swimmer will cross the
river is

The time taken by the swimmer to cross the river is

Vy VcosQ

The drift carried along the river is

x=V^- t={U^-VsinQ)x
VcosQ

Ifwe are required to minimize the drift or the question is asked
to find the angle 0 at which the swimmer will swim such that the

dx
drift will be minimized, we put — = 0; which gives a value of0

00

at which ifthe swimmer will swim, drift will be minimum.

Similarly ifthe swimmer will jump in the downstream direction at

the angle 0 with the normal to current flow, corresponding

velocity triangle is as shown in figure-1.27.



24

•drift-

Figure 1.27

In this case we have velocity component along the river

Velocity component normal to the current flow is •

Vy = rcos0

Hence time taken to cross the river is

d d
t =

Vy Kcos0

The drift along the river flow is
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1.11.2 Rainfall Cases

When rainfall occurs, the direction of rain drops falling on

ground is different from the rain direction, measured by a moving

observer. If velocity of rain drops is Vr and Vm and if the

velocity ofa moving man on a straight road, the velocity ofthe
rain drops as observed by man can be given as

Velocity ofrain with respect to man is

Vrm = Vr- Vm ... (1.28)

Ifwe consider the situation shown in figure-1.28, when rainfall
starts at an angle 0 from the vertical with a velocity Vr and a

man is running on straight road with a velocity Vm towards

right, the velocity"of raindrops observed.by man can be given
by forming the velocity triangle shown in figure.

Here Vrm is the rain velocity observed by the man.

Velocity triangle in figure-1.28(c) shows that the direction of

velocity of rain with respect to man is at an angle cp with the
vertical. Psychologically it appears that man should hold his

Kinematics?

umbrella directed against the rain fall direction, as shown in
figure-1.28(a). But it is not the correct position, because rain
drops are comingtowardman in a different direction ((j) from
vertical). Always remember that to save himself man should
hold the umbrella in the direction against the relative velocity
of the rain withrespect to him.Figure-1.28(b)showsthe correct
holding position.

'7^777777777777777777777777777777'.

(a) Wrong position of umbrella

1/ /////,//777
' R / / / / /
'v ////////// ^

^ U. U. ii. ii. U

777777777777777777777777777777777

yRsryR^^-VKi^

(b) Correct position of umbrella (c) Velocity Triangle

Figure 1.28

Next consider the situation shown in figure-1.29(a), rain is falling
vertically. To save himself if a man who is running towards
right, manages to keep his umbrella vertical, he will get wet as
the velocity triangle shows that the direction ofrain with respect
to man is in a direction making an angle (j) with the vertical.

Thus he has to hold his umbrella at an angle (j) with the vertical
to save himself, as shown in figure-1.29(b).

I 1 I I

I I I I

I I I I

I I I

I I I

I I I

^ ^ ^ ^ ^ ^ ^ ^ ^

""^77777777777777777777777777777

(a) Wrong position of umbrella
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^:^^ZW77777777777777777777777777Z

(b) Correct position of umbrella (c) Velocity Triangle

Figure 1.29

Again consider the open car shown in figure-1.30(a), we are
required to find the velocity with which if the car is moving, no
drops will fall on the driver. Figure-l.30(b) shows such a Solution

situation. If car is running at a speed Vc such that direction

y RC(velocity ofrain with respect to car) is in a direction shown
in figure-l .30(b), such that the rain drop which is just touching
the top edge ofthe galsspane will follow the dotted path shown
in figure, hence the driver will be saved.

Analysis is shown in velocity triangle, the velocity ofthe car in

this situation can be given as

V^=V^tanQ

\> s ' y* y y *

V777777777777777777777777777777/.

vttttttttttttTTatttttttttttttttttttttttttt/

(c)

Figure 1.30

yRc=yR-yc

•yc=yR-yRc

25'

yc=yAi
There can be several cases and numerical problems based on
the above discussion. We'll discuss some more similar and

different cases in following examples.

# Illustrative Example 1.30

A man standing on a road has to hold his umbrella at 30° with

the vertical to keep the rain away. He throws the umbrella and
starts running at 10 km/hr. He finds that rain drop are hitting his
head vertically. Find the speed of raindrops with respect to (a)
road (b) the moving man.

Given that the velocity of rain drops with respect to road is
making an angle 30° with the vertical, and the velocity of the
man is 10 kph, also the velocity of rain drops with respect to
man is vertical.

We have

Hence

y =y - y
RM R 'M

y = y + F

The situation is shown in velocity triangle in figure-1.31.

V,

Figure 1.31

It shows clearly that = K^cosecO = 10 x2=20kph

and f'«j/=f'Mcos0 =iox::^=5,/3kph

# Illustrative Example 1.31

A river 400 m wide is flowing at a rate of2.0 m/s. Aboat is sailing

at a velocity of 10.0 m/s with respect to the water, in a direction
perpendicular to the river, (a) Find the time taken by the boat to
reach the opposite bank, (b) How far from the point directly
opposite to the starting point does the boat reach the opposite
bank?
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Solution

As it is giventhat boat is sailing in a directionnormal to current.
Crossing velocity ofboat is = 10 m/s.

So time taken by the boat to reach the other bank is

400

10
= 40 s.

Drift due to flowof river is = Drift velocityx time to cross the
river

Hereboat is sailing in normal direction so driftvelocity is the
river currentvelocity.

Thus, drift is a:=2.0x40 = 80 m

# Illustrative Example 1.32

Two trains, onetravelling at 54kphandtheotherat 72kph,are
headed towards eachotherona level track. Whentheyare two
kilometers apart, bothdrivers simultaneously applytheirbrakes.
If their brakes produces equal retardation in both the trains at a
rate of0.15 m/s^, determine whether there isacollision ornot.

Solution

Speed of first train is = 54 kph = 15m/s

Speed ofsecond train is = 72 kph = 20 m/s

As both the trains are headed towards each other, relative
velocityof one train with respect to other is given as

. v^=15 + 20= 35m/s

Kinematics]
Solution

In this problem one thing should be carefullynoted that here
velocityof boat is less than the river flow velocity. In such a
case boat can not reach the point directly opposite to its
starting point, i.e. drift can never be zero, although the drift
canbe minimized. Tominimize thedriftboat startsatanangle0
from the normal direction upstream as shown in figure-1.32.
Due to it as shown in figure, crossing velocity of the boat
becomes v cos0and its driftvelocity becomes (m - v sin0). As
here u is always more than v sin 0, drift can never be zero.
Time taken to cross the river is

d
t =

V cosB
In this duration drift BC is

x = {u-v. sin0) X
d ud

= — sec0 - d tanB
V cosB V

dx
This driftx is minimum when = 0, according to maxima-

do

minima.

1

1

1

1

1

u\
\ 1

/
. \d /^R

Thus

Figure 1.32

dx ud .
~ = — sec0 tanO - d sec 0 = 0
00 . v

Both trains are retarded byacceleration of 0.15 m/s^, relative or
retardation is o = 0.15 + 0.15 = 0.3 m/s^.

u

— sinB = 1
V

Nowweassume onetrain isatrestandother iscoming at35rii/s
retarded by 0.3 m/s^ is at a distance of two kilometer. The So for drift minimizing, boat should be sailed at an angle
maximum distance travelled bythe moving train while retarding
is

2a.

(35)^
2x0.3

= 2041.66m

or

1
sin0 = —

n
[As V= —1

n

0=sin ' jfrom normal direction orat an angle +sin '
from stream direction.

It ismore than 2 km, which shows thatitwillhitthesecond train. # IllustrativeExample1.34

# IllustrativeExample 1.33

A boat moves relativeto waterwitha velocitywhichis n times
less than the river flow velocity. At whatangle to the stream
direction must theboatmove tominimize drifting ?

One morning Joy was walking on a grass-way in a garden.
Wind was also blowing in the direction,ofhis walking with
speedu.Hesuddenly sawhisfriend Kimwalking ontheparallel
grass-way at a distancex away. Bothstoppedas they saw each
other when they were directly opposite on their ways at a
distance x. Joy shouted "Hi Kim". Find the time after which
Kimwould haveheardhisgreeting. Sound speedinstill air isv.
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Solution

The situation is shown in figure-1.33. When Joy shouted, the
soundwhichisgoingdirectlytowardKimwillnot reachher as
due to wind drift is added to it. The sound which is going in the
directionat an angle 0, to their linejoining will reach to Kim as
when drift is added to it as shown in figure, the resultant is in
the direction oftheir line joining.

Joy

'' 1
1

1

1
1

u

a:

Figure-1.33

The resultant velocity of sound is

fl 2v^= Vv -U

Time taken by sound to reach Kim is

X

\I7^'

a Illustrative Example 1.35

Kim

Two swimmers leavepointA on onebank of the river to reach
pointBlying rightacross ontheother bank. One ofthem crosses
the river along the straight line AB while the other swims at
right angles to the stream andthen walks the distance thathe
has been carried away by the stream to get to point B. What
wasthevelocity uofherwalking ifbothswimmers reached the
destination simultaneously ? The stream velocity is 2 km/hr
and the velocity of each swimmer with respect to water is
2.5 km/hr.

Solution

Letus take velocity of swimmer with respect towater is vand
that ofriver current isv^. Figure-1.34 shows the situation. The
swimmer which crosses the river along the straight line AB, has

to swim in upstream direction such that its resultant velocity
becomes toward.45 as shown in figure. If the width of river is
assumed to be d, then

Resultant velocityof fu-st swimmer is Vj = --

Time taken by her to cross the river is

d ' d
t =

_ A.
yj2.5^-2^

. . ^ iim

Second swimmer if swims along AB, she is drifted towards
point C,dueto riverflowas shown in figure-1.34 andthenshe
has to walk down to reach point B with velocity u.

B

.First swimmer

Second swimmer

Figure 1.34

Herecrossing velocity ofsecond swimmer isv,asitsis swimming
along normal direction.

Time taken to cross the river by her is

d^
2.5

hr

Her drift due to river flow is

d
x = v X —

V

Time taken to reach point 5 by walking is

X vM 2xc/

uv ux2.5 l.25u
In-

Given that both the swimmers reach the destination

simultaneously, so we have

or

or

t = +

1.5 2.5 1.25m

M=3.0 kph

^ Web Reference at www.physicsgakxY.com
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Practice Exercise 1.6

(i) The river 500 m wide is flowing with a current of 4 kph. A
boat starts from one bank of the river wishes to cross the river

at right angle to stream direction. Boatman can row the boat at time— -JViV - 2aT)
8 kph. In which direction he should row the boat. What time
heTl take to cross the river ?

[120° to the current direction, 4.33 min]

(ii) An aeroplanetakes off fromMumbai to Delhiwith velocity
50 kph in north-east direction. Wind is blowing at 25 kph from
north to south. What is the resultant displacement of aeroplane

in 2 hrs.

[73.67 km]

(ill) A man can swim with respect to water at 3 lq)h.The current
speed in the river is 2 kph. Man starts swimming to cross the
river. At the other bank he walks down at 5 kph, the distance

along the shore to reach the point on the other bank directly
opposite to his starting point. Find the direction in which he
should head while swimming so that he could reach the opposite
point in the least possible time. Also find this minimum time.
The width ofriver is 0.5 km.

[sin"' (3/7) from the normal direction, 12.65 min]

(iv) Two boats, A and B, move away from a buoy anchored at

the middle ofa river along the mutually perpendicular straight

lines, the boat A along the river, and the boat B across the river.
Having moved off an equal distance from the buoy the boats
returned. Findtheratioof times of motion of boatstj if the
velocity ofeach boat with respect to water is 1.2 times greater

than the stream velocity.

[1.8]

(v) A man running on a horizontal road at 8 km/hr finds the rain

falling vertically. He increase the speed to 12 km/hr and finds
that the drops make angle 30® with the vertical. Find the speed
and the direction of the rain with respect to the road.

[4 V? kph]

(vi) Two trains A and B are approaching each other on a straight

track, the former with a uniform velocity of 25 m/s and other

with 15 m/s, when they are 225 m apart brakes are simultaneously

applied to both of them. The deceleration given by the brakes
to the train B increases linearly with time by 0.3 m/s^ every
second, while the train A is given a uniform deceleration, (a)

What must be the minimum deceleration of the train A so that

the trains do not collide ? (b) What is the time taken by the

trains to come to stop ?

[2.5In/s^ 10.Os]

Kinematics!

(vii) A body starts from rest at A and moves with uniform
acceleration a in a straight line. Tseconds after, a second body
starts from A and moves with uniform velocity K in the same

line. Prove that the second body will be ahead of the first for a
2

a

(viii) An aeroplanehas to go froma point.4 to anotherpoint B,
500 km awaydue 30® east of north.A windis blowingdue north
at a speed of 20 m/s.The air speed of the plane is 150m/s. (a)
find the direction in which the pilot should head the plane to
reach the point B. (b) find the time taken by the plane to go
from^ to5.

[(a)sin"' (1/15) east of direction AB, (b) 50 min]

(ix) Find the time an airplane take to fly around a square with
side a with the wind blowing at a velocity u, in the two cases, (a)
If direction of wind is along one side of the square; (b) the
direction ofwind is along one of the diagonal of the square ?

[(a) f ), (b) 272fl(^^f f )]
V -u V -u

(x) A mansvrimming ina riverfroma point.4onone bankhasto
reach a point C on other bank, which is at a distance / from the
point B, directly opposite to A on other batik. River width is d
and the current velocity is Uq. Find the minimum speed of
swimmer relative to still water with which he should swim.

u^d
]

1.12 Motion in Two Dimension

Now we change our

kinematics analysis from

one dimension to two

dimensions. In previous
sections, we've discussed

about the motion of an

object along a straight
line. Now we discuss,

what happens when a

particle moves in a plane.
Have a look at figure-1.35,

which shows a particle Figure 1.35
moving inX-Tplane, along a two dimensional path, known as
traj ectory of the particle. We discuss the motion ofthe particle
between two points of the curve A and B. If the particle is
moving along the curve and its velocity at an instant is v at an
intermediate position ofparticle at point P. In two dimensional
motion, direction ofvelocity ofa particle is always tangential to

V cos9
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its trajectory curve. As the particle moves from point
topoint5(A:2,y2)- Itsprojection onx-axis changes fromxj toaTj,
anditsprojection ony-axis changes fromy^ toy2- The velocities
ofthe projections ofthe particle along x and y direction can be

foundbyresolvingthevelocityof theparticleina: and^ direction.

If along the curve particle moves a distance dr in time dt, we
define v = dridt. Similarly, when particle moves dr along the
curve, itsx-coordinate changes by tic andy-coordinate changes
by dy. Thus the velocity projections can be written as

...(1.29a)

29'

The total or net acceleration of a particle moving in two
dimensions, can be resolved in two mutually perpendicular
directions a: andy and these two projections termed as a and
Gy, and mathematically these can begiven as

a =

and

d^x

dt dx " dt^

dVy dVy d'y
dt dt'

...(1.32)

...(1.33)

From equations-(1.32) and (1.33), total acceleration is given as

and

dx
= — = V COS0

dt

v^=-=vsin0 ... (1.29b) The magnitude of which is given as

If we find the direction of net acceleration vector is given as
In standard unit vector notification we can write the

instantaneous velocity of particle as

V = v z' + vj

Squaring and adding equations-(1.29) and (1.30), gives net
velocity of the particle as

...(1.30)

Dividing above equations will give the angle formed by the

trajectory with the positivex-direction or the slope angle ofthe
trajectory as

or

tanO = —
v..

tan-^

1.12.1 Acceleration in Two Dimensional Motion

...(1.31)

Acceleration is defined as the rate of change of velocity. As

velocity is a vector quantity it has both magnitude and direction,

and in twodimensionalmotion,'magnitudeof velocityor andas
well as direction can be changed, hence acceleration can exist,

either only magnitude of velocity changes, or only direction

changes, or both will change. The acceleration which accounts
for the change in magnitude of the velocity is known as

tangential acceleration and the acceleration which accounts for

the change in direction of the velocity is known as normal

acceleration. Total or net acceleration ofthe particle is given by
the vector sum of the two accelerations, tangential and normal

accelerations. This topic will be discussed in detail in next

chapter. Here we'll discuss about the projections of the total
acceleration in a:and y directions, and a.

X y

-1
(p = tan —

Students should note that this direction is different than the

directionofnetvelocityi.e.0,wefoundearlier. In further chapters
we discuss this direction in more detail.

1.12.2 TVajectory of a Particle in Two Dimension

Path tracedby a movingparticlein spaceis calledtrajectoryof
the particle, as in one dimensional motion the trajectory of a
particle is straight line. In two dimensional motion the trajectory
ofa movingparticle will be a two dimensionalcurve e.g. circle,
ellipse, parabola, hyperbola, spiral, cycloid and so many more
paths, including random paths. Shape of trajectory is decided
by the forces acting on the particle, for a specific shape a
particular type of force or a group of forces are required. This
we'll discuss after the chapter of forces. When a coordinate
system is associated with a particle's motion, the curve equation
in which the particle moves [y = / (a:)] is called equation of
trajectory. It is just giving us the relation among x and y
coordinates of the particle (locus of particle).

To find equation of trajectory of a particle there are several
methods but the simple way is to find first x andy coordinates
ofthe particle as a function oftime and eliminate the time factor.
We discuss few examples of basic two dimensional motions
and trajectory ofparticle in two dimensions.

illustrative Example 1.36

A particle is moving in XY plane such that its velocity in
x-direction remains constant at 5 m/s and its velocity in
y-direction varies with time as v = 3 t m/s, where t is time in
seconds. Find :
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(a) Speed ofparticle after time /=10 s. Integrating within proper limits,we have
(b) Direction ofmotionofparticle at thattime. y i

(c) Acceleration ofparticle at f=5sand its direction. ^dy= '̂itdt
(d) Displacement of particleat this instant.

(e) Equation oftrajectory ofparticle ifit starts at time t=0 from
rest at origin.

Solution

(a) Attime ^= 10s particle velocity inx andy directions are

or

0 0

'3 2? 3,3 ,=-r=-(5)^=37.5m
2 lo 2 2

Note that here acceleration in y-direction is constant and is
~ 3 m/s^, so this can be obtained directly using speed

equations as

v, = 5m/s y =

and =3(10) =30 m/s '̂ hus displacement ofparticle from starting point (origin) is

r =25/+37.5y-45.07|56.3rm
Magnitude of instantaneous velocity is

V= /v^ +V^ = /(5)^ +(301^ For finding equation oftrajectoiy we should require Xand
^ J- Vt. J ycoordinates ofparticle as afunction oftime, and here we have

= 30.41m/s •

y=2 ...(1.35b)G)) As we know that the direction ofmotionofparticle is along
the instantaneous velocity ofit thus we have the inclination of Eliminating/from equations-(1.35a) and (1.35b), we have
particle's velocity from horizontal is 3

. . , , y=^'^ -(i-sQ
(30^0" [T"] " ItJ"80.53'' . Equation-(l .36) gives the equation oftrajectory ofthe particle.

# Illustrative Example 1.37
(c) Acceleration ofparticleinx andy directions are

^ ' A car starts moving from rest on a horizontal ground such that
= 5 m/s constant] tbc position vector of car with respect to its starting point is

given as F =bti —ct^ j, where a and bare positive constants,
.2 _ and / and yare the unit vectors along two perpendicular

t// ® [As Vy-3/m/s] direction (x and y axes) intersect at the starting point of car
Thus net acceleration of particle is constant and is given as :

a=̂ al+ay =3m/s^ The equation of the trajectory ofcar y-/(x).
(b) The angle between direction ofvelocity and acceleration

(d) To find displacement ofparticle in ;cand>. direction, we ofcar as afunction of time 0=/(O.
used respective velocities as, we have Inx-direction particle Average velocity^ ofcar over first / seconds ofmotion,
velocity is constant = 5 m/s, thus'

Solution

Displacement ofparticlealongx-direction is
(a) From position vector wecanwrite thex andy coordinates

^ =V=5'=5(5) =25m ofthecaras

Iny-direction particle velocity is given as (137)

v^ =3/m/s thuswehave ^"d y=c^ ...(1.37b)

=3/ Elimmatmgtfromequations-(1.37a)and(1.37b),weget
c ,

or dy= 3tdt >"77^
b



(b) From equations-(l .37a) and (1.37b), velocity components

ofcar in x and y direction are

V = ^ and V =2 ct
X y

In vector form velocity ofcar can be written as

V = bi +2ctj

Its magnitude is v= +4c^/^

Acceleration of car inx and_ydirection are.

a^ =0 and ciy =2c

In vector form acceleration of car is

Its magnitude is

a =2cJ

a=2c

To fmd angle between vector v and vector a, we take dot product

ofthe two vectors. If0 is the angle between the two at a general

time instant t, we have

a . V = av COS0

or (2cy). (^/ + 2ctj) = {2b){+4c^/^ ) cos0
let

or cos0 =

Tb

(c) Average velocity of car in first t seconds can be given as

displacement vector at time?
<v> =

t

' bti + ct^j , -Thus, we have <v> =y = ^ -bi +ctj

# Illustrative Example 1.38

A point moves in the XYplane according to the law= kt and
y = kt(\- at), where k and a are positive constants, and t is
time. Find:

(a) The equation oftrajectory of the particle.

(b) The time after start at r = 0 when the direction between
velocity and acceleration ofparticle becomes 45®.

Solution

(a) Equation of trajectory can be directly obtained by

eliminating t from x and y coordinates of the point, so we have

(b) Velocity and acceleration vector of the point can be given
as

V=A:/ +A'(1-2at)j

Its magnitude is

and

Its magnitude is

•=k^2 +Aa^t'̂ -4at

a =-2kaj

a = 2ka

31

Asat time /q theangle between vectora andvector v is45®, we
have from dot product

a . V=avcos(45®)

{-2kaj) .[ki -vkil-lat^j]or

=Q.ka) {k^^2•^Ao}tQ -Aato)

Solving we get ^0
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Practice Exercise 1.7

(!) The coordinates of a bird flying in the Ary-plane are
x = 2 —at andy = where a —3.6 m/s and P= 1.8 m/l.
Calculate 'the velocity and acceleration vectors and their

magnitude as a functions oftime. Also find the magnitude and
direction ofbird's velocity and acceleration at ^=3.0 s. From the

given data can you find whether at this instant, bird is speeding
up, speeding down or it is taking a turn. Ifso in which direction.

[Vl2.96+12.96?^ m/s, 3.6 m/s\ 11.38 m/s, 3.6 m/s^]

(11) On a smooth horizontal platform a mass of2 kg is dragged

with a horizontal force of 10 Nt. On platform there are so many

holes spreaded on its surface below which there is an air blower
which exerts a force on block in upward direction depending on
its height above the platform as F = 20 (2 - h) N, where h is the
height ofthe block above the platform. Let at r = 0 block starts

from rest from origin of coordinate system shown. Find the
equation oftrajectory ofthe block during its motion. Consider
x-axis along the motion of particle and j'-axis in vertical up

direction.

[2 == sin"' (>- - 1) - 7t]

(ill) A ball is thrown straight up in air with an initial velocity u.
Air exerts a force on it in horizontal direction which produces

an acceleration depending on its height from ground as a =a}?.



32

Find the displacement of bail from the projection point as a
function oftime.

Kinematics"

Consider figure-1.36, which shows a trajectory ofa projectile
thrown from the origin with aninitial velocity u atan angleG to
the horizontal.

[r =\jxf +yf where x, =, .2.4
au t

12 120

augr

20

(iv) A boy releases a toy plane from the top of a high hill of
height H. Hill is so high that gravity varies with height from

2hground asg = (1 ——), where h is the height from ground

and Risthe radius ofearth. The engine oftoy plane accelerates
it in horizontal direction with acceleration = h?. Find the
position from the foot ofhill where theplane lands andthe time
after which it lands.

u sin0

/ = 0

bP}

48go'
In

R-H
In

^ + •J2RH- H'

R-H

(v) The position vector of a particle P with respect to a
stationary point O changes with time according to the law
f = b sinco/ + c coscot where b and c are constant vectors
with blc and co isa positive constant. Find the equation ofthe
path of the particley =/(x), assuming x and y axes tocoincide
with the direction of the vector b and c respectively and to
havethe originat the point O.

[7r +^=l]
0 C

(vi) The motion of a particle restricted to move in a two
dimensional plane is given by

and

X = 2 cos 71/

>>=1 -4 cos 271/

where x and y are in metres and / is in seconds. Show that the
pathof theparticle is a partof parabola y = 5 - 2x^. Find the
velocity andtheacceleration of particle at / = 0 and/ = 1.5s.

[0, 158.98 ^l/s^ 6.2 m/s, 157.75 m/s^]

1.13 Projectile Motion

It is oneof themostimportant'application of two dimensional
motion. In this chapter, we will discuss all the properties and
numerical aspectsrelatedto projectilemotion.

Motion of a body after its projection is known as projectile
motion. It canbeof several types e.g. inpresence of anexternal
force or infree space orininfluence ofaforce field governing
some particular laws etc. Inthis section we will mainly discuss
the projectile motion under influence of gravity and its
applications in absence of air friction.

Figure 1.36

To analyze the motion we resolve the motion of the body in
two separate onedimensional motions. One alongr-direction
and other along y-direction. We resolve the initial velocity in
two corresponding directions

Thehorizontal component of theinitial velocity is

11^ = UCOS0

The vertical component is

Uy-usin0

In the whole motion there isonly one force acting onthe body
i.e. theforce ofgravity due towhich ithas only one acceleration
iny-direction "-g".

If we consider the horizontal projection of the body during
flight, itwill run with aconstant velocity from the starting point
O to the point where the projectile will hit the ground. In
y-direction motion particle starts with the velocity u sin0 and
retarded by g. It goes up to a maximum height H and then it
returns to the ground. If these two motions are combined, it
results the trajectory shown in figure-1.35.

Ifthe body isprojected at time /=0,itwill fall onthe ground at
time / = knownas time of flight, the value of whichcan be
given as

Using

We take

s=ut-^ gf-

0=wsinG Tj.~ gT^

2m sin 0

^/=
g

...(1.38)

When the particle is at the topmost point of its trajectory its
vertical component ofvelocityjszeroandas be themaximum
height, atwhich itwill have only the horizontal component of
velocity
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We get ^ =1? - 2gs

0= (w sinQf^lgH

H=.
u sin^ 9

2g
...(1.39)

The horizontal distance to which the body travels during its
flightis knownas the horizontal range, whichcanbe evaluated
to be the distance traveled by the horizontal projection of the
body in the durationtime of flight.

The horizontal range of projectile is

R = MCOS0 >< T
f

sin20

g
R = ...(1.40)

From equation-(1.40), it is clear that the horizontal range of
projectile depends on the angle of projection 0, as 0 varies,
range willchangeand rangewill accordinglybe maximumwhen
die factor sin20 will be have a maximum value. Thus the maximum

range is

2

When

u

R= —
8

sin 20 = I

If range is not maximum, then R depends on sin20, and there
can be two values, of 0 at which sin20 has a single value for
(0 < 0 < 90®). This impUes whenrangeis notmaximumandthere
will alwaysbe two values ofangles of projections, at whichwe
get the same ranges, if u is same in both the cases. These two
angles are known as complementaiy'angles as to be 0,+02 =90®.
(Figure-1.37)

e, +6,-90°

Figure 1.37

When a body is projected at / = 0, then at time t = t, the velocity
projections of the particle in x andy directions are v coscp and
Vsinq), respectively as shown in figure-l.37, ifvelocityat timet
is Vand it is making an angle (p with the positive direction of
X-axis.

In x-direction velocity component is

= u COS0 (Remains constant as ^7 =0)

Iny-direction velocity component is

= Msin0 - gt

33

(Retarded by a =-g)

In vectorialformvelocityof theparticlein projectilemotionas
a function of time is given as

v = {uCOS0) i + (w sinO - gt) j

1! sin0

? = 0

O u cos6

Figure 1.38

Its magnitude at time t is

v= +g^t^-lugt sinO

...(1.41)

...(1.42)

During motionwe can also find the projectile coordinate at a
general time f = / as

Itsx-coordinate is x=mcos0./ (As a^ = 0) ...(1.43)

As particle movesinx-direction withconstantvelocityu cos0

Its y-coordinate is y= wsinO •t-~g.^ ... (1.44)

As in y-direction, particle's initial velocity is u sinO and is
retarded by g.

Eliminate t between equations-(1.43) and (1.44), we get the
relation in Xand;'.

fix^
•>' =^tan0--^ Y- ...(1.45)

2u cos 0

It is the equation of the path of trajectory in the coordinate
systemwherex-direction is along horizontal andj'-direction is
along vertical. This trajectorypath equation is very useful in
solvingnumerical problems. Letus takefewexamples on basic
projectile motion.

# Illustrative Example 1,39

A projectile is thrown from a point on ground with an initial
speed u andat an elevation 0, to the horizontal.Find thechange
in momentumof the particle, when it reaches the topmostpoint
of its trajectory.
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Solution

As we all know that during projectile motion the horizontal
component of the velocity of the particle remains constant,
wCOS0, so at its topmost point its vertical component of the
velocity is zero and itwill have only ucos0. At the initial point
of trajectory, velocity ofthe particle was u. Thus change in
momentum canbegivenas{mu cos0-mw). But it is tobe noted
that momentum is a vector quantity and to find change in
momentum we have taken the difference of magnitude of
momenta at the topmost point andtheinitial point. This result
isnotcorrect. Here weshould take thedifference ofmomenta in
Xand^ directions separately and then we evaluate the modulus,
as

Change in momentum in ^'-direction is

= mu COS0 - mu cos0 - 0

Change in momentum inj;-direction is

^Py =0- ww sin0

Thus net change in momentum is

Ap = -mu sin0

Magnitude of changein momentum is

Ap = mu sin0

# Illustrative Example 1.40

Abody projected with the same velocity at two different angles
covers thesame horizontal distance R. If T, andT, are thetwo

2 . -'I •'2
timesof flight, prove thati? = - p-TV T,

2 h

Solution

As itisgiven that the range ofthe two projectile are same, thus
these must be thrown atcomplimentary angles. Ifone isthrown
at 0, other must be at - 0. Thus time offlight for the two
projectile we have are

Kinematic^

Fromequations-(l .46)and(1.47), weget

# Illustrative Example 1.41

I

Astudent and his friend while ejqierimenting for projectile motion
with a stop-watch,'taken some approximate readings. As one
throws a stone in air at some angle, other observes that after
2.0 sitismoving atan angle 30° to the horizontal and after 1.0 s,
it is travelling horizontally. Determine the magnitude and the
direction of initial velocity of thestone.

Solution

Let we take u is the initial velocity and a be the projection
angle. It is given that at t= 3.0 s, stone is atmaximum height.
Thus wehave halfof time offlight is 3.0 s.

. «sin0
=3

g

wsin0=3Oor ...(1.48)

Ifwe take vbethe velocity ofthe stone at t = 2.0 s,when it is
making anangle 30°with thehorizontal, wehave

and

or

or

vcos30° = w cosO

Vsin30°= u sinO-g{2)

•' v\-\ =30-20=10

v = 20 m/s

Nowfrom horizontal component

-2,

or wcos0 = loV3

Squaring and adding (1.48) and (1.49), we have

w=20-^3 m/s

tanO =V3

= U COS0

...(1.49)

2i/sin0

g

2i/cos0

g

Dividing
and Tf =

fi

Multiplying the two we get

Tf T, =
/i h

Range of projectile we have

4w sin 0 cos 0

2u sin0

g
R =

...(1.46)

...(1.47)

or 0=60°

# Illustrative Example 1.42

Acannon fires successively two shells with velocity 250 m/s.
The first atan angle 60° and the second atthe angle 45° to the
horizontal, theazimuth being the same. Find thetime interval
between their firing sothat thetwo shells collide inair. Assume
no air friction.
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Solution

Figure-1.39 shows the corresponding situation. Let the two
shells collide atpoint.^ (x,;v). Ifwe take and be the durations
of the shells from shot to reaching the point A, for first and
second shell respectively. We have a: andy coordinate of.^ for
the two shells

X= UCOS0 = Mcoscp ^2

1 2 \ 1y= usin0 =u sin0 '2 ~^

Figure 1.39

Fromequation-(1.50) t. =
cos(p

COS0

...(1.50)

...(1.51)

...(1.52)

Substituting this value in equation-(1.51), we get

«sin0 = wsin0 ^2-—g/2
COS0 ^ 2^VcosQ V 2 2^^

, . 2wcos0sin(0-(p)
On solving, we get = 5 5—

^(cos (p-cos 0)

Using value of in (1.52) we get

2MCOs(ps:n(0-cp)
11 .2 2

g(cos (p-cos 0)

Time difference in firing, leading to the collision ofthe shells is

or
2Msin(0-(p)

A? = —: — = 11 seconds
g(cos(p + cos0)

# Illustrative Example 1.43

A particle is thrown over a triangle from one end of a

horizontal base and grazing the vertex falls on the other end

ofthe base. If a and P be the base angles and 0 be the angle of

projection, prove that tan 0 = tan a + tan p.

Solution

The situation is shown in figure-1.40.

35'

Figure 1.40

From figure, we have
y y

tana + tanP = —I- — [i?is the range of projectile]
X X

yR
tana + tanp =

x(R - x)

Equation of trajectory is

y = x tanO -
gx

2u^ cos^ 0

gxy = xtan0 1-
2u^ cos0sin 0

y = xtan0| 1-—

yR

...(1.53)

...(1.54)

tan0 =•
x{R-x)

From equations-(l .53) and (1.54), we have

tan0 = tana + tanp

# Illustrative Example 1.44

A stone is projected from the point ofa ground in such a direction

so as to hit a bird on the top ofa telegraph post ofheight h and
then attain the maximum height 2 h above the ground. If at the
instantof projection, the bird were to fly awayhorizontallywith
a uniform speed, find the ratio between the horizontal velocities

of the bird and the stone, if the stone still hits the bird while

descending.

Solution

Let 0 be the angle •of projection and u be the velocity of

projection. Situation is shown in figure-1.41. It is given that the
maximum height ofthe projectile is 2 h, we have •

u sin0 = -yj^gh

Iftime taken by the projectile to reachpoints.^ and5 are/", and
^2, then /j and are the roots of the equation
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h = u sin0

Figure 1.41

~gi^-u sin0 + /(= 0

Solving

Using

Msin0 JusinQ-lgh
t= ±

4/2 2h
Thus we have = J— -

and

Now the distance AB can be written as

V?2 = WCOS0

Ratio ofhorizontal velocities

V ^2 — ^

WCOS0 ^2 ^2+1

§ Illustrative Example 1.45

The radius ofthe front and rear wheels ofa carriage are a and b,
and c is the distance between the front and rear axles. Aparticle
of dust driven from the highest point of the rear wheel is

observed to alight on the highest point of the front wheel. Find
the velocity of the carriage.

Solution

IfVis the velocity ofthe carriage then the velocity ofthe top of

the wheel is 2v as the wheels are in pure rolling (refer concept of
pure rolling in chapter-5). The dust particle leaves from the
topmost point ofthe rear wheel hence its velocity is 2v. But with

respect to the carriage it is v. It lands on the topmost point of

Kinematics

the front wheel, as shown in figure-1.42. It travels horizontal

distance V?- {b - a)^ in the duration it falls by ilb - 2a).
Whenever a body is thrown horizontally and ifit covers distance
R in the duration it falls by h, you can use

R = u. ...(1.55)

V77777^PZ7777777777777777777ZW^^

Figure 1.42

As its initial velocity in downwarddirection is zero, time taken

to cover a distanceh with g is and the horizontal distance

covered in this duration is given by equation-(1.51). In this
problem we us equation-(l .55) as

^c^-(b~a)^ =v^ 4(b-a)

g

v =

{c+ b- a){c + a- b)g
4(b-a)
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Practice Exercise 1.8

(1) A stone isthrownfromthe top of a towerofheight50 m with
a velocity of 30 m per second at an angle of 30® above the
horizontal. Find (a) the time during which the stone will be in air,

(b) the distance from the tower base to where the stone will hit
the ground, (c) the speed with which the stone will hit the
ground, (d) the angle formed by the trajectory ofthe stone with
the horizontal at the point of hit.

[(a) 5.0.S, (b) 75\/3 m, (c) 43.58 m/s, (d) tan
7

3>/3

(ii) A stone is thrown up from the top of a tower 20,m with a
velocity of 24 m/s at an elevation of 30° above the horizontal.
Find the horizontal distance from the foot of the tower to the

point atwhich the stone hits the ground. Take g = 10 m/s^

[67.75 m]
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(iii) Two bodies are thrownat the same time and in opposite
directions and with anequal velocity Vp at angles and to
the horizon. What is the velocity with which the bodies move
relative to each other -? What will be the distance between the

bodies be after time t elapses ?

[2vosin , 2VJ sin

(iv) A ball rolls down ft-om the top of a staircase with some
horizontal speed u. If the height and width of the steps are h
and b respectively, then showthatball will just strike the edge

of n' step if « =
2hu'

gb'

(v) A boat is moving directly away from a gun on the shore
withspeedv,. Thegunfires a shellwithspeed at anangle of
elevation a and hits the boat. Prove that the distance of the

boat from the gun at the moment it is fired is given by:

2v2sina
(Vj cosa - Vj)

(vi) Two bodies were thrown simultaneously from the same
point one, straight up, and the other, at angle 0 = 60° to the
horizontal. The initial velocity of each body is equal to
Vp = 25 m/s. Neglecting the air drag,find the distance between
the bodies r= 1.70 s later. Take g = 10 m/s^.

[22 m] .

(vii) Twoparticles are projected from a point at the same instant
with velocities whose horizontal and vertical components are
Mp Vj and ^2 respectively. Prove that the intervalbetween
their passing through the other common point of their path is

2(ViW2-^2"i)

^(Wi+Wz)

(viii) A ball is tiirown from a point in levelwidi and at a horizontal

distance r from the top of a tower of height h. How must the
speed and angle of the projection of the ball be related to r in
order that the ball may just go grazing past the top edge of the
tower ? At what horizontal distance x from the foot ofthe tower

does the ball hit the ground ? For a given speed of projection,
obtain an equation for finding the angle of projection so thatx
is at a minimum.

[rg= sin20, " {(h^ sin^0 + 2 gh) '̂̂ - u sin 0}]

(ix) In a "Ram Leela" stage show an unhappy guy from audience

throws an rotten egg at Rawana. The egg travels a horizontal
distance of 15 m in 0.75 s before hitting the Rawana's face 1.7 m

above the stage. The egg is thrown at 2.0 m above the horizontal

371

floor with an initialvelocity30° above the horizontal, (a)Find the
initialand finalvelocitiesof egg. (b)Howhighis thestageabove
the floor. Take g" = 10 m/s^;

40
[(a) m/s, 20.40 m/s, (b) 6.15 m]

(x) A machine gun is mounted on the top ofa tower of height
100 m. At what angle should the gun be inclined to cover a
maximumrange on the ground below ? The muzzle velocity of
the bullet is 150 m/s. Take g - 10 m/s^.

[46.3°]

1.13.1 Projectile Motion on Inclined Plane

Till now we were discussing the simple projectile motion and its
properties when it is thrown on a straight horizontal plane. Now
we switch it onto the case when a projectile is made on an
inclined plane shown in figure-1.43.

Figure-1.43showsan inclinedplane at an anglea and a particle
is projected at an angle 0 with the direction ofplane with initial
velocity u. In such cases we take our reference x and y axes in
the direction along and perpendicular to.the inclined as shown.

Figure 1.43

Unlike to the previous case, here the x-component of the
velocity of the projectile will also be retarded by a g sina.
Nowy-component ofthe velocity is retarded by g cosa instead
ofg. As shown here g is resolved in two directions.

As here j'-direction component is retarded by g cosa, to find
the time of flight and maximum height, we can use equations-
(1.38) and (1.39), replacing g by g cosa,

Time offlight on inclined plane projectile is

r.=
2«sin0

f gcosa
...(1.56)
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Maximum height ofthe projectile with respect to inclined plane Solution
IS

sin^ 0

For evaluation of range on inclined plane we cannot use the
previous relation ofequation-(l .40), justbyreplacing ghyg
cosa, as here we also have

sina.

Now we again find the distance traveled bythe particle along
A:-direction in the duration timeof flightis

R=u sinO -Tj- ^gsina. Tj
On substituting the value ofTj. here, we get

sin20 2m^ sina sin^0
R=-

gcosa gcos a
...(1.56)

Students are advised not to apply the expression ofrange on
inclined in equation-(1.58), as a standard result, it should be
processed and evaluated according to the numerical problem.
Above results we've derived for the projectile thrown up an
inclined plane. Ifprojectile is thrown down an inclined plane,
the acceleration along the plane sina will increase the velocity
ofthe particle along the plane, thus in the expression for range
we should use +ve sign as

_ sin20 2u^ sina sin^ 0
R= + T

gcosa ^cos a
...(1.59)

To find themaximum range on incline plane students canuse
dR

maxima-minima as . The range on inclined plane has a

maximum value given as

R =
g(l±sina) ...(1.60)

The situation isshown infigure-1.44. We take the point offirst
impact asthe origin ofour reference. Direction along the plane
will be the x-axis and the direction perpendicular to the plane
will bethey-axis. It is given that the ball rebounds elastically
and implies thatno change in kinetic energy of,the ballbefore
and after the collision. The ball rebounds with the same velocity
with which it will strike the plane after falling a distance h,
which is M=^2gh .After rebound, the horizontal component of
velocity u sin0 will be accelerated byg sin0 andthe vertical
component of the velocity u cos0 will beretarded byg cos0.

Here time of flight from first impact to the second impact is
given as

2Mv 2wcos0

•' a.

2u

ggcosQ
I •'

In this duration the distance traveled by the horizontal
component is

Figure 1.44

D • n ^ .4w^sinlR = usmB.— + —gsm0. — =
g 2 {^gj g

= S h sin0

# IllustrativeExample1.47

[As u=^l2^ ]
In equation-(1.60), +ve sign is used for projectile up the plane
and -ve sign is used for projectile down the plane. The above
resultis left forstudentas anexerciseto be evaluated. Students
should also evaluate the angle atwhich projectile must bethrown
toget thismaximum range oninclined plane.

# Illustrative Example 1,46

Aball isdropped from a height h above a point onaninclined
plane, with angle of inclination 0, The ball make an elastic
collision with the surface and rebounds offthe plane. Determine
the distance from the point of first impact to the point where
ball hit the plane second time.

Aprojectile isthrown with aspeed u, atanangle 0toaninclined
plane ofinclination p.Find the angle 0atwhich the projectile is
thrown such that it strikes the inclined plane (i) normally (ii)
horizontally.

Solution

(i) If itstrikes the plane normally asshown infigure-1.45, we
can say that at the time ofstriking particle's x-component of
velocity is zero (v =0). .
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# Illustrative Example 1.48

•X A child throws a ball so as to clear a wall of height h and at a
distancex from it.Findthe minimumspeedrequiredforclearing
the wall.

Figure 1.45

Here we have time offlight ofparticle is

2wsin0
T ~
^ gcosp

Thus from speed equation in x-direction, we have .

or

or

0 = wcos9-g^sinp

cotG - tanp

0 = cot (̂tanP)

2wsin9

gcosp

(ii) As it strikes inclined plane horizontally as show in
figure-1.46, we can say that it is the maximum height of the
projectile"and half of the range as seen from ground plane. Ifi?
is the range ofprojectile on inclined plane, we have

N

N
N

\

R sinp =

R cosp =

Figure 1.46

H^sin^{0-l-P)

sin2(0-i-P)

Dividing equations-(l.61a) and (1.61b), we get

1 sin^(0 +P)
2 sin2(0-FP)

1
or tanp = —tan (0 4-P)

or ' 0 = tan"^ (4tanP) - p

.(1.61a)

(1.61b)

Solution

If we join the wall top edge with the point of projection as

shown in figure-1.47, the distance is slh^ . Ifwe consider

this as incline plane of inclination a=tan ' J , this must be
the maximumrangeon inclineplane. If particle is thrownwith a
speed u, we must have to clear the wall

or

1/f h
i > \
/-'la

wall

Figure 1.47

g(i^sina) - ^[h

u>g(h +4fp'Vj^) [As sina =
^ +x^^[h

1.13.2 Use of Co-ordinate Geometry For Projectile Problems

Sometime it is convenient to use co-ordinate geometry to solve
the projectileproblems. For example consider a projectile thrown
at an angle 0 with an inclined plane OP of inclination a. If we

observe this projectile from ground plane it seems to complete
the parabola GAB,but due to inclined plane it strikes at points
having coordinate (Xj,y,) inground frame shown infigure-1.48.

w.yi)

Figure 1.48
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In ground frame the equation ofparabola OABis written as the
equation of trajectory of projectile hauled at an angel (0 + a)

with the horizontal, as "

y=j; tan (0 +a) =—^ ... (1.62)
2M^cos^(0 +a)

The equation of the straight line OP (inclined plane) in this

frame is

y = x tana ...(1.63)

Here A is the point where the two curves intersects, thus on

solving equations-(l .62) and (1.63) simultaneously, we can get

the coordinates of intersection point.^4 (Xp^j). Nowif wewish
to find the range on inclined plane we can get it directly by

using distance formula to find the distance between points 0

andyl.

RangeonplaneOPofprojectileis R=-ylx^ +
Ifproj ectile strikes the plane normally we can directly have the

product ofslopes ofthe two curves-parabola and line ofgreatest

slope of inclined plane as - 1. In above example we have the
slope ofparabola at A is

dy SX\

u cos(a + a)

The slope of line OF is

W2 = tana

If projectile strikes the inclined plane normally aty4,we have

W] Xm2 = —1

Solving above relation we can get the required parameters.
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Practice Exercise 1.9

(i) "A particle is projected from a point whose perpendicular

distance from a plane inclined at 60® to the horizontal is d. Find
the maximum speed at which the particle can be thrown so as to

strike the inclined plane normally.

[«<[

Kinematicsj

(II) From an inclinedplane a particle is thrown in a direction
normal to the surface. Find the ratio ofsuccessive ranges ofthe

particle on inclined plane. Consider all collisions as elastic
collisions (particle reboundswith the same speed with which it
strikes the plane)

[1:3:5]

(III) A perfectlyelastic particle is projected with a velocity Fin
a vertical plane through the line of greatest slope of an inclined
plane of elevation a. If after striking the plane, the particle
rebounds vertically, Find the time it takes to return to the point
ofprojection.

6V

g-J(l+8sm^a)

(iv) A particle is thrown in horizontal direction with speed u
from a point P, the top of a tower shown in figure-1.49 at a
vertical height/; above the inclined plane ofinclination 0. Find
the speed with which the particle is thrown so that it strikes the
plane normally.Also find the distance from the foot ofthe tower
where the particle will strike.

2gh

VTT/TTTTTTTTTTTTTTTTTTTTTTTTT/.

Figure 1.49

2h

2 +cot 9 sin0(2+cot 0)

1.14 Simple ConstraintMotion ofBodies andParticles
in Two Dimensions

In previous section, we have discussed projectile motion. The

best way to deal with the projectile motion is to solve the motion
independently in horizontal and perpendicular directions. For
horizontal plane projectile motion, the horizontal component of
the velocity remains constant and the vertical component of it

is retarded by the acceleration "g".

Similar to projectile motion, there can be several two dimensional
motions, in which the laws ofmotion can be separately applied

to Xandy directions and later on the developed relations can be
linked for getting the required parameters. Sometime x and y

directional motion or any two directions ofthe motion are related
by some specific rule, we call such rules as constraint rules.
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These rules relate one direction of motion of an object with
some other direction of the same object or some other object
also. We take few illustrative examples toexplain theconcept of
constraint motion.

# Illustrative Example 1.49

Figure-1.50 shows a rod of length /
resting on a wall and the floor. Its
lower end.<4 is pulled towards leftwith
a constant velocity u. Find the
velocity ofthe other end B downward
when the rod makes an angle 0 with
the horizontal.

Solution

'/////////. Y7777777^,
Figure 1.50

In suchtype of problems, whenvelocityof one part of a body
is given and that ofother is required or in cases, when relation
in two velocities is required, we first find the relation between
the two displacements then differentiate with respect to time.
Here ifthe distance from the comer to the points is x and that
up to B isy. Now the leftvelocityofpoints can be givenas

dx

~dt
V =

and that of5 can be given as

dy
= - — [- sign indicates,y decreasing]

Ifwe relate x andy as

x^+/ = f-

Differentiating with respect to t

dx dy
2x— +2y-r =0 .

dt ^ dt

xv =

Vp= V — = VCOt0
^ . y

Alternative

In caseswhen the relationbetween twopoints ofa rigid body is
required, we can makeuse of the fact that in a rigid body the
distance between two points always remains same. Thus the

relative velocity of one point of an object with respect to any
other point of the same object in the direction of line joining
themwill alwaysremainzero, as theirseparationalwaysremains
constant.

Here in above example the distance between the points A and B
of the rod always remains constant, thus, the two points must

have same velocity components in the direction of their line
joining i.e. along the lengthof the rod.

Ifpoint5 ismoving down wthvelocity v^, its component along
thelength ofthe rodisVgSin0. Similarly thevelocity component
ofpoints along the length of rod is v cos0. Thus we have

sin0 = V COS0

or = V COt0

# Illustrative Example 1.50

In the arrangementshownin figure-1.51, the ends^ and5 of an
inextensible string move downwards with uniform speed u.
PulleysAandB are fixed.Find the speedwithwhichthe massM
moves upwards.

Figure 1.51

Solution

Here againwe use the sameconceptwhichwe have appliedin
theprevious problem. If thedistance ofmassMfrom theceiling
isy andthedistanceofMfrom eachpulleyisx andthedistance
between the two pulleys is /. Then u will be the rate at which x
is decreasing. If v is the velocityof Mupward, it is the rate at
whichy is decreasing. Thus we have

dx , dy
u = and V = ——

dt dt

Now we find the relation inx andy as

On differentiatingwith respect to t

dx dy
^-r =2y^

dt dt

xu =yv

dx
v = u — = u sec0

dt

Alternative

Here alsowe can use theprevious altemativemethod.As length
of the string during motion remains constant (inextensible
string), we can state that the velocity components of all the
points on a string along the length of string must remains same.
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Here as pulley and the string in contact with it is going up with
velocity v, its component along and the string is v cos0 and the
ends of stringA and B are going down with velocity u, we must
have

V COS0 = u

or v = u sec0

NOTE : Here students should note that although in both of

these examples,alternative method seems to be more easy and
simplebut, inso manyproblems it becomesdifficultor complex
to'think. In so many cases it is helpful but students are advised
to capture both the concepts in head for instant applications.

# Illustrative ExampleJ. 51

Figure-1.52showsa hemisphereand a supportedrod. Hemisphere

is moving in right direction with a uniform velocity and the
end of rod which is in contact with ground is moving in left

direction with avelocity Vj. Findtherateatwhich theangle 0 is
changing in terms of Vj, v^, R and0.

Figure 1.52

Solution

1 I \ V -2

7^V77777777777777777777777777777777777/.

Here x is the separation between centre of hemisphere and the

end of rod. Rate of change of x can be taken as the relative
velocityof end of rod and hemisphere centre i.e. (v^ -i- V2). We
are required to find the rate ofchange of0 and rate ofchange of
Xwe know, so we have to develop a relation between x and 0,

which is given as

x = R cosec0

Differentiating with respect to time we get

dx g/0
— = ~R cosec0 cot0 —
dt dt

or
dt

(V]+V2)sin 0

i?COS0
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Practice Exercise 1.10

(!) In example-1.49, findthevelocityof themidpointof the rod
in terms of its length I, v and 0.

cosec0]

(ii) Two rings O and O' are put
on two vertical stationary rods AB

and A 'B ' respectively as shown
in figure-1.53. An-inextensible
string is fixed at point A' and on
ring O and is passed through O
Assuming that ring O' moves
downwards at a constant speed
V, find the velocity ofthe ring 0 in

terms ofa.

^v(l —cosa) ^

'////////////////////////,

Figure 1.53

(ill) An aircraft is descending to land at an airport in the
morning. The aircraft is landing to the east, so that pilot has the
sun in his eyes. The aircraft has a speed v and is descending at
an angle a, and the siin is at an angle p above the horizon. Find
the speed with which the aircraft's shadow moves over the
ground.

[v(cosa + sina cotp)]

(iv) Figure-1.54showsa smallmass
m hanging over a pulley. The other
end ofthe thread is being pulled in
horizontal direction with a uniform

speed u. Find the speed with which
the mass ascend at the instant the

string makes an angle 0 with the
horizontal.

[u COS0]

Uniform

Velocity

'y)^777777777777777777>

Figure 1.54

(v) A man ofheight 1.2 m walks away fi^om a lamp hanging at a
height of 4.0 m above ground level. If the man walks with a
speed of2.8 m/s, determine the speed ofthe tip ofman's shadow.

[4.0 m/s]

(vi) Find the speed ofthebox-3,ifbox-l and box-2 are moving

withspeeds Vj and-v^ as shown in figure-1.55 when the string
makes anangle 0, and02 with the horizontal atitsleftandright
end. I'

' A-

2

21X
.

1 'Y' V 3

(vi + V2)cosO]

COS0-> - v,l „

Figure 1.55
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(viQ A ring^ whichcanslideon a smooth
wire is connected to one end of a string
as shown in figure-1.56. Other end of
the string is connected to a hanging
mass B. Find the speed with the ring
when the string makes an angle 0 with
the wire and mass B is going down with
a velocity v.

[v sec0]

Figure 1.56

1.14.1 Pulley and Wedge Constraints

The problems in which few bodies are connected with one or
more strings and strings are passed through pulleys, some of
which are fixed and some are movable. In such problems, we
develop constraint rules in different ways, sometime by
observation andsometime bysome special technique. Incoming
section we will discuss suchtype of things. These are mainly
usedin'nextchapter, for finding acceleration of different bodies
of a system.

Firstwe startour analysiswith simplecasesofpulleys. Consider
the situation shown in figure-1.57. Two bodies are connected
with a stringwhichpasses over a pulley at the.comerof a table.
Here if string is inextensible, we can directly state that the
displacement of A in downward direction is equal to the
displacement of B in horizontal direction on table, and if
displacements ofA andB are equal in equal time, their speeds
and acceleration magnitude must also be equal.

^77777777777777777777777777/,

!
Figure 1.57

Similarly, consider the situation shown in

figme-1.58. Two masses are hanging fi:om a
pulley with a string. Here ifmass.^ is heavy, it
goes down and B goes up by same distance.
Thus here also the displacement, speed and
acceleration magnitude ofthe two are equal.

Figure 1.58

In all such cases it is not necessary that the two blocks move
with equal speed and acceleration. It occurs only when pulleys
are fixed like in above examples pulleys are fixed at a table comer
or tied with a string to the ceiling. Now consider the case shown
in figure-1.59(a). Two masses A and B are tied to strings and
arranged in the situation shown. Here mass B is connected to a

movable pulley Ysupported by a string which passes over a
fixed pulley X and to which mass A is connected. .

•///////////A

7^

•////////////////.

%

a
V.

2x

(a)

Figure 1.59

'////////////////,

A\.

%

•
(b)

43>

Toanalyze themotions of.4and5, youshouldlookcarefullyat
analysis shown in figure-1.59(b). If mass B goes up by a
distances, we can observe that the string lengths ah and cd
areslack,due to theweightofblocks, thislength {ah+ cd= 2x)
willgo on thissideandblock willdescend by a distance 2x.
As in equal time duration ^4 has travelled a distance twice that
of B, thus its speed and acceleration must also be twice that
offi.

In such casesit is not necessarythat blockB will go up. It may
alsobepossiblethat5 willgo downandif willgoupwithtwice
the speed and acceleration, it depends on the masses of the
two objects. We can only develop the relation in accelerations
ofblocks, wecannot comment onitsdirection without knowing
theirmasses. This we willdiscuss in detail in next chapter.

V/////f^//////.

77777777777777Z

(a)

Figure 1.60

'//////////////,

•
"777777777777/77,

(b)

Here we consider few more examples of pulley constraints.
Consider the situation shown in figure-1.60(a). In this case we
find relation in acceleration ofmassesA and B. Let we analyze
the motion of^ and5 as shown in figure-1.60(b). Ifwe consider
that mass B is going up by a distance x, pulley Y which is
attached to the same string will go down by the same distance
X. Due to this the string which is cohnected to mass A will now
have free lengths ah and cd {ah = cd = x) whichwll go on the
side of mass A due to its weight as the other end is fixed at
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I^oint P. Thus mass Awill go down by2xhence its speed and
acceleration will be twice that ofblock5.

Now consider a situation shown in figure-l.61(a) which is an

extension of the previous problem. A plank A is tied to two

strings which pass over two pulleys X and Yand another mass
B as shown. Here we develop constraint relation between the
motion of bodies A and B. It is analyzed in situation shown in

figure-1.61 (b). Ifmass A will go up by a distance x, points P and

Q will also go up by the same distance x and the pulley Ywhich
is connected to point P will go down by x and hence the strings

lengths ab ancl,cf/ {ah = cd = x) which become free plus the
length X due to movement of Q upward will go on the side of
mass B, hence it will go down by a distance 3a:. Thus its speed
and acceleration are thrice that of mass A.

v/////^///// V/////////////,

(a) -(b)

Figurel.61

Now we consider an another type ofexample shown in figure-
1.62(a). Here we develop constraint relation between the motion

of masses A, B and C and the analysis is shown in figure-
1.62(b).Here we first assumethat massesAand C would go up
by distance x^ and x^ respectively, these lengths of the string
will slack as length ab-cd below the pulley Z, Thus this will go
down by a distance x^ as shown in figure-l.62(b). Thus we
have

ab + cd=x^ +X(.

or

Differentiating w.r.t. time, we get

2V5 = V^ + Vc ...(1.64)

Differentiating again w.r.t. time

2aB = a^ + ac ...(1.65)

Equations-(1.64) and (1.65) are the constraint relations for
motion of masses A, B and C.

Kinematicsl

y///////////////////y V///////,

Ptv

k

'St.

Solution

(b)

Figure 1.62

Now we consider few advance cases in following examples.

%Illustrative Example 1.52

Consider the situation of block pulley arrangement shown in
figure-1.63. Aplank is connected to three strings and an electric

motor Mis fitted on to it and a string is wound on it according

to the arrangement shown in figure. Given that the string is
winding on shaft of motor at a speed v. Find the speed with
which the plank would be going up.

'//////////////////////////

a:

Figure 1.63

The analysis of the situation is shown in figure-l.64. Here first

we assume that the plank goes up by a distance x. Obviously

the three strings ab, vd and efslack by a distance x which are

connected to the plank at points a, c and e. Now we analyze

how the three slack lengths are adjusted. Due to slack

ab {ab = x), this length will go on side ofpulley Yand it will go
down by a distance x. Due to this string 2 will also slack by an

additional distance gh and ij {gh = ij = x) with slack cd and all

these slack lengths in string 2 {cd+gh + ij = 3x) will go on side
ofpulley Z. Due to slack ef, pulley Z has to go up by a distance

Xand this will further slack the string 2 by kl and mn {kl=mn = a;)
hence the total slack in string 2 is {cd+ gh + ij + kl+mn —5x)
plus Xdue to the displacement ofmotor up by a distance x, thus
it is 6a:. As it is given that motor is winding at a speed v, to make

all the strings tight, we must have that the string length wotmd
on motor shaft must be 6x in the duration plank goes up by x.
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'//////////////////////////z

Figure 1.64

Thus the speed with which the plank isgoing up must be v/6.

# Illustrative Example 1.53

Figure-! .65 shows a system of four pulleys withtwomasses A
and B. Find, at an instant:

y///////////////////A

Figure 1.65

(a) Speed ofblocks when theblock Bisgoing upat1m/sand
pulley Yis-going up at 2 m/s.

(b) Acceleration ofblockAifblockBisgoing upat3m/s^ and
pulley Yis going down at 1 m/s^.

Solution

(a) Here theanalysis ofthesituation isshown infigure-1.66. If
we assume that block Band along with itpulleyA"goes upbya
distance itwill result aslack oflength aband cd{ah +cd= 2x)
in string 7.

Simultaneously if we assume that the pulley Ygoes up by a
distancey,itresults acompensation ofthe slackened length by
efand gh (ef+ gh = 2y) and due to it the same string connected
topulleyYgoesup bya distance >>. Thusto theleftofpulley Z,
string has a slack length(2x- 2y) and on to right of its slack
length isy, which is due to upward motion of pulley Y. Thus
totalslack above thepulleyZ will become (2x--2y+y = 2x

2x~y
Thus pulley Z has to go down by a distance —-—to tighten
all the strings.

y////////////////^//////.

rrS

x><

X

B-

j2x-2y
'

>$< 7x-y
2I

"Ml

Figure 1.66

Thus speed of pulley Z or block A is

2v5-v
v,= -^-=0

Hence blocks will be at rest at this instant.

(b) Here it isgiven that the block Bisgoing up and pulley Yis
going down, here we are leaving the analysis for students to
develop the constrained relation for the motion of block B,
pulley Yand pulley Z(orblocks). Finally youmust get

^ =3.5 m/s^

NOTE : Here students must becareful about the string length
analysis that no string should remain slack after final
displacement ofallthe objects (masses and pulleys).
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(i) Figure-1.67 shows a pulley over which a
string passes and connected to two masses A
and B. Pulley moves up with a velocity Vp and
mass Bisalso going upatavelocity v^. Find the
velocity ofmass A if:
(a) v^ = 5m/sand V2=10m/s,
(b) Vp = 5 m/sand = -20 m/s.

[{a) 0 m/s, (b) 30 m/s]

Figure 1.67
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(ii) Findtherelation inacceleration of thethreemasses shown
in figure-1.68(a) and 1.68(b).

•/////////////////, '///////////////////,

•1 [IJ

Figure 1.68

[(a) +2ag + 20^=0 (a^ -1; Og h -I-),
(b) 2a^ + 2(3^ = 0 4-; Og 4-; 0^"^)]

(iil) Figure-1.69(a) and 1.69(b) showsa systemof twomasses
A and B and a motor M. Find the relation in velocities ofmass^

and B, if the motor winding speed is v.

'////////////^,

\
i

TK
'/////////////,

777777777777>7ZW7777^,

(a)
s

(b)

Figure 1.69

[(a) 2vg + =V(v_^ ->) (b) 4vg + =v(vg T; t)]

(iv) FindtheRelation among velocities oftheblocks shown in
figure-1.70(a) and1.70(b), moving underthegivenconstraints.

'//////////////////y y//////.

(a)

Figure 1.70

[(a) 2vg = v_^ (vg T; v^i) (b) 3v^ = Vg (v_^ T; Vg-1)]

//////////y

(b)

, •/,; Kinematicsl

(v) Block B shown in figure-1.71, moves downward with a
constant velocity of20cm/s. Att= 0,blocks ismoving upward
with a constant acceleration, and its velocity is 3 cm/s. If at
/ = 3 s blocks C has moved 27 cm to the right, determine the
velocity ofblockC at / = 0 andthe acceleration of^ andC.

•///////^///////////y

A I I B

Figure 1.71

[a^ = 20 cm/s^ 1"; =• 60 cm/s" = 71 cm/sec <-]

(vi) Block C shownin figiire-1.72, startsfromrest and moves
downward with a constant acceleration. Knowing that after
12s thevelocity ofblocks 7.2m/s, determine theacceleration
of.^, 5 and C and the velocity and the displacement of block B
after 8 s.

^} CD 0 0

B

Figure 1.72

[a^= 2m/s^ 4-; Og =4m/s^ t; =6m/s^ 4.; Vg =32 m/s t; Sg == 128 mt]

(vli) The system showninfigure-1.73 startsfi-om rest,andeach
block moves with a constant acceleration. If the relative

acceleration ofblock C\vith respect to blocksis6m/s^ upward
and the relative acceleration ofblockZ) with respect to blocks
is 11 m/s^ downward, determine thevelocity ofblockCafter3 s
fi-om starts.

[c]

Figure 1.73

[57 m/s 4-]

1.14.2 Step Pulley^Constraints

In onepulleyif two or morediscsof differentradii are connected
as shown in figUre-1.74, these are called step pulleys. •
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Figure 1.74

Now are discuss about the constrained relation between

acceleration of objects connected witha steppulley. Consider
the exampleshownin figure-1.75(a). If we considerthatblocks
goesdown hyx, pulley rotates clockwise byan angle 0 = x/r as
shown in figure-1.75(b), due to this blockB will go up by a
distance y = 2r x 0 = 2x. Thus if block A is having some
acceleration or velocity then block B will have velocity or
acceleration 2r/r i.e. twice that ofA. Ifradius ofinner and outer

discare^j andr2, then acceleration ofblock5 will ber2/rj times
that of Now we take few illustrative examples to better
understand the concept.

(a)

Figure 175

# Illustrative Example 1.54

= xlr

Consider the situation shown in figure-l.76(a). Find the
constraint relation for velocities of blocks A and B.

Solution

y//////A

x/4|-±|

(b)

Figure 1.76

Westartouranalysis fromblock5 as shownin figure-1 !76(b). If it
is assumed to go down by a distance x, string"2 will go up by
the same distancex anddue to this thread 2' will go downbyx/2
as the ratio of the two radii is 1/2. Thus the reduction in length

471

of the string abed isx/2 as from side 2 it is going upbyx and
from side 2' it is coming down byxll. So pulleyXhastogoup
bya distance x/4to slack thestring 2 + T byx/2which is to be
reduced. Thusblock.<4 along withthepulleyA"willgoupbyx/2
and the same constrained relation exists for velocities and

acceleration of blocks A andB.Thus thevelocity constrained
relation between A and B is

v,=

P Illustrative Example 1.55

Consider the situation shown in figure-1.77(a). A string
connected to blockB is passing through two movable pulleys
Xand Yandwound onthesmaller disc ofa steppulley. Another
block.4 attached to thepuIleyXAnalyze theconstrained motion
of blocksAandB. (Steppulleyradiiratio= 1:3)

Solution

Theanalysis of thesituation is shown in figure-1.77(b). Hereif
is important to notethatpulley 7 is connected to onesideof the
step pulley thus displacement of this pulley must be accounted
while deterrhining the constrained relation ofblocks and 5.

(b)

Figure 1.77

Let us assume that blockA goes up by a distancex and pulley
7 goes down by a distance y. If pulley 7 comes down by y,
thread 3will go up byadistancey/3 (as r^/r^ = 1/3). As pulley 7
comesdown byy, strings 1 and Twill slackbyv and as blocks
and pulley X goes up by x, string 3.will slack by (x - y/S)
and string T will slack by (c + y). As string 3, I and Vare the
parts of samestring, thus total slack in this string is tightened
by vertical down displacement of the block B. Thus
displacement of blocks downward is (say z)

y 5yz=x--j+ x+y.+y =2x^- —

Thus ifthe velocities ofblocks,5 and pulley 7arev^, andyj,
then we have

= 3 ^7
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Several times such cases occurs when direct relation between

velocityand acceleration of the blocks does not exist and we
have to include the motion of pulleys.

#Illustrative Example 1.56

If block B shown in figure-l.78(a) is going down with
acceleration 5 m/s^, fmd the acceleration of the block A. All
pulleys andstrings areideal. Radii ratio forthetwo step pulleys
are 1 :3 :5 and 1 :2.

Solution

The analysisofthe situation is shown in figure-1.78(b).

•/////^//////////A v///////////////////^///.

px/2

(a) (b)

Figure 1.78

Here we start our analysis from block B. Let us assume that it
goes down by a distance x, due to this string 2 will shift to the
right by xH and hence thread 3 will go up by same xH. The
string 4 goes down by 3x/2 and string 6 goes up by 5x11. Now
the total slackin string3 + 4 is (3x/2-xH =x), thuspulleyXwill
go down byx/2 and hence string 5 also go down by x/2. Now
the total reduction in length ofstring 5 + 6 is (5x/2-x/2 = 2x),
thuspulley Ywillgo up by a distancex toprovide the reduction
2x hence block^f will also go up by x. Thus blocks A and B both
are moving with same velocity and acceleration.

# IllustrativeExample1.57

Block C shown in figure-1.79 is going down at acceleration
2 m/s^.Find the acceleration ofblocks A and B.

'̂ h77777777777777Z777777.V77777777777777777Z'

Figure 1.79

Solution

The analysis is shown in figure-1.80. As block B and C are
connected by a string there accelerations must be same hence

KineroatfeSi

we can directly state

0^= 2m/s

Block A is also constrained to move with block 5, with pulleys

X, Yand Z. As shown in figure, we assume if block B and C
moves bya distance y,Awillmovebyx anddueto thistheparts
(likelength ab) of strings 1,2, 3 and4 which are passing over
pulleys X and Yare slackened by a length 4x. This will be
tightened by thedisplacement ofpulleyZ along withtheblock
B and the string 1' which is attached to B at point d, by a
distancey and this will pull the same string by 2y (like the
length cd). Thus we have 4x = 3y and similarlywe have the
constrained relation for blocks A and 5 as :

^.4= 4

I a

e:

_y^
c] d

Z B >

£0
V7777777777777777777777,'̂ ^777777777777777777^77777,

Figure 1.80

# Illustrative Example 1.58

Blocks shown in figure-1.81 move by a distance 3 m toward
left. Find the distance and direction in which the point P on
string shown in figure is displaced.

€1
IB

B

V777777777777777777777777777777777777777777,

Figure. 1.81

Solution

Analysis ofthe problem is shown in figure-1.82. If the blockZ
moves towards left by a distance x, the string lengths
ab + cd+ef=2x will be pulled towards right and to provide this
length block B has to move toward left by a distancey such that
the string lengths on the two sides ofthe pulley Y(twice ofab)
i.e. 2y Vidll slack to tight the string 3x. Thus we have 3x = 2y.

X y

X 05
7!

r

13
A

i/

77777777777777777777777777777777777777777772X77777777P77777777/

Figure 1.82
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As here we are required to find the displacement ofthe pointP,
we can start from either end ofstring eori.Ifwe start from /,we
can see that from i to P there isonly pulleyXwhich pulleys the
thread by adistance 2x, thus P will move toward left by 2x.

Alternatively we canstartfrom e.Aswe canseethatfrom e to
P there is only pulley Y, which slacks the string by 2y and point
e is pulled toward left bya distance x, thus point P will move
toward left bya distance 2y- x, which is again 2x. Thus the
displacementofpoint P is twice ofx which is 6 m.

1.14.3 Wedge Constraints

Till now we've discussed the motion ofblocks connected by
strings govemed by pulleys connected inseveral ways possible.
Here we will discuss the relation between the motion oftwo or
more bodies which areincontact and responsible for motion of
bodies.

First we consider a very simple case shown infigure-1.83(a).
Here atriangular block ofmass Afisfree tomove onground and
m is freetomoveon inclinedsurfaceofM. HereAfisconstrained
to moveonly along horizontalgroundand m is also constrained
to move only along the inclined surface ofMrelative to it. Here
ifA/is going toward left with speed Vj (say), and ifon its inclined
surface misgoing down with speed v^, then we can state that
the net speed ofA/is but mis also moving to the left along
with M, thus its net speed is given by vector sum ofthe two Vj
and V2 as shownin figure-1.83(b).

*^^2 +2ViV2 COS0

'////////////////////////////}////_

(a)

Figure 1.83

(b)

49!

Net velocity ofm is

^m~ +2ViV2 COS0

Now consider the situation shown infigure-1.84. Here blocks
andB areconstrained to move ,on their contact surface as well
as horizontal ground .and vertical wall. Here as Bgoes down, A
will move to the left. IfP goes down by adistancex,Awill move
toward left by adistancexcot0. Thus ifvelocity and acceleration
of5 are Vand a downward, velocity and acceleration Awill be
VCOS0 and a cot0 toward left.

-v cot0

V///////////////////////////////////Z

Figure 1.84

Now we modify the situation slightly as shown infigure-1.85(a).
Here block C will remainat rest andblocks will movetoward
leftwhen systemis released. Due to motionof ^ towardleftB
will go downas well as move to the left as it is constrained to
move onthe incline surface ofC. If this ismoving down by a
distance x, then itmust move toward left byxcot0j. Now ifwe
talk about motion oiA, itmust move to left byxcot0, +x cot02
as shownin figure-1.85(b).

(a)

X cote,+.X cote

4-4.M—jL_yi
V77k77777777777Mlv77777,Same can also beevaluated byusing the velocity components

in horizontal and vertical directions ofsmall mass m. Here it is
going along theincline witha velocity relative toA/andit is
also moving with A/toward left with velocity v,, thus we have

Horizontal velocity of w relative to ground is

= Vj COS0 - Vj

Verticalvelocity of w relative to ground is •

Vy - V2 sinG

. a: cot0|_f t_.x cot02 f-x cot0|
(b)

Figure 1.85

Block A moves to left by xcot0j along with block B as it is
moving left byx cot0j and as we,have discussed in previous
example if B is only moving down (not moving left) the
displacement ofA would be x cot02 and as it is having both
motions, blocks will goleft byx cot0, (due toleft motion of5)
plusXcot02 (due to vertical down motion ofB).



Nowwe considerfewexamples on the sameconceptof wedge
constraints. In several problems we will deal the constrained
relation of motion of blocks which are constrained to move

along some wedge planes aswell asconnected tosome pulleys.
Insuch problems wemust bevery careftil about theconstrained
relation of motion of blocks and wedges as these relations are
developed by using both concepts of wedge constraints and
pulley constraints.

# Illustrative Example 1.59

' " 'Kinematfclj

1.89 shows that the rod moves vertically down by a distance
:ctan0. Thus if wedge is moving toward right with an
acceleration a^, rod will go down with acceleration 02, given as

In the situation shown in figure-1.86,
if mass M is going down along the
incline at an acceleration of5 m/s and

m is moving toward right relative to
Mhorizontally with 3m/s^. Find the
net acceleration ofm.

Solution

H-

M

V77777777777777/7/////

Figure 1.86

As misalsomoving downalongthe inclinewithM,wecan fmd
the net acceleration of m using vector addition of the two
acceleration in m, shown in figure-1.87. Thus we have

Figure 1.87

a^=-jaf+aj-2flia7cos0 -4.35m/s^

# Illustrative Example 1.60

Find the relation amongaccelerations of wedgeA and the rod 5
supported on wedge A. RodB is restricted to move vertically
by two fixedwall comers shownin figure-1.88.

V////////////. '/////////////,

V7ZV7777777777777777777777777.

Figure 1.88

Solution

Here we can observe that the rod is restricted to move only in
vertical direction and wedge can move along horizontal plane
only.Here if wedge moves toward right by a distancex, figure-

V////////////. W///////////,

i .Ttan0/

Figure 1.89

Oj = «i tan0

# Illustrative Example 1.61

Figure-1.90 shown a block A constrained to slide along the
incline plane ofthewedge Bshown. Block is attached with a
string which passes through three ideal pulleys andconnected
to the wedge B. If wedge is pulled toward right with an
acceleration flj.
(a) Findtheacceleration of theblock with respect to wedge.

/^7777777777777ZV7777777777JK^77777. . ' ' "

Figure 1.90

(b) Findthe acceleration of theblockwithrespect to ground.

Solution

Figure 1.91

The analysis of the situation is shown in figure-1.91. If the
wedge is pulled toward right by a distance x, we can see that
the string portions'1 and 2 are increased toward left of it which
is of length2x.Bythe samelengththeblock.^will moveup the
inclinedplane relativeto thewedge, thus if the acceleration of
the wedge toward right is cfj, the acceleration of the blockA
relative to wedge will be2a,. Now theacceleration ofblock
relative to ground can be obtained by vector sum of its
acceleration and that ofwedge, which is given as
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or

1/2<3^ = [(3^ +4aJ - 4aJ cos0]

= a, V5-4cos0
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Practice Exercise 1.12

(i) Find the relation among the
acceleration of blocks A and B

constrained to move along the inclined
surfacesof the fixedwedgeshown in
figureTl.92.

[Oa = 2 Or]

vPTTTTTTTTTTTTTTZ^/.
Figurcl.92

(ii) If thewedge yf shown in figure-1.93, ismoving toward left
with acceleration 3 m/s^, findthe net acceleration ofblock B
which isconstrained toslide along thewedge surface. (0= 30®)-

"7777777777777^77777777777^^^.

Figure 1.93

1^5-2^3[3 |m/s^ ]

(iii) Find the speedof the blockB whenthe wedges A and C
are moving toward each other with speed v and the strings
connected toblockmakeand angle6 withthevertical, asshown
infigure-1.94.

, v(l-sm9)
COS0 J

Figure 1.94

(iv) Find the acceleration of the blockB as shown in figure-
1.95(a)and (b) relativeto the blockA and relativeto ground if
the block A is moving toward left with acceleration a.

51

er

a
•bjn

V7777777P77777777777777777777,
(a)

'^////////////////////////////}////,
(b)

Figure 1.95

[(a) = 2a, = 0, (b) Og^ = 3a, a^^= a VlO +6cos0 ]

(v) IfthepointP onstring shown in figure-1.96 ispulled down
with a velocity v, findthe velocity of theblockA connected to
anotherstringpassingover a steppulleywithradii ratio 1:2.

"////////////a

[v]

•
V77777777P7/

Figure 1.96

(vi) Find the constrained relationamong the acceleration of
blocks A,B and Cforthesituation shown in figure-1.97. Ratio
ofradii of step pulleyis givenas 1 : 2.

"////////////z

VTTTTTT?

Figure 1.97

+ «c= (a^T; Oc •«-; a^-l')]
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Discussion Question

Q1 -1 Give anexample ofacase inwhich anobject's velocity is
zerobut its acceleration is not.Cananobject's velocity everbe
inadirection other thanthedirection ofitsacceleration ? Explain.

Q1 -2 Sketch graphs ofvelocity and acceleration asafunction
of timefor a car as it strikes a telegraphic pole. Repeat for a
billiardball in a headon collision withthe edgeof thebilliard
table.

Q1-3 A rabbit enters the end of a drainpipe of length L. Its
motion from that instant is shownin figure-1.98. Describethe
motion in words.

x = L

a predetermined height and speed. What is so difficult about
that ? Don't itjust, drop the sack when it is directly above the
circle.

Q1 -9 Acar's speedometer iscorrectly calibrated for tires ofa
specific size. Iflarger diameter tires are substituted, what will be
the effect on the speedometer reading?

Q1-10 If an observeris in a boat accelerating with a constant
acceleration, observes a stonedropped from rest from the top
of a mast.Whatwouldbe the path of the stone observed. What
would bethe path if stone had been thrown downward from the
topof themast rather thandropped from rest.

Q1-11 Each seconda rabbit moveshalf the remainingdistance
from its nose to a head oflettuce. Does the rabbit ever get to the
lettuce ? What is the limitingvalue of the rabbit's velocity ?
Draw graphs showing the rabbit's position and average velocity
versus time.

Q1-12 Assume that a car is moving behind a loaded truck.
Bothmoving withthesame uniform velocity. Abox from thetop
of the truck falls. Does car hit the box before the box hits the

road, if driverneitherbrakenor accelerate ?

Q1-13 A second ball is dropped down from an elevator
accelerating up with 1m/s^, 1second after the firstball is dropped.
Howdoes the relativevelocityofthe twoballs changewith time.
How the ratio change with time.

Q1-14 A ball is thrownfromabove the athlete'sshoulderlevel.
To geta maximum range ontheground, it should be thrown at
anangle less than'45°. Explain why ? Give anexample inwhich
therequired angle for getting themaximum rang is more than
45". '

Q1-15 A football is thrownin a parabolic path. Is there a point
atwhich theacceleration isparallel tothevelocity ?Perpendicular
to the velocity ? Explain.

Q1-16 If arabbitcangiveitselfthesameinitial speedregardless
of the directioninwhichitjumps, howis themaximum vertical
height to which it canjump related to itsmaximum horizontal
range ?

Q1-17 Look at the situation shown in figure-1.99. A fireman

fires his shot aimingto a monkey, whofalls at the timeof shot.
So the shot has passed the highest point of itstrajectory and is
descending whenit hits the monkey, whichis still in air.At the
instant, the shot was at the highest point of its trajectory,was

Figure 1.98

Q1-4 Underwhat conditionit is wrongto say that an object's
acceleration isnegative when theobject isthrown upward. Does
thesign of the acceleration depend at allonthedirection. Can
anobject's acceleration bepositive when the object isslowing
down ?

Q1-5 The distance-time curve for a hypothetical journeyhas
the shape ofan equilateral triangle with one side along the time
axis. Discuss the velocity and acceleration necessary to bring
about such a journey. Comment on whether or not this is a
realistic journey. Willit be a real curve if it is a displacement-
time curve.

Q1-6 Ifyouwant to hita distant stationary object with a rifle,
you have to adjust the aiming hole pipe for the mark of
corresponding approximate distance. What is the need for it.
Why don't you use a single adjustment for firing objects at
different distances.

Q1-7 A person standing on theedge ofa cliffat some height
abovetheground belowthrows oneballstraight upwithinitial
speed u andthen throws another ball straight down with the
same initial speed. Which ball, if either, has the largerspeed
when it hits the ground ? Neglect air resistance.

Q1-8 Anairplane onflood reliefmission hasto drop a sackof
riceexactly inthecentre ofa circle ontheground while flying at
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themonkey'sheightabovethegroundthe same, lower, orhigher Q1-18 Ifyou are on the west bank ofa river that is flowing
than that ofthe shot.Explain youranswer.

Figure 1.99

northwitha speed4 m/s. Your swimming speedrelative to the
water is 5 m/s, and the river is 60 m wide. What is yourpath
relative to earth that allowsyouto crossthe river in the shortest
time?Explainyourreasoning.

% 4: 4:
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ConceptualMCQs Single Option Correct

1-1 Foraparticle moving alonga straight line,thedisplacement
Xdepends on time / as =Af" + Bp" + Ct +D. The ratio ofits
initial velocity to its initial acceleration depends on :
{A)^&C (B) S&C
(Q C (D) CandD

1-2 Forthedisplacement timegraphshowninfigure-1.100, the
ratio of the speeds during the first two seconds and the next
four seconds is :

(A) 1:1

(Q 2:1

Figure 1.100

(B) 1;2

(D) 3:2

1-3 From the top of a tower, a stone A is thrown upwards and
a stone B is thrown downwards with the same speed. The
velocity ofstone A, on colliding with the ground is :
(A) Greater than the velocity ofB
(B) Less than the velocity of5
(Q The velocities of stones A and B will be same
(D) Both the stones will fall on the earth at the same time

1-4 Two cars C, and Cj are moving on parallel roads in the
samedirection withvelocity v.Therelative velocity of Cjw.r.t.
C2is:
(A) Directed towards

(Q Zero

(B) Directed towards Cj
P) 2v

1-5 A ball dropped from a height reaches the same height

after elastic impact with a glass floor. If the event is continued,
the velocity-time graph is shown by the adjoining figure :

(A) IT (B)

(Q P)

1-6 The distance-time curve ofa moving motor-car is according
to the following figure-1.101. The portion OA of the curve
shows:

O

Figure 1.101

(A) Accelerated motion P) Retailed motion
(Q Uniformmotion p) State of rest

1-7 In the above figure, the portion AB of the curve shows :
(A) Accelerated motion P) Retarted motion
(Q Uniformmotion p) State of rest

1-8 In the above figure, portion BC of the curve shows :
(A) Accelerated motion p) Retarted motion
(C) Uniformmotion P) State of rest

1-9 Twoparticlesstart fi-om rest simultaneously andare equally
accelerated throughout the motion, the relative velocity ofone
with respect to other is :
(A) Zero

P) Non zero and directed parallel to acceleration
p) Non zero and directed opposite to acceleration
P) Directed perpendicular to the acceleration

1-10 The following graph shows the speed of a body which is ;

Figure 1.102

(A) Projected'upwards with some velocity in vertical plane
P) Having only constant accelerated motion

(Q Having only the constant retardation

P) A perfectly elastic ball falling from a height on a fnction

less and hard floor

1-11 The following figures show some velocity versus time

curves. But only some of these can be realised in practice.

These are:
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(a)

(c)

(A) Only a, b and d

(Q Only b and c

(b)

(d)

(B) Only a, b, c

(D) All ofthem

1-12 The distancetravelledby the movingbody is :
(A) The area between the speed time graph and time axis. .
(B) The area betweenthe speed time graph and speed axis
(Q The area between the distance time graph and time axis
(D) The area between the distance time graph and distance

axis

1-13 The diagram shows thevelocity-time graphfora particle
moving in a straight line. The sum of the two shaded areas
represents :

(A) The increase in displacement
ofthe particle

(B) The average velocity of the

particle
(Q The average acceleration ofthe

particle
(D) The distance moved by the

particle

velocity

^ time

Figure 1.103

1-14 Forcesproportional to 2 C4 actalongthesides
oftriangleABCin order, their resultant represented in magnitude
and direction as:

(A) CA (B) AC

(Q EC (P) CB

1-15 A particlemovesas shownin the followingfigure-1.104:

3

I m sec.

Figure 1.104

55!

Fromthe abovecurvethe correctvelocity-time graphfor the
interval of4 seconds will be :

(A) I

t in sec

(B)

6

-3

•2

-1

(Q

1-16 The following figure-1.105
shows the velocity-time graph ofa
body.Accordingto this, at the point
B:

(A) The force is zero •
(B) The force is in the direction of

the motion - Figure l.ios

(C) The force is in opposite direction of the motion
P) It is only the gravitational force

1-17 A bullet is fired in a horizontal direction from a tower

while a stone is simultaneously dropped from the same point
then :

(A) The bullet and the stone will reach the ground
simultaneously

(B) The stone will reach earlier

(C) The bullet will reach earlier '
p) None of these

1-18 Which graph in the following figure best represents the
variationof velocitywith time of a ballwhichbouncesvertically
on a hard surface, from the moment when it rebounds from the

surface ?

(A) P)

/ P)

O

2 3
t in

sec-

I sec
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1-19 The variation in the speed of a car during its two hour
journey is shownin the graphof the figure-1.106. The magnitude
ofthe maximum acceleration ofthe car occupies an interval of:

(A) OA

(Q CD

Figure 1.106

(B) BC

P) DE

1-20 A car which has front and rear glass screens almost vertical
is moving on a road when rain drops' are falling vertically
downward. The rain will strike:

(A) The front screen only

P) The rear screen only
(Q Both the screens

P) The.particular screen depending upon the velocity

1-21 AriverisflowingfromnorthtosouthataspeedofO.3 lq>h.
Aman on the west bank ofthe river, capable ofswimming 1 kph
in still water, wants to swim across the river in the shortest time.

He should in a direction:

(A) Due east p) 30® north ofeast

(C) 30° west ofnorth p) 60® north of east

1-22 A time-velocity graph of two
vehicles A and B starting from rest at

the same time is given in the

figure-1.107. The statement that can be
deduced correctly from the graph is :
(A) Acceleration of A is greater than

that of B

P) Acceleration of B is greater than

that of^

(C) Acceleration of^ is increasing at a slower rate than that
ofB

P) Velocity of5 is greater than that of^.

1 -23 Mark the correct statements :

(A) The magnitude of the instantaneous velocity of a particle

is equal to its instantaneous speed.

P) The magnitude of average velocity in an interval is equal

to its average speed in that interval.

(Q It is possible to have a situation in which the speed of a

particle is always zero but the average speed is not zero.

Figure 1.107

Kinematics I

P) It is possible to have a situation in which the speed of a
particleis neverzerobut theaverage speedin anintervalis
zero. '

1-24 The force acting on a particle moving

along a straight line varies with time as
shown in the diagram. Force is parallel to
velocity. Which ofthe following graphs is
best representative of its speed and time
graphs :

P)

Figure 1.108

1-25 An object is dropped from rest. Its velocity versus
displacement graph is:

(A) (B)

(Q P)

1-26 A stone is dropped from a balloon rising with acceleration
a. The acceleration ofthe stone relative to the balloon is :

(A) g downward P) g- + o downward
(Q g - upward ' P) g + a upward

1-27 The Figure-1.109 shows the
displacement-time graph ofa body

subject only to the force ofgravity.

This graph indicates that:

(A) At the acceleration is zero

P) At.(4, the velocity is maximum

(Q At A, the displacement is zero

P) The acceleration is constant

for all times shown
Figure 1.109



'Wh^malcs

1-28 Two particle are projected simultaneously in the same
vertical plane from the same point, with different speeds Wj and
u^, making angles 0j and 02 respectively with the horizontal,
such that Wj cos0j = cos02. The path followed by one, as
seen by the other (as long as both are in flight) is :
(A) A horizontal straight line
(B) A vertical straight line
(C) A parabola
P) Astraight line making anangle |0j- 02| with the horizontal.

1-29 A ball is projected vertically up withan initial velocity.
Which of the following graphs represents the KE of the ball?

KE KE

(Q P)

1-30 Thevelocityof aparticlemoving
in straight line is given by the graph
shown here. Then its acceleration is

best represented by :

(A) (B)

(Q P)

Figure 1.110

1-31 Aballis thrown upwitha certain velocity atan angle 0 to
the horizontal. The kinetic energy KE of the ball varies with
horizontal displacements as:

KE

O

KE

O

(A)

(Q

57l

1-32 A small objectis dropped from the topof a building and-
falls to the ground. As it falls, accelerating due to gravity, it
passes window. It has speed Vj at the top of the window and
speed Vj at the bottom of the window, at what point does it

V1+V2
have a speed ? Neglect the air resistance.

(A) It depends on the height of the windowor its distance from
the top of the building,

p) Above the centre point of the window
"(Q Below the centre point of the window
P) At the centre point of the window

1-33 Acceleration vs time

graph is shown in the figure
for a particle moving along
a straight line. The particle
is initially at rest. Find the

time instant(s) when the
particle comes to rest?
(A) 0,1,2,3,4

P) ^=0,2,4

(Q ^=1,3

i7(ni/s^)

Figure 1.111

P) None of these

> t (sec)

1-34 A toy car is moving on a closed track whose curved
portions are semicircules of radius 1 m. The adjacent graph
describes the variation of speed of the car with distancemoved
by it (startingfrompoint P). The time t required for the car to
completeonelap is equalto 6Ksecond. Find^^.(take nln 2 « 2)

(A) 4

(Q 12

Figure 1.112

P) 8

P) 16

1-35 Which of the following sets of displacements might be
capable of returning a car to its'starting point ?
(A) 4,6,8 and 15 km P) 10,30,50 and 120 km
(Q 5,10,30 and 50 km p) 40,50,75 and 200 km
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NumericalMCQs Single Option Correct

1-1 A particle starts moving in + ve x direction with initial
velocity of 10 ms"' with aWiform acceleration ofmagnitude
2 ms"^ but directed in - ve x direction. What is the distance
traversed by the particle in 12 seconds :
(A) -24 m

(Q 70m

1-2 For the velocity

time graph shown in
figure-1.113, the total

distance covered by the
particle in the last two
seconds of its motion is

what fraction /the total
distance covered by it in
all the seven seconds ?

(A) 1/2
(B) 2/3

(Q 1/4

P) 1/3

(B) 24m
(D) 74m

3 4 5

Figure 1.113

1-3 A particle moves in a straight line and passes through O,
afixed point onthe line, with avelocity of6ms~'. The particle
moves with a constant retardation of 2 ms"^ for 4 seconds and
thereafter moves with constant velocity. How long after leaving
0 does the particle return to O ?
(A) 8 s (B) Never
(Q 4 s P) 6 s

1-4 The velocity ofa car travelling on a straight road is given
by the equation v = 6 + 8/ - where v is in meters per second
and t in seconds. The instantaneous acceleration when t = 4.5 s

is

(A) 0.1 m/s^
(Q -1 m/s^

P) Im/s^
P) -0.1 m/s^

1-5 The following figure-1.114 shows the linear motion
velocity-time graph of a body. The body will be displaced in
5 seconds by:

(A) 2 m

(Q 4m

2

1

V 0

(m/sec)
-1

-2

4

\

V
D E

1 2 3\ 4

(

5 r (s)

Figure 1.114

P) 3m

P) 5m

1-6 In the above question,the accelerationin the portion OA
ofthe curve will be :

(A) Zero p) 2m/sec^
{Q 1m/sec^ P) 0.5 m/sec^

1-7 In the above question, which portion of the curve will
have zero acceleration:

(A) OA _ P) ^
P) CD P) DE

1-8 Aparticle has initial velocity of17 ms"^ towards east and
constant acceleration of2 ms"^due west. The distance covered
by it in 9th second of motion is :
(A) Om p) 0.5m
(Q 72m p) 2 m

1-9 A ball is thrown vertically upwards from the ground. It
crosses a point at the height of 25 m twice at an interval of 4
sees. The ball was thrown with the velocity of
(A) 20 m/sec. P) 25 m/sec.
(Q 30 m/sec. P) 35 m/sec.

1-10 The velocity of a particle moving on the x-axis is given
byV=x^ +Xwhere Visinm/s and xisinm. Find itsacceleration
in m/s^ when passing through thepoint x = 2 m :
(A) 0 P) 5
(C) 11 P) 30

1-11 A rocket is projected vertically upwards and its time
velocitygraphisshownin the figure-1.115. The maximumheight
attained by the rocket is :

1000-
' A

/•

V

(m/sec)

/
/

/ ^
/

/
1 '1 1 1

20 40 60 8

*1

0 100 12(1^
j ^

•-4^ ?(s)
c

(A) IKm
(Q lOOKm

Figure 1.115

P) lOKm
p) 60 Km

1-12 In the previous question, the height attained by the
rocket before deceleration is :

(A) IKm P) lOKm

(Q 20Km p) 60Km

1-13 In the previous question, the mean velocity ofthe rocket
reaching the maximum height is:

(A) 100 m/sec p) 50 m/sec
(Q 500 m/sec p) 25/3 m/sec
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1-14 In the above question, the accelerationof the rocket is;
(A) 50m/sec^ (B) lOOm/sec^
(Q SOOm/sec^ (D) lOni/sec^

1-15 The engine of a motor cycle can produce a maximum
acceleration 5 m/s^. It s brakes can produce a maximum
retardation 10m/s^. What is the minimum timein whichit can
cover a distance of 1.5 km ?

(A) 5 s (B) 10s

(Q 15 s P) 30 s

1-16 Two ballsare droppedfromthesamepointafteran interval
of1s.Ifacceleration due togravity is 10 m/s^, what will betheir
separation 3 seconds after the release of first ball ?

(A) 5m (B) 10m

{Q. 25m P) 30m

1-17 The following figure-1.116 shows the timeandapplied
forcegraphfor a body.What will be themomentum gainedby
the body in 6 seconds :

(A) Zero

P) 60N-S
(Q 30N-S

P) 40N-S

10

0 2 4 6 / in sec

Figure 1.116

1-18 A person throws balls into the air one after the other at
an interval of one second. The next ball is thrown when the

velocity of the ball thrownearlier is zero. To what height the
ball rise:

(A) 5m p) 10m
(C) 20m p) 40m

1-19 A body starts from rest and moves for n seconds with
uniform acceleration a, its velocity after n seconds is v. The
displacement of the body in last 3 seconds is :

v(6«-9) 2v(6«-9)
(A)

2n P)

(Q
2v(2« + l)

(P)
2v(«-l)

1-20 The displacement-time graphfor
two particle A and B are straight lines
inclined at angles of 30® and 90° with

the time axis. The ratio ofthe velocities

and is:

(A) 1:2

P) 1:V3
(Q V3 :1
P) 1:3

Figure 1.117

59i

1-21 Aparticle hasan initial velocity of9 m/sdue eastanda
constant acceleration of 2 m/s^due west. The distance covered
by the particle in the fifth second of its motion is :
(A) 0 p) 0.5m
(Q 2m p) None of these

1-22 Thevelocity-time graphof a linearmotion is shown below.
The distance from the origin after 8 seconds is:

(A) 18m

(Q 8m

Figure 1.118

P) 16m

P) 6 m

8 t (sec)

1-23 Water drops fall at regular intervals from a roof. At an
instantwhen a drop is about to leave the roof, the separations
between 3 successive drops below the roof are in the ratio :
(A) 1:2:3 p) 1:4:9
(Q 1:3:5 P) 1:5:13

1-24 A body is in strai^t line motion with an acceleration
given by a = 32 - 4v. The initial conditions are at r = 0, v = 4.
Find the velocity when r= /n 2 :
(A) 15/2 p) 17/2

(Q 23/4 P) 31/4

1-25 A particle is moving in a circle or
radius r centred at O with constant

speed V. The change in velocity in
movingfrom to g (Z POQ = 40°)is:
(A) 2 Vcos 40°

P) 2 Vsin 40°

(Q 2 Vcos 20°

P) 2 Vsin 20° Figure 1.119

1 -26 A car accelerates from rest at constant rate for the first

10 s and covers a distance x. It covers a distance y in the next
10 s at the same acceleration. Which of the following is true ?
(A) x = '^y P) y^hx
(O p) y = 2x

1-27 A particle starts from rest and moves with acceleration a
which varies with time / as a == A:? where A: is a constant. The

displacement s ofthe particle at time t is

(A)

(Q
1 ^

P) {af
P) None
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1-28 The following shows the time-velocity graph for a
moving object.Themaximum acceleration willbe:

60
'

A (
, \,z)

£

20

(A) 1m/sec^
(Q 3m/sec^

10 20 30 40 50 60 70 fin sec.

Figure 1.120

. (B) 2m/sec^
(D) 4m/sec^

1-29 In the above question the magnitudeof retardationwill
be:

(A) 1m/sec '̂ (B) 2m/sec^
(C) 3m/sec^ (D) 4ni/sec^

1-30 A rocket is fired vertically upwards and moves with net
acceleration of 10 m/s^. After 1 min the fuel is exhausted. The
time taken by it to reach the highest point after the fuel is
exhausted will be:

(A) 10 sec (B) 20 sec
(Q 30 sec P) 60 sec

1-31 In the following velocity-time graph of a body, the
distance and displacement travelled by the body in 5 seconds
inmeters willbe:

(A) 70,110

(Q 40,70

f(sec)

Figure 1.121

(B) 110,70
P) 90,50

1-32 The displacement x of a body varies with time t as
2

x = - + The body will come to rest after:

(A) 6 s
(Q 18 s

P) 12 s
P) 20 s

Kinematicsl

1-33 Aparticle moves inastraight line. Thedisplacement a: of
the particle varies with time as x=2- 5i +6?^. Then the initial
velocity ofthe particle is :
(A) 2m/s p) -5 m/s
(Q 6m/s P) - 3 m/s

1-34 A parachutist drops freely from an aeroplane for 10 s
before the parachuteopens out. Then the descends with a net
retardation of 2.5 m/s^. If he bails out the planeat a height of
2495 mand g= 10 m/s^, his velocity onreaching the ground will
be;

(A) 2.5m/s P) 7.5m/s •
(Q 5 m/s p) 10m/s

M • •

1-35 The acceleration of a'particle starting from rest, varies
withtimeaccording to therelationa = kt+ c. Thevelocityof the
particle after time t willbe:

(A) kf" + ct P) ^kf' +ct
(Q + P) k^+-Ct

1-36 The variation of velocity of a particle moving along a
straight line is illustrated in the following figure-1.122. The
distance covered by the particle in 4 seconds is :

(A) 60m

(Q 55 m

t in sec

Figure 1.122

P) 25m

P) 30 m

1-37 A street car moves rectilinearly from station A to the
next station B with an acceleration varying according to the
law/ =a - bx,where a and b are constants and x is the distance
from station A. The distance between the two stations & the

maximum velocity are:

la
(A) x =

(Q ^ =
a

2b

V =

S
b

ra

P)

(D) x=
•41

b
V =

1-38 When the speed of the car is v, the minimum distance
over which it can be stopped is x. If the speed becomes nv,
what will be the minimum distance over which it can be stopped

during same time:

(A) x/« . p) «x
(Q xIy? P) y^x
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1-39 The following figure-l .123 shows the velocity-time graph
ofa moving body along a straight line.
The displacement and
distance travelled in six

seconds be respectively
given as : ^
(A) 8m, 16m • I

i6m,8m ^
(Q 16 m, 16 m

p) 8 m, 8 m Figure 1.123

1-40 A particle is movingin a straight line with initial velocity
u and uniform acceleration/ Ifthe sum ofthe distances travelled
in and {t + 1)''' seconds is 100 cm, then its velocity after t
seconds, in cm/s, is :

(A) 20 (B) 30

(Q 50 P) 80

1-41 The following figure-1.124 showsthe velocity-time graph
of a train. The total distance travelled by the train is :

t ^^60

£>30 L
A

o /
;> A IP

0 10

time-

-

-

1 2 3 4 5 6 ?(s)

M

Q\ \a time (s«)
20 32 X

(A) 780m
(C) 660m

Figure 1.124

P) 1200m

P) 1500m

1-42 A stone falls fi"om rest. The total distance covered by it
in the last second ofits motion is equal to the distance covered
in the first three seconds of its motion. How long does the
stone remains in the air ?

(A) 4 s P) 5 s
(Q 6 s P) 7 s '

1-43 The figure-1.125 shows the acceleration versus time graph
of a train. If it starts fi"omrest, the distance it travels before it

comes to rest is :

(A) 30 m

(Q 13m

-52- 1

== 0

, -1

-1.5

3 4 ^ (.v)

Figure 1.125

P) 26m
p)-40m

6i:

1-44 Aparticlemoving on a straight lineultimately comes to
rest ? What is the angle between its initial velocity and

acceleration ?

(A) Zero p) idA
{Q -na P) 7t

1-45 On a two laneroad a carA is travelling witha speedof
V=5ms"'. Two car5 and Capproach car^ inopposite direction
with a speed w= 10ms~' each. Ata certain instant when theB
and C are equidistant from^ each being / = 1500 m,5 decides to
overtake .4 before C does. What minimum acceleration ofcar£

is required to avoid an accident with C:

A ^ y
^

(A) - 0.2 ms ^
(Q 0.2ms-2

Figure 1.126

P) -l/15ms"2
P) 1/15 ms-2

1-46 Two cars get closer by 8 m every second while traveling
in the opposite directions. They get closer by 0.8 m while
traveling in the same directions. What are the speeds of the
two cars ?

(A) 4m/sand4.4m/s P) 4.4m/sand3.6m/s
(Q 4m/sand3.6m/s P) 4m/sand3m/s

1-47 A train 200 m long moving at constantacceleration crosses
a bridge 300 m long. It enters the bridge with a speed of3 m/s
and leaves it with a speed of 5 m/s. What is the time taken to
cross the bridge ?

(A) 25 s • P) 75 s
(Q 125s P) 150s

1-48 A ball is dropped from the top of a tower 100 m high.
Simultaneously another ball is thrown upwards with a speed
of 50 m/s. After what time do they cross each other :
(A) 1 s P) 2 s

(C) 3 s P) 4 s

1-49 A truck travelling due north at 20 m/s turns east and
travels at the same speed. What is the change in velocity :

(A) 40 m/s north east p) 20-^2 m/s south east
(Q 20 42 m/s south west P) 2042 m/s north west

1-50 If the velocity v ofa particle moving along a straight line
decreases linearly with its position coordinates s from 50 m/s to
a value approaching zero at = 100 m, the time it takes to reach
the 100 m position will be:
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50

t
v(m/s)

0

(A) 105
(Q Infinity

•sCm) .

Figure 1.127

(B) 55
P) 0.55

100

1-51 Aparticle is moving at a speed of5 m/s along east.After
10 s its velocity changes and becomes 5 m/s along north. What
is the average acceleration during this interval ?

(A) 0 (B) 1/ V2 m/s^ north west
(Q 1/^2 ms^ north east P) -Jl m/s^ north east

1-52 A body ofmass 2 kg is moving along north-east direction

with a speed ^(2 m/s. Aforce of0.2 Nisapplied on the body
due west for 10 sec. The final velocity ofthe body is :
(A) 1 m/s due north P) 1 m/s due east
(Q 2 m/s due north p) 2 m/s due east

1-53 A person moves 30 m north, then 20 m east and finally

30V2 m south-west. This displacement from the original
position is :

(A) 14 m south west (B) 20 m south
(Q 10m west P) 15m east

1-54 A river is flowing with a speed of 1 km/hr. A swimmer
wants to go to point 'C starting from 'A'.He swims with a speed
of5 km/hr, at an angle 0 w.r.t. the river. If=BC=400 m. Then

the value of 6 is :

B c

I km/hr

(A) 37°

(Q 53°

Figure 1.128

(B) 30°

P) 45°

1-55 A blind person after walking 10 steps in one direction,
each of length 80 cm, turns randomly to the left or to right by
90°. After walking a total of40 steps, the maximum displacement

of the person from its starting point can be :

(A) 30m P) 16V2m
(Q S |̂2m p) Om

1-56 A person standing on the roof of a house of height h
throws a particle vertically downwards and other particle in a

Klnematicsi

horizontal direction with the same speed u. The ratio ofspeeds
of the particles on reaching the earth is :

(A) -yjlgh :u p) 1:2

(C) V2 :1 ; P) 1:1

1-57 A particle moves alonga horizontalstraight line with a
velocity-time relationship as shown in the figure-1.129. The
total distance moved by the particle is :

(A) 39 m

(Q 26m

\. 5 ,

\
\tis)
1

J
I

V 1
\ (

\ 1
\ 1

\ 1

-12

Figure 1.129

P) 13m
P) 2.6m

1-58 A car is going eastwards with a velocity of8 m/s. To the
passengers in the car, a train appears to be movingnorth wards
with a velocity of 15 m/s. What is the actual velocity of the
train:

(A) 7 m/s P) 17 m/s
(Q 23 m/s p) None of these

1-59 Rain is falling vertically downwards with a velocity of3

kph. a man walks in the rain with a velocity of 4 kph. The rain
drops will fall on the man with a velocity of:
(A) Ikph P) 3kph

(Q 4kph P) 5kph

1-60 A man walks in rain with a velocity of 5 kph. The rain

drops strike at him at an angle of45° with the horizontal. The
downward velocity ofthe rain drops will be

(A) 5kph , P) 4kph
(Q 3kph ,, p) Ikph

1-61 The velocities ofA and 5 are marked in the figure-1.130.
The velocity ofblock C is (assume that the pulleys are ideal and

string inextensible) :
3 m/s

(A) 5 m/s
(Q 3 m/s

1 m/s
B

A -h)

Figure 1.130

P) 2 m/s
P) 4 m/s
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1-62 If6 is the angle between the velocity and acceleration of
aprojectileat a point of itspath, its valuewhentheprojectileis
at the highest point is :

(A) 0" (B) 180°
(Q 90° (D) 45°

1-63 If the angle of projection 0 corresponds to horizontal
range being equal to the maximum height then tanO equals :

(A) 1 (B) nS
(P) S (D) 4

1-64 A thiefis runningawayon a straightroad inajeep moving
with a speed of 9 m/s. A police man chases him on a motor
cycle moving at a speed of 10 m/s. If the instantaneous
separationof thejeep fromthe motorcycle is 100m, how long
will it take for the police man to catch the thief?
(A) Is (B) 19s
(Q 90s (D) 100s

1-65 Two cars are moving in the same direction with a speed
of 30 kph. They are separated fromeach other by 5 km.Third
car moving in the opposite direction meets the two cars after
an interval of 4 minutes. What is the speed of the third car ?
(A) 30kph (B) 35kph
(Q 40 kph (D) 45 kph

1-66 Aparticle isprojected upwards withavelocity of110m/sec
at an angle of 60° with the vertical. Find the time when the
particlewillmoveperpendicular to itsinitialdirection, takingg
= lOm/sec^:

(A) 10 seconds (B) 22 seconds

.(Q 5 seconds (D) loVs seconds

1-67 The horizontalrangeof a projectileisR and themaximum
heightattained by it isH.A strong windnowbegins to blowin
the direction ofthe motion ofthe projectile, giving it a constant
horizontal acceleration = g/2. Under the same conditions of
projection, thehorizontal range of theprojectile willnowbe:

(A)«+f (B) R+H

IH
(Q ^ + (p) R + 2H

1-68 Two particles, one with constant velocity 50 m/s and the
other with uniform acceleration 10 m/s^, start moving
simultaneously fromthesameplacein thesamedirection. They
will be at a distance of 125 m from each other after:

(A) 5sec. (B) 5(1+ yfl) sec.
(Q lOsec. P) 10(V2 +l)sec.

=63!

1-69 A stoneis droppedfrom anaeroplanewhichis risingwith
acceleration 5 ms"^. If the acceleration of the stone relative to
the aeroplane be/ then the following is (are) true :
(A) /= 5ms ^downward (B) /= 5ms ^upward
(Q /= 15ms ^upward p) /= 15 ms ^downward

1-70 A ball is thrown vertically upwards in air. If the air
resistance can not be neglected (Assume it be directly
proportional to velocity) then the acceleration of the ball at the
highest point will be : ,
(A) 0 (B) g
(Q >g • P) <g

1-71 Ify=X istheof thepathof aprojectile,thenwhichof
the following is incorrect:
(A)Range = lm P) Maximumheight=0.25 m
(Q Timeofflight = 0.5sec. p) Angleofprojection = 45°

1-72 A rocket is fned upwards. Its velocity versus time graph
is shown in the figure-1.131. The maximumheight reached by
the rocket is:

81200

c 600

(A) 7.1km
"(Q 72 km

20 40 60 80 100 12d|'
132

Figure 1.131

P) 79.2km

p) Infinite

t in sec.

1-73 A person walks up a stalled escalator in 90 s. When
standingon the same escalator, now moving, he is carried in
60 s. The time it would take him to walk up the moving escalator
will be:

(A) 27 s P) 72 s
(Q 18s P) 36 s -

1-74 An object is thrown horizontally from a tower 77meter

high with avelocity of •yJlgH m/s. Its velocity on striking the
ground will be:

(A) w 4^

(Q 244h • (D) 242W

1-75 A train travels from one station to another at a speed of

40 km/hour and returns to the first station at the speed of60 km/
hour. Calculate the average speed and average velocity of the
train: ^

(A) 48km/hr,zero ' P) 36km/hr,zero
(Q 24km/hr,'24km/hr p) None of these
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1-76 A motorcar is going duenorthat a speedof 50 km/h. It
makes a 90® left turnwithout changing the speed. The change
in the velocity of the car is about:
(A) 50 km/h towards west

(B) 50V2 km/h towards south-west
(C) 70 km/h towards north-west

(D) Zero

1-77 A bird flies for 4 sec with a velocity of \t - 2j m/s in a
straight line, where t = time in seconds. It covers a distance of:

(A) 2m (B) 4m
(C) 6m " (D) 8m

1-78 Threeparticles A,B and C are thrown from the top of a
tower with the same speed.A is thrown straight up;5 is thrown
straight down andCis thrown horizontally. Theyhittheground
withspeeds v^, and respectively :

(A) ^.A = ^B = ^C
(P) = (D) v.>v„ = v,

1-79 Aparticle is thrown witha speeduat an angle 9 withthe
horizontal. When the particle makes an angle (f) with the
horizontal. Its speed changes to v :
(A) v = u COS0 (B) v = u COS0. cos(j)
(Q v= wcos0.sec^ (D) v= wsec0.cos(t>

1-80 Two projectiles A and B are projected with angle of
projection 15® fortheprojectile^and45® fortheprojectile B.If

andRg be thehorizontal rangefor the twoprojectiles, then :
(A)Ra<Rs
(^) ^a~^b
(Q -^a^^b
P) The information isinsufficient to decide the relation of7?^
with Rg.

1-81 Inthe arrangement shown inthe figure-l. 132 ifVj andv2
are instantaneous velocities ofmasses Wj and Wj, respectively,
and angle = 20 at the instant then :

y/////////////^r-////////////////,

-1 ^2

2v,
(A) 0 = cos

- ..^-1 Jl
2vo

(Q 0 = tan

Figure 1.132

(B) e=cos->^
(P) 0 = sin-' —
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1-82 A manrowsaboat witha speedof 18km/hrin northwest
direction. The shoreline makes an angle of 15® south of west.
Obtain the component of the velocity of the boat along the
shoreline:

(A) 9 km/hr

(Q 18cos 15°km/hr

(B) 18^km/hr
(D) 18 cos 75® km/hr

1-83 A bullet is fired froma gun falls at a distancehalf of its
maximumrange.The angle of projection of the bullet can be:
(A) 15® (B) 30P
(C) 60® ^ p) 75®

1-84 A busisbeginning tomovewidianacceleration of 1m/s^.
A boy who is 48 m behind the bus starts running at 10m/s. The
time(s) at which the boy can catch the bus :
(A) 8s P) IDs
(Q 12 s - p) 14 s.

1-85 Anexperiment onthetake-offperformance ofanaeroplane
shows that the accelerationvaries as shownin the figure-l. 133,
andthatit takes12s totakeofffromarestposition. Thedistance
along the runway covered by the aeroplane is :

a(m/s^)

(A) '210m

(Q 21000m

Figure 1.133

p) 2100m

P) 1200m

take-off

1-86 Wind isblowing in the north direction at speed of2 m/s
which causes the rain to fall at some angle with the vertical.
With whatvelocity should a cyclist drive sothattherainappears
vertical to him:

(A) 2 m/s south p) 2 m/s north
(Q 4 m/s west p) 4 m/s south

1-87 A particle has a velocity u towards east at / = 0. Its
acceleration is towards west and is constant. Let andXg be
the magnitude of displacement in the first 10 seconds and the
next 10 seconds:

P)

(Q x^>xg
P) The information is insufficient to decide the relation of

withx^.

1-88 Aparticle thrown upvertically reaches its highest point
intime and returns to the ground in further time /j. The air
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resistance exerts a constant force on the particle opposite to its'
direction ofmotion . • > .

(A) • - • , . ^ •
(B) ' • . - , .

(Q t\<t2
p) may be (A) or (C) depending on the ratio ofthe force ofair
resistance to the weight of the particle.

1-89 Three particles start from origin at the same time with a
velocity 2ms"' along positive x-axis, the secondwith avelocity
6ms""' along negativey-axis. Find frie velocity ofthe third particle
along x=y line so that the three particles may always lie in a
straight line:

(A) (B) 3V2m/s . '
(C) -3V2m/s . , . P) 2V2m/s

1-90' A car 2 m long and 3 m wide is movingat 13m/sec when
a bullet hits it inadirection making anangle 0= tan~^ 3/4 with
the car as seen from the street. The bullet enters one edge of the
comer and passes out at the diagonally opposite comer.
Neglecting any interaction between bullet and car find the time
for the bullet to cross the car :

(A) 0.25 sec
(Q. 0.15'sec

2 m" •
V

car -

•

13 m/s

3m

/

Figure 1.134

p) 1.3 sec

P), 0.6 sec

1-91 Rain isfalling with a speed of4nVs inadirection making
an angle of30® with vertical towards south. What should be the

magnitude & direction ofvelocity ofcyclist to hold his umbrella
exactly vertical, so that rain does not wet him:

(A) 2 m/s towards north P) 4 m/s towards south •
(Q 2 m/s towards south P) 4 m/s towards north

1-921The greatest accelerationof decelerationthat a train may
have is a: The mininium time in which the train can get from one
station to the next at a distance sis:

\s_ [Ts
a

(A) P)

(Qi P) 2-

1-93 A car of mass = m= 1000 kg is moving with constant

65;

speedv = 100m/s on a parabolicshapedbridge of span.
/ = 40 w andheight - 20 w asshownin the figure.Then the net
force applied by the bridge on the car when the car is at point F.\
is:'. . I

6 • . .

(A) 500oj|jV

10000 „
(Q

A[< Hb . C D ^
[ 10 m

/

Figure 1.135

5000 ,,

® IT"

P) 5000^/yA

1-94 A block B is suspended from a cable that is attached to
the block at E, wraps around three pulleys and is tied to the
back of a truck D. If the tmck starts from rest when is zero

and moves forward with a constant acceleration ofa = 3/2 m/s^.
p '

if the speed of the block at the instant = 3 w is :

(A) jin/s

(Q jnt/s

A

Figure 1.136

'2
p)

P) I rri/s

1-95 A particle is projected at an angle 60°with horizontal with'

a speed of 10 V3 m/s from point Aas shown. Atthe same time
the sufficient long wedge is made to move with constant velocity'

of XOyfi towards right asshown in figure-1.137. The time in
second after which particle will'hit the wedge will be.
fe=iom/s2).
(A) 1 sec

P) 2 sec

(C) 3 sec

P) it will never collide on the

wedge . Figure1.137

V/Z///////////////////////.
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1-96 An aiiplane flies northward from town^ to town B and
then back again. There is a steady wind blowing towards the
north so that for the first stage of the trip, the airplane is flying

in the same direction as the wind and for the return trip of the
journey, the airplane is flying directly into the wind.The total
trip time T^, ascompared tothe total trip time inthe absence of
any wind :

(A) T^=T,
(Q t<t^

(B)

(D) Z=2T^

1-97 In the arrangement of rigid links of equal length /, they
can freely rotate about the joined ends as shown in the figure-"
1.138. Ifthe end U ispulled horizontally with constant speed 20

m/s, find the approx. speed ofendf whenthe angle SUT is 90".

p s

Figure 1.138

(A) 5 m/s

(Q 7.1 m/s

(B) 10 m/s '

(D) 14.12m/s

1-98 A snapshot ofa petrol engine
is given in which piston is moving
downwards with velocity

40>/3 m/s. Find the angular
velocity of the shaft:
(A) 400rad/s
(B) 300rad/s
(Q 200rad/s

(D) 500rad/s

1-99 The acceleration time graph
of a particle is shown in the
figure-1.140. What is the velocity

ofparticle at / = 8s, ifinitial velocity

ofparticle is 3 m/s? (Assume motion
is 1 dimension):
(A) 4 m/s (B) 5 m/s
(Q 6 m/s (D) 7 m/s

40V3 m/s

Figure 1.139

Figure 1.140

1-100 A particle is moving on a circular path ofradius R with
uniform angular speed co. The magnitude ofaverage velocity of

27t
particle during time r = 0 to / = :

V3 coi?
(A) • P) n

(Q

7C

3>/3 oyR

3 (nR

2 n

2GiR

3 71P) T

Kinemitfcs^i

1-101 A particle is thrown at time t=0 with a velocity of10m/s
at an angle of60° with the horizontal from a point on an incline
plane, making an angle of 30® with the horizontal. The time
when the velocity ofthe projectile becomes parallel to the incline
is:

2 ' ''
(A) —=sec

V3

(B) sec
. V3

(Q y/s sec

P) ^
2yj3

sec

10 m/s

/60>^

Figure 1.141

C
1-102 A particle is movingalong the path given byy = f

(where C is a positive constant). The relation between the
acceleration (a) and the velocity (v) ofthe particle at /=5sec is :
(A) 5a = v (B) a = 5v

(Q a = ^/v p) a = V

1-103 Three particles are projected in air with the minimum
possible speeds, such that the first goes from A to B, the second
goes from 5 to C and the third goes from C to A. Points A and C
are at the same vertical level. The two inclines make the same

angle a with the horizontal as shown. Then the relation among

the projection speeds ofthe three particles is :

(A) W3 = Wj + M2

1 1 1
(Q — —

"3 "1 "2

(B) 1/3 =2Wj«2

P) u\=u\-vu\

1-104 A particle moving in the positive x-direction has initial
velocity Vq. The particle undergoes retardation h?-, where v is
its instantaneous velocity. The velocity of the particle as a
function of time is given by :

(A) v=Vo/(1+Avq/) ' P)

P) v =

1-105 A particle is projected with a speed u in air at angle 0
with the horizontal. The particle explodes at the highest point

ofits path into two equal fragments, one ofthe fragments moving
up straight with a speed w. The difference in time in which the
two particle fall on the ground is (Assume it is at a height H at

the time ofexplosion)

2u
(A) — P)

g

P) P)

2gH

-yju^+2gH
g
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1-106 Inthe figure shown ariver ofwidth 4kmisflowing with
thespeed of5km/h. Aswimmer whose swimming speedrelative
to thewateris 4km/h, startsswimming fromapoints ona bank.
Onthe other bank 5 isapoint g
which is directly opposite to ~
A. What minimum distance (in
km) the swimmer will have to
walk on die other bank to reach

the point 5. -3.
(A) 2 13

(B) 3

(Q 4
(D) 5

:5:km/hr^_

Figure 1.142

1-107 If blocks starts from rest at r = 0 & begins to move
towards'right with2 m/s^ & simultaneously C moves towards
right with constant velocity of 4 m/s. Velocity of block B at
r = 5 sec. will be:

(A) 2 m/s

(Q" 4 m/s

V777ZV7777Z 77777777777777,

Figure 1.143

(B) 3 m/s

(D) None

1-109 Knowing that block B starts to move
downward with a constant velocity of
18 cm/sec, the velocity ofblock.^ will be:
(A) 27 cm/s

(B) 12 cm/s

(Q 36 cm/s
(D) 9 cm/s

67;

Figure 1.145

1-110 If velocity of block B in the given arrangement is
300 mm/sec. towards right. Then velocityoiA willbe :

I
300 mm/sec.-

B

y.
/7ZV77?77777777777A

(A) 200 mm/sec

(Q 450 mm/sec

Figure 1.146

(B) 100mm/sec

(D) 150 mm/sec

1-111 Find rangeofprojectilewhichisprojected perpendicular
to the incline plane with velocity 20 m/s as shown in figure-
1.147:

M= 20 ms

3T/

77777/777/777/7^^7/77//.
Figure 1.147

(B) 40m

(D) 50m

1-108 In the pulley system shown the two
upper pulleys are fastened together to form
single unit. The cable is wrapped around the
smaller pulley with its end secured to the

pulleys so that it cannot slip. Determine the
upward acceleration of block B A A has
downward acceleration of2 m/s^:

(A) 16m/s^
(B) 8 m/s2
(Q 0;5m/s2
(D) 0.25m/s2

(A) 75 m

0 (Q 45m

Figure 1.144
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Advance MCQs with One orMore Options Correct

1-1 Thedisplacement xofa particle as a function oftime/is 1-6 Figure shows some velocity versus time graphs
shownin followingfigure-1.148. The figure indicates:

Figure 1.148

(A) The particle starts with a certain velocity, but the motion is
retarded and finally particle stops '

(B) The velocity of particle is constant through out
(Q The acceleration of the particle is constant throughout
p) The particle starts with a constant velocity, the motion is

accelerated:

1-2 A particle is projected vertically upwards with a velocity u
from a point O. When it returns to the point ofproj ection : .
(A) Its average velocity is zero
(B) Its displacement is zero
(Q Its average speed is'u/l

P) Its average speed is u

1-3 An object may have :
(A) Varying speed without having varying velocity,
P) Varying velocity without having varying speed,
(Q Non zero acceleration without having varying velocity,
P) Non zero acceleration without having varying speed.

1-4 Choose the correct statement(s):

(A) We can have a motion having zero displacement and
nonzero average speed.

P) Average velocity is half the sum of its initial and final
velocity.

(Q Total displacement is equal to product ofaverage velocity
and time.

P) Acceleration of a particle is positive if it is moving in
negative direction with decreasing speed.

1-5 Choose the correct statement(s);
(A) If a particle moving in a straight line has a negative

acceleration then this always meant that the speed is
decreasing.

P) If speed of a particle moving in straight line changes, it
must have non-zero acceleration.

(Q Acceleration ofa particle is negative ifit is moving in +ve
direction with decreasing speed.

P) Rate of change of speed is magnitude of acceleration at

any instant.

Time-

(a)

Time- Time-

(c) (d)

Only some of these can be realised in practice. These are :
(A) Figure-(a), •• P) Figure-(b)
(C) Figure-(c) p) Figure-(d)

1-7 A man is running with a constant acceleration on a plank
which is placed on a horizontal smooth surface. Then choose
the correct option(s): . '
(A) Work done by friction on the man is negative
P) Work done by friction on the man is positive

(Q Work done by friction on the plank is positive
p) Work done by friction on the plank is negative

1-8 Man/f sittingin a carmovingwith54 km/hrobservesanother

man B in front ofcar crossing perpendicularly the road ofwidth
15min3s:

(A) SpeedofmanSis 5y/w m/s
p) Speedof man5 is 5 ms''

j
with direction ofmotion ofcar •

P) Actual direction of motion of B is at an angle of tan"'(3)
with direction opposite to the direction ofmotion ofcar

1-9 A motor boat is to reach at a point 30° upstream on other

side ofa river flowing with velocity 5 m/s. Velocity of motor

boat with respect to water is 5V3 m/sec. The driver should
steer the boat at an angle of:
(A) 30° up w.r.t. the line ofdestination from the starting point
P) 60° up w.r.t. normal to the bank
(Q 120° w.r.t. stream direction
P) None of these

1-10 The position of a particle moving in a straight line is
given by

x=3/3-i8/2 + 36r

Here, j: is in and t in second. Then

(Q Actual directioh ofmotion of5 isatan angle oftan ''
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(A) direction of velocityandacceleration bothchangeat t = 2s
the distance travelledby particle is equal to magnitude of
displacement for t = 0 to/ = 5s'

(Q the speed of particle is decreasingin /=0 to / = 2s then it is
increasing for / > 2

hie magnitudes ofvelocity and acceleration are equal at
/ = 0

1-11 Aparticle isprojectedat anangle= 30"withthe horizontal,
with a velocity of 10 m/s then
(A) after 2 s the velocity of particle makes an angle of60"

with initial velocity vector
after 1 s the velocity ofparticle makes an angle of60"
with initial velocity vector

(Q the magnitude of velocity ofparticle after I s is 10 m/s
P) the magnitude ofvelocity ofparticle after 1 s is 5 m/s

1-12 Under the action offorce P, the constant acceleration of
block 5 is 6 m/sec^ up the incline. For the instant when the
velocity of 5 is 3 m/sec up the incline. Choose the correct
option(s)

Figure 1.149

(A) Velocity ofB relative to A is Im/s

(B) Acceleration of 5 relative to is 2 m/s^
(Q' Thevelocity of point C of the cable (in ground frame) is

4 m/s

P) Velocity ofB relative to A is 2m/s

1-13 A particle moveswith constantspeed v along a regular
hexagon ABCDEp in the same order. Then the magnitude of
the average velocity for its motion fi-om^ to :
(A) Fisv/5 p) Disv/3

(Q 'CisVVs /2 p) 5 isV

1-14 A particle has initial velocity 10 m/s. It moves due to
constant retarding force along the line of velocity which
produces a retardation of5 m/s^. Then:
(A)"Themaximum displacementin the directionof initialvelocity

is 10 m

p) The distance travelled in first 3 seconds is 7.5 m
(Q 'The distance travelled in first 3 seconds is 12.5 m
P) The distance travelled in first 3 seconds is 17.5 m.

691

1-15 Ifa particleismoving along astraight lineandfollowing
isthegraphshowing acceleration varyingwithtimethenchoose
correct statement(s). A.t /=0, x=0and Vq =7ms"^: .

(0,-4)

Figure 1.150

(A) Its displacement can never become zero
P) Its velocity can never become zero
((3) Its displacement can become zero

P) Its velocity can become zero

1-16 A particle moving along a straight line with uniform
acceleration has velocities 7 m/s at A and 17 m/s at C. B is the

mid point ofAC. Then :

(A) The velocity at S is 12 m/s
P) The average velocity between A and 5 is 10 m/s
(Q The ratio ofthe time to go fi-om^ to B to that from5 to C is

3:2 •

P) The average velocity between B and C is 15 m/s

2-17 Thestringshown inthefigure-1.151 ispassing oversmall
smooth pulley rigidly attached to trolley A. Ifspeed oftrolley is
constant andequalto V^. Speedandmagnitude of acceleration
ofblock B at the instant shown in figure is :

^77777777/.

(A) = ^

Y777777777777777777777777/,
A = 3 m

Figure 1.151

P) ag= 0

P) =
125
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UnsolvedNumericalProblemsfor Preparation ofNSEP, INPhO &IPhO
For detailedpreparation oflNPhO andIPhO students can refer advance studymaterial on www.physicsgalaxy.com

1 -1 A ball is released from rest. If it takes 1 second to cross the

last 20 m before hitting the ground, find the height from which

it was dropped.

Ans. [31.25 m]

1-2 The accelerator ofa train can produce uniform acceleration

0.25 m/s^ and its brake can produce retardation 0.5 m/s^. What
is the shortest time in which the train can travel two stations

8 km apart, if it stops at both stations ? What is the maximum
speed attained and for how long does the train move with

uniform velocity ?

Ans. [5 min 10 sec, 186 km/hr, Zero]

1-3 All insect is moving on a groove whose displacement is

given asx: = 6/^ - 8+ 40coS7c/, where x and t are expressed in
metres and seconds. Find the position, velocity and acceleration
of insect at time r = 6 s.

Ans. [248 m, 72 m/s, - 383 m/s^]

1-4 Two cars, A and B, are traveling in the same direction with

velocities and respectively. When car is at a distance d

behind car B, the brakes onAare applied, causing a deceleration
at a rate a. Show that to prevent a collision between A and B it

is necessary that:

1-5 A motorboat starts from rest with an acceleration given by

the law a = •
(x + 4y

m/s , where c is a positive constant. Given

that the velocity ofthe boat when its displacement is 8 m is 4 m/s.

Find:

(a) The magnitude ofc.

(b) The position of the boat when its speed was 4.5 m/s.

(c) The maximum velocity ofthe boat.

Ans. [48 mVs^, 21.6 m, 4.9 m/s]

1-6 The acceleration of a particle is given by the relation as
a = —kv , where is a constant. The particle starts ztx = 0 with

a velocity of 16 m/s, and when x = 6, the velocity is observed to

be 4 m/s. Find the velocity ofparticle whenx = 5 m and the time at

which the velocity ofthe particle is 9 m/s.

Ans. [4.76 m/s, 0.172 s]

1-7 In a given steam jet, the velocity ofthe steam at the mouth

ofjet is Vp = 3.6 m/s. The velocity of thesteam at a distance x

O.lSvo
fromjet is given as v= —-—. Find the acceleration ofthe air at

X=2 m and the time required for the air to flow from x = 1 m to

x = 3m

Ans. [- 0.0525 m/s^ 6.17 s]

1-8 Figure-1.152 showsthree blocks A,B and C connected by
a cable and systemof pulleys. The blocks is pulled downward
with a constant velocity of 7.5 cifi/s. At t = 0 , block .4 starts

moving downward'from rest with a constant acceleration. It is
giventhat thevelocityofblockylaftertravelling 20 cm is30 cm/s,
find the change in'position, velocity and the acceleration of
block C at this instant.

'///////////////////A

/ H " m

Figure 1.IS2

Ans. [40 cm, 45 cm/s, 2.25 cm/s^] -

1-9 A traffic police officer observes a fast moving car. Due to
over speed officerstarts his bike, acceleratesuniformly to 90 kph

in 8 s, and maintaining a constant velocity of90 kph, overtakes

the car 42 s after the car passed him. Ifhe overtakes the car after

18 s from the instant he starts, find the distance the officer

travelled before overtaking and the speed of car.

Ans. [0.5 km, 42.9 kph]

1-10. A steel ball is dropped from the roofofa building. A man

standing in front of a 1 m high window in the building notes

that the ball takes 0.1 s to fall from the top to bottom of the

window. The ball continues to fall and strikes the ground. On

striking the ground, the ball gets rebounded with the same
speed with which ithits the ground. If the ball reappears at the

bottom of the windows 2 s after passing the bottom of the

window on the way down, find the height of the building.

Ans. [21.004 m]

1-11 A particle starts from a poiiit A, starting of curve and
travels along the solid curve shown in figure-1.153. Find

approximately the position^ ofthe particle such that the average

velocity between the positions A and B has the same direction

as the instantaneous velocity at B.
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2 4 6 8 10 12 14 *('")

Figure 1.153

(c) Relative velocity ofthe point Mofthe cable with respect
to the point P.

Ans. [2 m/s up, 2 m/s down, 8 m/s up]

1-16 Infigure-1.155block^ starts from rest and moves upward
with a constant acceleration. After 8 s the relative velocity of
block Bwith respect to Ais 0.6 m/s. Find the accelerations of
blocks AandB.Also find thevelocity ofblock Bafter 6 s.

Ans. [(5 m, 6 m)]

1-12 Acar, starting from rest, first moves with an acceleration
of5 m/s^ for^ometime and then, after moving with a uniform
speed for some time, starts decelerating at the-same rate to
come to rest inatotal time of25 sec. Ifthe average velocity of
the car over the whole journey is20 m/s, for how long does it
move with a uniform speed ?

Ans; [15 sec]

1-13 In amotorcycle race, ariderAisleading another riderB
by 36 mand both riders are travelling at a constant speed of
170 kph. At t=0both starts accelerating at aconstant rate. It is
given that after 8s, Sovertakes Aand at this instant speed of
Ais 220 kph. Find the accelerations ofthe two riders.
Ans. [1.74 ra/s^, 2.86 m/s^] •

1-14 Two fiiends Aand Bare standing adistancexapart inan
open field and wind is blowing in adirection perpendicular to
.the line joining^B.Abeats adrum and finds atime lag between
seeing and hearing the drum beating by A. Find this time lag.

Ans. [ ]

1-15 Two blocks Aand Bare shown infigure-1.154. Block A
moves to the left with a constant velocity of6m/s. Find :

M
W77777777777/y

Figure 1.154

(a) .Velocityoftheblocks.

(b) Velocity ofthe point F ofthe string.

'////////////ZA

Figure 1.155

Ans. [5 cm/s^ up, 2.5 cm/s^ down, 15 cm/s down]

1-17 Amanofheight 1.2 meters walks away from alamp hanging
at aheight of4metres above ground level. Ifthe man walks with
a speed of 2.8 m/s, determine the speed of the tip of man's
shadow.

Ans. [4 m/s]

1-18 Aparticle moves in astraight line with the velocity curve
shown in figure-1.156. Draw approximate acceleration vs time
and displacement vs time curves. Consider x=0at/=0.

V(m/s)

Figure 1.156

1-19 Apoint mass starts moving in a straight line with a
constantacceleration a. At atimeY^ after the beginning ofmotion
the acceleration changes sign, remaining the same in magnitude.
Determine the time t from the beginning ofmotion inwhich the
point mass returns to the initial position.

Ans. [/iC2+V2)]

1-20 Acar travelling ata uniform speed of75kph passed
another car at rest beside the track. Two minutes later
starts and accelerates uniformly until its speed increases to
100 kph, then it maintains the speed. After 12 minutes from the
instant Cj passes C^, is 800 mahead of C^. Find when and
where overtakes C, and the acceleration ofCj.
Ans. [10.1 min, 12.6 km, 0.443 m/s^]
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1-21 A helicopter takes off along.the vertical with an
acceleration a =3i m/s^ and zero initial velocity. Inacertain time

the pilot switches off the engine. At the point oftake off, the '
sound dies away in a time = 30 sec. Determine the velocity of

the helicopter at the moment when its engine is switched off

assuming that velocity of sound is 320 m/s.

Ans. [80 m/s]

1-22 Two bodies move in a straight line towards each other at
initial velocities Vj andVj andwithconstant acceleration and
<32 directed against the corresponding velocities at the initial
instant. What must be the maximum initial separation between

the bodies for which they meet during the motion ?

Ans.
(V1+V2)
2(01+02)

1-23 Block5 shown in figure-1.157 moves to the right with a
constant velocity of30 cm/s. Find :

y>77777?'77777:^77777777777777777:^.

•0: M
:0« 5

u)
YTTTTTTTT?

T

Figure 1.157

(a) Thevelocityofblock/f.

(b) The velocity of the point P ofthe string.

(c) The velocity of the point M of the string.

(d) The relative velocity ofthe point/* ofthe string with respect

to the block

Ans. [(a) 20 cm/s right, (b) 60 cm/s right, (c) 20 cm/s left, (d) 40 cm/s
right]

1-24 At / = 0, block B in figure-1.104 starts moving with a
velocity 15 cm/s and with a constant acceleration. It is observed

that after blocks travels 24 cm to the right its velocity is 6 cm/s.

Find:

(a) The accelerations of.(4 and 5,

(b) The acceleration ofpoint M ofthe string.

Ans. [(a) 1.33 m/s^ left, 2 cm/s^ left, (b) 1.33 m/s^ right]

1-25 A stone is dropped from the top of a cliff of height h.
seconds later, a second stone is projected downwards from the
same cliffwith a vertically downward velocity u. Show that the
two stones will reach the bottom of the cliff together, if

- • %h(u-gnf-= gr?-

What can you say about the limiting value of?

r ,Ans.. [ ,1— ]

kinewtatiesi

1-26 How long will a plane take to fly aroimd a square with
side a with the wind blowing at a velocity u, in the two cases (a)
the direction ofthe wind coincides with one ofthe sides (b) the

direction ofthe wind coincides with one diagonal ofthe square.
The velocity ofthe plane in still air is v > w.

Ans. [(a)
2a(v+Vv^-«^) _̂ 4ayj(v^-u^/2)

•],(b)

1-27 The motion ofan insect on a table is given asx = 4/ - 2 sin
t and y = A-1 cos t, where x and y are in metres and / is in

seconds. Find the magnitude ofminimum and maximum velocities

attained by the insect.

Ans. [2 m/s, 6 m/s]
''

' 1-28 Two motor cars start from A simultaneously and reach B

after 2 hrs. The first car traveled half the distance at a speed of
Vj = 30 km/hr and the other half at a speed of 60 km/hr. The
second car covered the entire distance with a constant

acceleration. At what instant oftime, where the speeds ofboth

the vehicles same ? Will one ofthem overtake the other enroute ?

Ans. [0.75 hr, 1.5 hr, no overtaking]

1-29' A body of mass m is thrown straight up with a velocity
Mq. Findthevelocity w'with which thebodycomes downif the
air drag equals cw^iwhere c isaconstant and uisthe velocity of
the body. '

Ans. [h' =• «o

1 +

2 Y
C"0

mg J.

]

1-30 In a village Shyam bats for hitting two points A and B on
a staircase with.his goli from the position P shown in
figure-1.158. Find the velocities required for/* to hit.4 and5.

0.35 m 0.35 ra 0.9 m

1.2 m

¥
Jo.2m -"B

.2 m

}0.2m
V777777777777777777777777777777777777777777/.

Figure 1.1S8

Ans. [4.65 m/s, 10.6 m/s]

1-31 A ship moves along the equator to the east with velocity
Vq = 30 km/hr. The south eastern windblows at an angle (p = 60°
to the equator with velocity v= 15 km/hr. Find the wind velocity
v' relative to the ship and the angle (p' between the equator and
the wind direction in the reference frame fixed to the ship.

Ans. [39.4 km/hr, I9°]
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1-32 Point A moves uniformly with velocity vso that the vector

Vis continually "aimed' at point B, which in its turn moves

rectilinearly and uniformly with velocity m< v. At the initial

moment of time vLu and the points are separated by a distance

/. How soon the points converge ?

Figure 1.159

Ans. [-
v/

•1

1-33 The speed ofa train increases at a constant rate from zero

to V and then remains constant for an interval and finally

decreases to zero at a constant rate p. If / be the total distance
described, prove that the total time taken is :

/ V f 1 1
!— 1—

V 2 U p.

1-34 The position vector r of a moving particle at time t

after the start of the motion is given by r = (5 + 20 0 ' +

(95 + 10 r - 5 y. At the / = r, the particle is moving at right

angles to its initial direction ofmotion. Find the value of T and

the distance ofthe particle from its initial position at this time.

Ans. [5s, I25m] • ' '

1-35 On a cricket field, the batsman is at the origin of
coordinates and a fielder stands in position given as

(46 / + 28y )m. The batsman hits the ball so that it rolls along the

ground with constant velocity given by (7.5 i + 10y) m/s. The

fielder can run with a speed of 5m/s. If the starts to run

immediately the ball is hit, what is the shortest time in which he

could intercept the ball.

Ans. [4 s] , \

1-36 Two steel balls fall freely on an elastic slab. The first ball

is dropped from a height and the second from a height
h^ihi < T sec after the first ball. After the passage oftime T,
the velocities ofthe balls coincide in magnitude and direction.

Determine the time T and the time interval during which the

velocities ofthe two balls will be equal assuming that the balls

do not collide.

, ^2V2(V^-V^) ^Ans. [ -^= ]

73}

1-37 A motor boat, with its engine on in a running river and
blown over by a horizontalwind is observed to travel at 20 kph
in a direction 53® East ofNorth. The velocity ofthe boat with its
engine on in still water & blown over by the horizontal wind is
4 lq)h Eastward and the velocity of the boat with its engine on
over the running river, in the absence ofwind is 8 kph due south.
Find:

(a) The velocity of the boat in magnitude and direction, over

still water in the absence ofwind.

(b) The velocity ofthe wind in magnitude and direction.

Ans. [23.32 kph. 59° SOW]

1-38 A particlemoves fromrest in a straight linewithalternate
acceleration and retardation ofmagnitudes a and ^'respectively
during equal intervals oftime t. Find the space -ithas described
at the end of 2 « such intervals.

Ans. [n^ {a +-^ (a - a')(2n - I)}]'

1-39 A laimchtravels across a river fromapoint.4 to apoint^
on the opposite bank along the straight line AB forming an
angle a with the bank as shown in figure-1.160. The flag on the
mast ofthe launch makes an angle p with its direction ofmotion.
Determine the speed ofthe laimch with respect to the bank. Let
u be the velocity ofwind blowing in the direction perpendicular
to the current.

V//////////////////////////////.

Ans.
It 14/

A
V777777777777777777777777777777,

Figure 1.160

Ans. [u sin (a + ,P - n/2) sinp]

1-40 A particle moves for total time T sec in a straight line in
three consecutive parts such that its acceleration during the
first, second and third parts is in the ratio 1:2:7. The distances

covered in the first and the third parts are a and b meters while
the time taken for each of the is t seconds. Find the average
velocity of the particle during the second part.

1-41 Two particles are simultaneously thrown at an elevation
45®, towards each other from points .4 and B, roofs oftwo high

buildings. Their velocities of projection are 14 m/s and 2 ni/s
respectively. Horizontal and vertical separation between points
A and 5 is 22 m and 9 ra respectively. Calculate the minimum
separation between the particle in the process of their motion.

Ans. [6 m];- • ,



1-42 A ball is projected directlyupwardwith an initialspeed
Vq, bounces elastically from a roofinclined atanangle 45® as
shown in figure-1.161 andthenit strikes a tableat a horizontal
distance2 D from its startingpoint. Find Vq.

•

•

•

D

DI2k

^ 2D ^ ^

Figure 1.161

Ans. [ ^6gD ]

1-43 The currentvelocityof a rivergrowsin proportionto the
distance from itsbankandreaches themaximum value Vq inthe
middle. Near the banks the velocity is zero. A boat is moving
alongtheriverin sucha manner thatit is always perpendicular
to the currentand the speed of the boat in still water is u. Find
the distance throughwhich the boat crossingthe river will be
carried awayby the current if the widthof the river is c. Also
determine the trajectory of the boat.

. . cv 2 '"^1
Ans. [t-,/ ]

M« ^ vo '

1-44 A vertical wind screen ofa car is made up oftwo parts,,as
shownin figure-1.162, where theupperone^ is25 cmvertically
longandcovers the5 cmofthelower pieceB.Theupperoneis
hinged at thetopso thatit canbe opened outward, inclining to the
vertical.The car is runningon the horizontalroad at 60 km/hrin
therainwhichis fallingverticallyat 20 km/hr. Findthemaximum
angle, throughwhichthe upperpartA can be openedoutward,
such that the rain drops do not enter the car.

Ans. [59®]

Vjj=20kph

25 cm

v^= 60 kph

Figure 1.162

1-45 A hunter is riding an elephant ofheight 4 m moving in a
straightlinewithuniformspeedof 2 m/s.He sightsa deerrunning
with a speed Vin front at a distance of 4V5m moving

\ Kinematicsj

perpendicular tothedirection ofmotion oftheelephant. Ifhunter
canthrowhisspearwitha speedof 1Ora/s relative to theelephant,
thenat whatangle0 to itsdirectionofmotionmusthe tinowhis
spearhorizontally fora successful hit.Findalsothespeed Vof
the deer.

Ans. [37®, 6 m/s]

1-46 A swimmer wishes to cross a 500 m wide river flowing at

a rate5 km/hr. Hisspeedwithrespect towateris3 km/hr. (a)Ifhe
heads in a directionmaking an angle 0 with the flow, he takes to
cross the river, (b) Find the shortestpossible time to cross the
river.

Ans. [(a) 10/sin9, (b) 10 mins]

1-47 Two particles 1 and 2'move with constant velocities
and Vj. Atthe initial moment their radius vectors.are equal to
and How must these four vectors be interrelated for the

particles to collide;?

Ans. [
ri-ri V1-V2

IV1-V2I

1-48 A stone is thrown from ground level so as to just clear a
wall4 mhigh at a distanceof4 m andfallsat a distanceof 14m
from the wall. Find the magnitudeand direction of the velocity
ofthe ball.

Ans. [ >/l82 m/s]

1-49 A bomberplane is movinghorizontally in a straightline
594 km/hourin the'samestraight line;Whenthe fighteris 300 m
behind,he fires his gunswhicharethenhorizontal. If thebullets
havea muzzle velocityof3348 km/hourrelativeto thefighter at
what distance below the line of sight and at what anglewill the
bullet hit the bomber ? Neglect air resistance and wind effects.
Given that the velocity ofthe fighter plane is 720 km/hour.

Ans. [0.474 m, 0.9®]

1-50 A man in a row boat must get from Point A to point B on
the opposite bank of the river as shown in figure-1.163. The
distance BC=a. The width ofthe river .4C=b. Atwhat minimum

speedu relative to thestillwatershould theboattravel to reach
the point B ? The velocity of flow oftlie river is Vq.

Figure 1.163

Ans. [
vob
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1-51 ^4 is projected from origin with an initial velocity
V(j=700 cm/s inadirection 37°above thehorizontal asshown in
figure-1.164. Another ball B, 300 cm from origin on a line 37°
above the horizontal is released from rest at the instant A

starts, (a)How far willB have fallenwhenit ishit byA ? (b) In
what direction .4 moving when it hits B ?

Figure 1;164

Ans. [90 cm, horizontal]

1-52 Ahaeroplane files horizontally at a height h at a speedv.
An anti aircraft gun fires ashell atthe pl^e when itisvertically
abovethe gun. Showthat the minimummuzzlevelocityrequired

to hitthe plane is +2gh at anangle tan"^ .

1t53 a ball is projected at an angle of 30° above with the
horizontal from the top ofa tower and strikes the ground in 5 s
at an angle of 45° with the horizontal. Find the height of the

tower and the speed with which it was projected. >

Ans. [50(73 - 1) m/s, 125(2 -yfi) m]

1-54 Twoboys simultaneously aim theirguns at a bird sitting
on a tower. The first boy releases his shot with a speed of
100 m/s at an angle of projection of 30°. The second boy is
ahead of the first by a distance of 50 m and releases his shot

with a speed of 80 m/s. How must he aim his gun so that both
the shots hit the bird simultaneously ? What is the distance of

the foot of the tower from the two boys and the height of the
tower ? With what velocities and when do the two shots hit the

bird?-

Ans. [0 - sin"^ ]

1-55 A boy throws a ball upward with a speed of 12 m/s. The
wind imparts ahorizontal acceleration of0.4 m/s^. At what angle
0 to the vertical, the ball must be thrown so that it returns to the

point of release.

Ans. [tan 'I^H

751

1-56 A.student is standing on the openplatform of a moving
train at a speed of 10 m/s. The student throws a ball into the air
along a path that, he judges to make an initial angle of60° with
the horizontaland to be in line with the track. The professor,
who is standing on the ground nearby, observes the ball to rise
vertically.Find the height reached by the ball.

Ans. [15 m]

1-57 On a two lane road, car A is travelling witha speed of
10 m/s and other two carsB and C approachcar^f in opposite
directions with a speed of 15 m/s. At an instant, when the
distance AB is equal to AC, both being 1 km, B decides to
overtake A before C does. What minimum acceleration ofcar B

is required to avoid an accident ?

Ans. [1 m/s^]

1-58 A particle moves in the plane x y with constant
acceleration a directed along the negativey-axis. The equation
ofmotion ofthe particle has the formy =k^x-k2 x^, where
and Atj are positive constants. Find the velocity of theparticle
at the origin of coordinates. •

Ans.[,K +l)3^]

1-59 A gardener shower jet is placed at a distance d from the
wall of a building. IfR is the maximumrange ofthe jet that is
produced when the bowl is connected to the nose of a fire
engine, show that the portion ofthe wall that is hit by the jet of

water is bounded by a parabola whose height is

breadth is 2 -d^ .
2R

and

1-60 A perfectlyelasticball is thrownfromthe footof a plane
whose inclinationto horizontal is p. If after strikingthe plane at
a distance R from the point ofprojection it reboimds and retraces
its former path, find the velocity ofprojection.

Ans. [w =
gA(l +3sin2p)

2sinP

1-61 Two lines ABand CD intersect at O at an inclination a, as
shown in figure-1.165. If they move out parallel to themselves
with the speed v, find the speed of O.

Figure 1.165

Ans. [v cosec
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1-62 A gun of "muzzle speed is situated at height h above a
horizontal plane. Prove that the angle at which it must be fired
so as to achieve the greatest range on the plane is given by -

1 gh
^ - cos

Vq +gh

1-63 A shell is fired from a gun from the bottom ofa hill along
its slope. The slope of the hill is a = 30°, and the angle of the
barrel to the horizontal p = 60°. The initialvelocityvofthe shell
is 21 m/sec. Find the distance from the gun to the point at which
the shell falls.

Ans. [30 m]

1-64 The maximum range ofa particle with a certain speed on a
horizontal plane is R. Find its maximumrange when projected
on an inclined plane with inclination 30°.

Ans. [2/?/3]

1-65 A projectile aimed at a mark which is in the horizontal
plane through the point of projection falls a cm short ofit when
the elevation is a and goes b cm too far when the elevation is P.
Show that if the velocity ofprojection is same in all the cases,
the proper elevation is

1 rfesin2a +asin2p^
T sin ;
2 V a + b

1-66 A boy sitting at the rear end of a railway compartmentof
a train, running at a constant acceleration on horizontal rails
throws towards the fore end ofthe compartment with a muzzle
velocity of20 m/sec at an angle 37° above the horizontal, when
the train is running at a speed of 10 m/sec. If the same boy
catches the ball without moving from his seat and at the same
height ofprojection, find the speed of the train at the instant of
his catching the ball.

Ans. [41.99 m/sec]

1 -67 There is an inclined surface of inclination 0. A smooth

groove is cut into it forming an angle a with AB as shown in
figure-1.166. A steel ball is free to slide a long the groove. Ifthe
ball is released from the point O. Find the speed when it comes
to A.

Figure 1.166

Ans. [^2gl sinS sina ]

1-68 To a personitravelling dueEast withvelocity,the wind
appearsto blowfroman anglea North of East.Whenhe starts
travellingdueNorth with velocity2 u, the wind appears to blow
from an angle p North of East. Find the .true direction of the
wind. . . • , ' .

Ans. [0 WOS where tan6 = 1

1-69 A guided missile is fired to strike an object at the same
level 38 km away. It may be assumed that it rises vertically
1.5 km and then for the remainder of the flight it follows a

parabolic path at an elevation of 45°. Calculate its velocity at
the begirming of its parabolic path.

Ans. [2177 km/H]

1-70 A train takes 2 minutes to acquire its full speed 60 kph

from rest and 1 minute to come to rest from the full speed. If
somewhere in between two stations 1 km of the track be under

repairandthe limitedspeedonthispartbe fixedto 20 kph,find
the late running of the train on account of this repair work,
assuming otherwisenormal at running ofthe train between the
stations. . | ,

Ans. [2 min 40 sec]

1-71 A boy is tryingtohit a bird sittingon a wall 10mhighwith
a stone. Just before being hit by the stone, the bird flies away

horizontallywith'a velocity of5 m/s. The stone further goes up
to a maximumheight of5 m and then hits thebird. Determine the

initial velocity ofstone and angle of projection.

Ans. [73°75; 17.87 m/s]

1-72 Particle P and Q ofmass 20 gms and 40 gms respectively

are simultaneously projected frompoints^^ and5 onthe ground.

The initial velocities of P and Q make 45° and 135° angles

respectively with.the horizontal as shownin the figure-1.167.
Each particle has an initial speed of49 m /s. The separation.45
is 245 m. Both particles travel in the same vertical plane and
undergo a collision. After the collision P retraces its path.
Determine the position ofQ when it hits the ground. How much
time after the collision does the particle Q take to reach the
ground. Take g = 9.8m/s^.

Ans. [122.5m, 3.53 sec]

245 m

Figure 1.167

• B

1-73 Two shots are projected from a gun at the top of a hill
with the same velocity u at angles of projection a and P
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respectively. If the shots strike thehorizontal ground through
the footof the hill at the same point, showthat theheight h of
the hill above the plane is given by: • -

h =
2u (1-tan a tan P)

g(tana +tanP)^

1-74 A pointmoves intheplane according to the lawx = a
sin (iit,y = a (a-cos (at), where a and co arepositive constants.
Find:

(a) The distance s traversed by thepointduring the time T\

(b) The angle between the point's velocity and acceleration
vectors.

Ans. [(a) acDT (b)-|]

1-77 Abullet ofmass Mis fired with avelocity of50m/s, atah
angle (p with the horizontal. Atthe highest point ofits trajectory,
it collides head on with ai bob of mass 3 M suspended by a
massless' stringof length 10/3metresandgets embedded in the
bob. After the collision, the string moves through an angle of
120°. Find (a) the angle (p (b) the vertical and horizontal

coordinates of the initialpositionof thebobwith respectof the
point of firing ofthe bullet.

Ans. [120 m, 45 m]

1-78 Two bodies were thrown simultaneously from the same
point one straight up, and the other at an angle 0q with the
horizontal. The initial speed of each body is equal to v^.
Neglecting the air drag, find the distance between the bodies
after time/.

1-75 Two towers AB and CD are situated atadistance dapart, Ans. [vp? ^2(l-sineo) ]
asshown infigure-1.168.^5 is20mhigh andCD is30mhigh
from theground. Anobject ofmass mis thrown from thetopof
AB horizontally with a velocity of 10 m/s towards CD.
Simultaneouslyanother object ofmass 2 m is thrown from the
top of CD at an angle of60° to the horizontal towards AB with

the same magnitude ofinitial velocity as thatof thefirstobject.
Thetwoobjectsmovein the sameverticalplane,collideinmid
air and stick to each other (i) calculate the distance between
the towers and (ii) find the positionwhere the objects hit the
ground.

D

Figure 1.168

Ans. [10 V3m, 20^ m]

1-76 A particle moves uniformly with speed v along a
parabolic pathy =h?", where ^ isapositive constant. Find the
acceleration ofthe particle at the point x = 0.

Ans. [2 kv^]

1-79 A particle move in a plane according to the law
V= Vq I+ 60) cos (atj. Iftheparticle is at theoriginat /=0, findthe
equation of itspath,y =f(x) andits distance from theoriginat
/=3co/2.

Ans. [>> = 6 sin I(o—
^0

1-80 Two swimmers start a race. One who reaches the point C
first on the other bank wins the race. A makes his strokes in a

directionof 37° to the river flowwithvelocity5 lq)hrelativeto
water. B makes his strokes in a direction 127° to the river flow

with same relative velocity. River isflowing with speed of2 lq)h
and is 100m wide. Whowillwintherace? Compute the time
takenby./f and5 to reachthepoint C ifthespeedsof..4 and5 on
the groimd are 8 IqDh and 6 kph respectively.

Ans. [B wins, time of A = 165 s, time of 5 = 150 s]

1-81 Two particles are simultaneously projected in the same
vertical plane from the same point with velocities u and v at
angles a and p with horizontal. Show that:

(a) The linejoiningthemmovesparallelto itself.

(b) The time that elapses when theirvelocities areparallel is

wvsin(a-p)

g(v cosp-ttcosa)

(c) The time that elapses between their transits through the
other common point is

2«vsin(a-p) ,

^(vcosp + wcosa)



1-82 Threepoints are located at thevertices of an equilateral
triangle whose sides equal to a. .They all start moving
simultaneously with speed, v, with the first point heading
continually for the second, the second for third, and the third
for the first. How soon will the points meet and where ?

Ans. .[2a/3v, at centriod]

1-83 Aparticle isprojected upaninclined plane of inclination-
p at an elevation a to the horizon. Show that (a) tan
a = cotp + 2tanp, ifparticle strikes theplane atright angles; (b)
tana = 2 tanp, if theparticle strikes theplane horizontally.
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Forces &Newton's Laws ofMotion

FEW WORDS TO STUDENTS

In thelastchaptersyoulearnedtodescribe motion. In thischapter
we discuss theunderlying causes ofmotion, which aresummed up
in NewtoH *s threelaws, these laws enableus todescribe ikefuture
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In, some cases, you ,will see .that these laws require some
modificationfor analization ofthe problem-situation,-
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Howa body moves is determined by the interactions of that
body with its environment. These interactions are called forces.
Inpreceding chapters we studied kinematics, the language for
describing motion. Now weareready tothinkabout what makes
bodies move the way they do. Here we'll use the kinematics
relations withtwonewconcepts, forceandmass,to analyze the
principle ofdynamics. These principles can bewrappedupina
neat package ofthree statements called Newton's laws ofmotion.
The first law states that when the net force on a body is zero, its
motion doesn't change. The second law relates force to
acceleration when the net force is not zero. The third law is a

relation between the forces that two interacting bodies exerfpn
eachother. Theselaws, basedonexperimental studies ofmoving
bodies are ^damental in two ways. First, they cannot be_
deduced orproved from otherprinciples. Second, theymake it
possible tounderstand'most familiar kinds ofmotion. Newton's
laws are universal, however, they require modification at very. -
'high speed (close to thespeed of light) and forvery small sizes
(as within an atom).

The concept of force gives us a quantitative description of the
interaction between two bodies or between a body and its
environment. When a force involves direct contact between

twobodies, we call it a contactforce.Contactforcesinclude the
pushes or pulls youexert with your hand, the force of a rope
pulling ona block towhich it is tied, and thefriction force that
the groundexertson a ball playerslidinginto home.There are
also long range forces, that act even when the bodies are
separated by some distance (small or maybe large). Anyone
canexperience a common long range force ifheoverplays with
a pairofmagnets. Gravitational attraction is also a long range
force.

2.1 Force and Superposition

Tolifta pailofwaterandtoholdit inhishanda manmust apply
to thepailtheforce ofthehand, he feels theforce with which he
pulls thepail upwards, this force isequal to theonewith which
the pail acts on his hand in the downward direction. When a
worker pushes a loaded cartheapplies theforce ofhishands to
impart the motion to the cart, to roll it and to give the cart its
velocity. In these actions the man has a feeling of a certain
strain in his body. The force we have spoken ofin these examples
is connected with that felling.

However, in mechanics by force is not meant a physiological
felling. What is understood by force in mechanics is a physical
cause changing the state of motion of bodies and resulting
from an interaction of two bodies. Thus, a physical force in
mechanics should by no means.be confused with the felling of
strain. For instance, a worker pushing a cart acts upon the cart
with a certain force and this action is accompanied with a feeling
of strain in his muscles, however the motion of the cart is

Forces and Newton's ,Laws nf^MotiOnJ

governed byacertain law connected with the magnitude ofthe
force applied by the worker tothe cart and not with his felling.
If the same force is applied to the cart by dnother body for
example, byatractor, the motion ofthe cart will bethe same.

As discussed above in everyday language, a force is a push or
apull. From common experience, we can point out four properties
offorce: ^

(a) Since apush orapullhas both magnitude and direction, we
expect thatforce is a vector, quantity.

» T • . 'i* • , , V

(b) .Forces occur inpairs. Ifobject^I exerts a force onobject5,
then B also exerts a force onA. For example,when a bat strikes
aball, thebat exertsa forceontheballbuttheballexertsa force

' on the bat also.' In the example discussed in previous para,
-5 when a worker'exerts a force on a cart, it results strains in his

muscles. ^ . r. .

(c) A force can cause an object to accelerate. If youkicka
football, the ball'svelocitychangeswhile your foot is in contact
with it.

A force can deform an object. As you can see from
figure-2.1, theballwhen hits thefloor, isdeformed bythecontact
force exerted on it by the floor.The floor is deformed too, but
since it is harder than the ball,' its deformation is not as
noticeable.

7777777777^777777777777?

Figure 2.1

The last property, that a force causes an object to
be deformed, is often used to measure a force. This
is the principle of a spring scale. A spring scale
consistsof a spring,usuallycontainedin a housing,
and a point which indicates the amountthe spring
is stretchedor compressed. The magnitude of this
force is proportional to the amount the spring is
stretched or compressed, and the direction of the
forceis alongthe spring.The scalemaybe calibrated
to read in Newtons or directly in kg to measure the
weight ofan object (figure-2i2)

400 gm

Figure 2.2
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rForces and Newton's Laws of Motion

2.2. Newton's First Law

"Everybody continuesin itsstate ofrest, or in uniform motion
ina straight lineunless it is compelled tochangethatstate by
forces impressed upon it."

This law is often called the law ofinertia, because inertia means

resistance toa change, andthe lawstates thatanobjectnaturally
tends to maintain whatever velocity it happens to have,
including zero velocity.

Ifanobject is ina state ofrestorinuniform motion ina straight
line, then its acceleration is zero. Thus the first law can be
stated in an another way as - If no forces are exerted on an
object, the object's acceleration iszero. Thus if wefind thatif
thebody is at restat thestart, it remains at rest, if it is initially
moving, it continues tomove inthesame direction withconstant
speed.'These results show that in Newton's first law, zero net
force isequivalent tonoforce atall.Thisisjustthe principle of
superposition of forces.

When a body is acted on by no forces, or by several forces
such that their vector sum is zero, we say that the body is in
equilibrium. In equilibrium, a body is either at rest (static
equilibrium) ormoving ina straight line with constant velocity
(dynamic equilibrium). But for a body in equilibrium, the net
force on it is zero

S F = 0 ...(2.1)

For this to be true, each component of the net force must be
zero,so

SF =0 and ...(2.2)

We are assuming thatthebody canbe represented adequately
as a point particle and the above conditions represent its
transiational equilibrium i.e. no straight line motion. There is
one more type ofequilibrium called rotational equilibrium, which
will be discussed in later part ofthe chapter.

2.3 Newton's Second Law

In discussing Newton's first law, we have seen that when a
body is acted on by no force or zero net force, it moves with
constant velocity andzero acceleration. Butwhat happens when,
thenet force isnotzero?Forexample, in figure-2.3 (a)weapply
aconstant horizontal force to asliding box on^smooth plane in
the samedirectionthe box is moving. Then F is constantand
in the same direction as v. We find that during the time the force
is acting, thevelocity of theboxchanges ata constant ratethat
is box moves v/ith constant acceleration.
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(b)

Figure 2.3

Similar application can beshown bythe example infigure-2.3
(b),if force F acts onthe body inopposition tothe direction of
its velocity v, the velocity of the box reduces at a constant rate.

We concludethat the presenceof a net force actingon a body
causes thebodyto accelerate. Thedirection of theacceleration
is the same as that of the net force. If the magnitude of the net
force is constant, then so is the magnitude of the acceleration.

These conclusions about net

force and acceleration also

apply to a body moving along
a curved path. For example,
figure-2.4 showsa ballmoving
in a horizontal circle on an ice

surface of negligible friction.
A string attaching the ball to
the center exerts a force of

constant magnitude toward
the centre of the circle. The

result is acceleration that is

constant in magnitude and directed toward the centre of the
circle. The speed of the ball here remains constant as we'll
discuss in further chapters that the force acting in a direction
perpendicular to velocity can only be able to change the
direction ofvelocity. It cannot change themagnitude ofvelocity.

Figure-2.5 shows the relationship between the force and the
acceleration. We apply a constant horizontal force onthe disc
on a fiictionless horizontal surface, it accelerates with a constant
acceleration. If we change the magnitude of the net force, the
acceleration changes in the same proportion. Doubling thenet
force doubles the acceleration, halving the force halves the
acceleration and so on.

Figure 2.4
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For a given body the ratio ofthe magnitude ofthe net force S F
to the magnitude of acceleration is constant, regardless of the
magnitude of the net force. We call this ratio the inertial mass,
or generally mass, of the body, and denote is by m. That is

isFi
m or

J.F -ma ...(2.3)

Here we have to be careful to state that the net force on a body

is what causes that body to accelerate. Experiment shows that
if a combination of forces F^, Fj, Fy is applied to a
body, the body will have the same acceleration (magnitude and
direction) as when only a single force is applied, if that single
force isequal to thevector sum F, + F^-^ F.^ + Inother
words, the principle of superposition of forces also holds true
when the net force is not zero and the body is accelerating.

Equation-(2.3) relates the magnitude ofthe net force on a body
to the magnitude of the acceleration that it produces. We have
also seen that the direction of the net force is the same as the

direction ofthe acceleration, whether the body's path is straight
or curved. Newton merged up all these relationships and
experimental results in a single concise statement that we now
call Newton's second law of motion :

"If a net externalforce acts on a body of mass m, the body
accelerates. The direction ofacceleration is the same as the
direction ofthe net force. The net force vector is equal to the
mass ofthe body times the acceleration ofthe body."

Symbolically it can be represented by equation-(2.3). Usually,

we will use it in component form, with a separate equation for
each component of force and the corresponding acceleration.

1F= ma.. T.Fy =may: 'LF= ma.

This set' of component equations is equivalent to the single
vector equation-(2.3). Each component oftotal force equals the
mass times the corresponding component ofacceleration.

The other important point, towards which the Newton's second
law refers is external forces. By this we mean forces exerted on
the body by other bodies in its environment. It's impossible for
a body to affect its own motion by exerting a force on itself.

2.4 Newton's Third Law

A force acting on a body is always the result of its interaction
with another body, so forces always come in pairs. You can't
pull on a door handle without the door handle pulling back on
you. Ifyou kick a ball, the forward force that your foot exerts on
the ball launches it into its trajectory, but you also feel the force
the ball exerts back on your foot. If you kick a wall, the pain you
feel is due to the force that the wall exerts on your foot.

Forces and Newton's'Lam of Motion-

In every case the force that you exert on the other body is in the •
opposite direction to the force that body exerts on you.
Whenever two bodies interact, the two forces that they exerts
on each other are always equal in magnitude and opposite in
direction. This is called Newton's third law ofmotion. In words

it can be expressed as

"To eveiy action there is always opposed an equal reaction,
or the mutual actions oftwo bodies upon each otherare always
directed towards the other one. These two forces have the
same magnitude but are opposite in direction. These twoforces
act on different bodies."

' ' I '

Look at the figure-2.6, a child kicks a bowl. Here also we can
analyze the concept of "action-reaction". The child kicks the
bowl witha force giveby F^ g and its reaction is the force
withwhich thebowl reacts thefoot of the child F g^^^. Butin
more precise way we can consider either force as the "action"
and the other as the "reaction". We often say simply that the
force always act in pairs and are equal and opposite, meaning
that they have equal magnitudes and opposite directions.

Figure 2.6

In figure-2.6 the action and reaction forces are contact forces

that are present only when the two bodies are touching. But
Newton's third law also applies to long range forces that do not.

require physical contact, such as the force of gravitational

attraction or the electrostatic interaction between two charged
bodies. A cork ball exerts an upward gravitational force on the
earth that is equal in magnitude to the downward gravitational •
force the earthexerts on the ball. Whenyou drop tlie ball in
gravity, both the ball and the earth accelerate towards each
other. The net force on each body has the same magnitude, but

the earth's acceleration is microscopically small because its

mass is so great.
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; Forces 'and-Newton's Laws, of Motion

2.5 Using Newton's Laws

Newton's three laws of motion contain all the basic principles
we need to solve a wide variety of problems in mechanics.
These laws are very simple in form, but the process ofapplying
them'to specific situation can pose real challenges. In this part
of the chapter we'll discuss the techniques and methods of
solving typical problems concerned with the application of
Newton's Laws ofmotion.

In a given problem Newton's laws are applied for the objects
givenin theproblem. Ina specificproblem, firstwearerequired
to choose a body and then we find the number of forces acting
on it, and all the forces are drawn on the body, considering it as
a point mass. The resulting diagram is known as firee body
diagram {FBD). Here be careful that in free body diagram, we
are required to show only those forces which are acting on the
body, fi:om its surroundings, do not include thoseforces which
are applied by the body. Before learning how to draw fi-ee body
diagram, and its equations of motion, we'll discuss about some
specific forces and their properties.

2.5.1 External and Internal Forces

Whenever a force acts on a body,'
if changes the motion of the
body. As the motion ofa body or'
bodies is concerned there can be

two type of forces - External and
Internal 'forces. Extknal forces

are those which act fi"om outside

of the system, only action acts
on the system, reaction of these

forces are not utilized by the

system. Internal forces are those
which are developed within the system bodies, hence both
action and reaction of these force are in the system. If we
consider a situation, shown in figure-2.7, box A is placed over
box5, and a force F is applied on box y4.

Here system includes two blocks, A and B, and the force F

which is acting from outside of the system is an external force
and the normal contact force between the two blocks is the

internal force of this system. Now we'll discuss properties and
applications for some important forces.

2.5.2 Normal Contact Force

It is also called as normal reaction between two surfaces. It

always acts in a direction perpendicular to the contact surface.
Have a look at the following situations and the normal reactions
shown in the free body diagrams of the respective objects in
figure-2.8. We note here that in parts (c) and (e), the normal
reaction on a spherical or cylindrical object always passes

F

N,

N

V7777777. ^77777777777777777/

N

Figure 2.7

83;

through the ceiitre of the object as the contact stirface is
tangential to the object.

Also note in part (b), where the rod is in contact with the ground,
the contact surface is that ofground as there is only one point
ofrod in contact, hence, normal reaction is perpendicular to the
surface of ground, on rod upward and on ground downward.
Similarly ifwe consider the contact of the rod and the edge of
the box, the surface in contact is that of the rod, hence normal

reactionisperpendicularto its surfaceandonbox it is in opposite
direction (action-reaction).

In part (d), a box is supported by two side edges ofcomers. The
normal reaction at the contacts is perpendicular to the surfaces
of the sides of box. If box rotates along the sides, the normal
reactions remains perpendicular to these surfaces.

N
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2.5.3 Concept of a Weighing Machine j
I

I

When anybodyisplaced ontheplatform ofaweighing machine,
a normal reaction exist between the body and the weighing
machine. Aweighing machine iscalibrated tomeasure thenormal
reaction acting on the platform of the machine by the body
placed over it inunits of^kilogram force (kgf). 1kgfisthe weight
of 1kgbodyonearthsurface which is equal to9.8N. If thebody
is at rest the forces acting on it are balanced so the upjward
normal reaction onbody is balancing its weight so machinewill
measure the weight of the body in kgf. j

If a weighing machine is placed in an elevator whiih is
accelerating upward then in FBD of the body placed over it
there will be two forces - its weight in downward directio^ and
normal reaction in upward direction. As the body is^ also
accelerating upward we can say that normal reaction is more
than its weight so weighing machine will measure a reiding
which is more than the actual weight ofbody. Similarly we can
show that if elevator is accelerating down then the reading of
weighing machine will be less than the weight of the body.

2.5.4 Tension in a String

It is an iiiter molecular force between the atoms of a suing,
which acts or reacts when the string is stretched There are
someimportant pointsto remember aboutthetensionina string,
which are helpful in drawingfree body diagramofthe bodies in
a system. These are

(i) Force of tension act on abody in the direction awayjfrom
the point of contact or tied ends of the string. For example
consider figure-2.9. Aman pulls a box witha string.The tension

away

. The

in string acts on the box towardsright or in the direction
fromthe tiedpoint and on theman it is againawayfrom i
way of showing the direction of tension is shown in figure.

t-'
W77777.:y777777)V777777777777777777777777777>

Figure 2.9

(ii) If String is massless and fiictionless, tension throughout
the string remains constant as shown in figure-2.10(a). But if

the string is massless and not fiictionless, at every contact in
the length of the string tension changes and if it is not|light,
tension at each point will be different depending op the
acceleration of tlie string.

For example, consider the situation shown in figure-2.10(a). A
box is tied to another mass with a string going over a pulley. If
string ismassless and there isno friction between the confact of
string and pulley surface, tension throughout the string remains
same as T and as there is no fnction between pulley and string,

Forces and;Newton's, Layvs of l/IOtiohJ

string will notbeable torotate thepulley anditwill slide onthe
surface of pulley.

t:

7777777777777777777/,

Iand frictionless /
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Massless string ^Massless

and fri

string

(a)

but there is friction 7/
between string
and pulley

•
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•I y'There is friction ^
('between string ^
, andpulley andstring ^
'used is not light ' y

7 ,

(c)

Figure 2.10

(b)

"•

•

But if there is fnction between surface of pulley and the string,
due to friction, pulley will rotate on its axis as the string slides
on it. In this case due to friction between pulley and the string,
tensions in string on two sides ofthe pulley will be different as
shownin figure-2.10(b). If stringhas a mass,it will accelerate
and tension at each point will be different on the string as
shown in figure-2.10(c). How this tension can be obtained, we
will explain in further sections.

/

(ili) If a force is directly applied on a string, as say a child is
pulling a tied string from the other end with some force, the
tension inthestringwillbeequal totheapplied force, irrespective
ofthemotionofthepullingagent. Infigure-2.9, themanisapplying
a forceF on string,thus thetensionin stringwill be equal to this
force,irrespective ofwhether theboxwillmoveornot,manwill
move or not.

Above three points are very useful in application of Newton's
laws to different situations. For better understanding of the
above points, we consider a situation shown in figure-2.11
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Figure 2.11
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{Forces and Newton's Laws of Motion

The block; C is movingdown due to the force of gravity on it
and due to the tension in the string, blocks A and B are also
pulled towards right. Here we assume that the strings used are"
massless and frictionless, thusin a string tension willnot change.
Let us regard tension in die string between^ and B as and in
the other string as T2. Aswehave discussed thatthe direction of
the tension on a body is alwaysawayfrom the point of contact
or tiedends, therespective directions areshowninfigure. String
is passing over the pulley, thus at the contacts of pulley it
experiences two one towards left and other downwards.

The respective free body diagrams for the blocks/4, B and C are
also shown in the figure, which represent the forces acting on
the blocks, independent of the others.

We take one more example for the similar situation, shown in
figure-2.12. The respective free body diagrams are also shown.
Here the importantthingis, in the freebody diagram of bigger
block. M Two tensions Tj are shown, one towards left and
other downward.Actually these forces are acting on the pulley
P attached to the block M at its upper right comer. As pulley P
is rigidly attached to it, all forces on pulley can be considered
as acting on the block M.

N,

A 7; !2 T, T,

M Ni

-77777777777777777777/.

N,

V777777777777777777/.

Free BodyDiagrams of MassesM,nty '"2 '"1

N, w, r,

•r, r.

Mg + 7", + //j -^3 "hS m^g "hS

Figure 2.12

Another important thing to be noted for ftirther use is the tension

in the second string, the man is holding. This tension is
equal to the force applied by the man holding it. .

2.5.5 Application ofForces in Newton's Second Law

If some forces are acting on a body, then the resultant ofall the
forces F is equal to the product of mass of the body and the
acceleration produced in it. Thus -

F =m a ...(2.4)
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If a body isat rest, knownas state of equilibrium, we sayresultant
of all the forces acting on it are equal to zero. Thus

F=0 ...(2.5)

For solvinga givenproblemonNewton'sLaws,firstlythe forces
acting on each of the bodies of the system given are analyzed
and then free body diagram of each body is drawn
independently.

In each free body diagram all the forces are generally resolved
in two mutually perpendicular directions, one ofwhich must be
along the relative motion ofthe body on its reference surface. If
body is in equilibrium, then the resolving direction must be in
the direction of tendency of motion of the body. The direction
in which the body is moving we apply equation-(2.4) and for
the direction normal to it, in which there is no motion of the

body we use equation-(2.5).

For better understanding of above concept, we take some
examples.

# Illustrative Example 2.1

Find the acceleration of masses /«, and connected by an
inextensible string, shown in figure-2.13(a). The string and
pulley are assumed to be massless and frictionless.

Solution

Figure 2.13

Respective free body diagrams are shown in figure-2.13(b).

Here we assume that the mass /W2 is going down the incline
plane with an acceleration a, hence mass Wj will go up the



86

incline with the same acceleration as they are connected by an
inextensible string.

Here we resolve forces in free body diagrams along the incline

and normal to it, as we have discussed that one ofthe direction
ofresolution must be along the motion ofthe body.The dynamic
equation for motion of the masses Wj and Wj ^regiven below.

and

Forces and Newton's Laws of Motion

T=
(2WiW2)g

W] + ^2
...(2.11)

Above two results are very useful as intermediate results in
several problems. . , •

Now we take anotherexarnpleof a modifiedAtwood'smachine,
with a movable pulley.

Formass m2 inthe direction of motion

m^g sinp - T=

Normal to the direction ofmotion

= m^g cosp

Formass w, inthe direction of motion

T—m^g sina = w,n'

Normal to the direction ofmotion
(

A^i = Wjg cosa

Adding equations-(2.6) and (2.8), we get

m^g sinP -m^g sina = (w2 + /«j)i?

W2sinp-Wi'sina

(2.6) ^ Illustrative Example 2.2

or a =

W2 + Wj
S

...(2.7)

...(2.8)

...(2.9)

Atwood's Machine: It is a simple pulley supporting two

masses connected with a string as shown in flgure-2.14. There

can be several variations in it by increasing number of pulleys

and adding more masses to it, we'll discuss more cases further.
Here let wetake > Wj, henceW2 will godownand Wj will go
up with the same acceleration.

V//////,

%

hS

0 0 i"

Figure 2.14

The dynamic equations for massesWj and ^2 are

Wjg-T— ^2^

T-m^g = m^a

Solving we get
W2 -W]

a= ^ g
mj + W2

...(2.10)

A situation is shown in figure-2.15. Find the acceleration of
masses and mass of pulley .is m^. Consider the string
going over the pulley is massless and frictionless.

Solution

V///////////,

rF,pulley 1
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pulley 2
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Figure 2.15
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In such type of cases, when at least one pulley is moving, first

we find the relation in the acceleration ofthe masses, which are

moving. As in this casemass w, is attached to one endof the
string in which tension is T, which is also going over both the

pulley's but only pulley 2 is moving, to which mass is
attached. Let ^2 is going down with an acceleration a, this
implies that second pulley is also moving downward with the

acceleration a. Here we observe, as the second pulley moves

down say by a distance x, string on both sides of this pulley

has to extend by x, thus by a distance 2x, and for its mass Wj
has to move up by a distance 2x in the same duration. As in the

same duration Wj travels a distance double that the mass
travels, it impliesthat the acceleration of Wj is double that of
mass Wj. The directions of accelerations of each body and the
pulley are shown in'figure-2.15.

The dynamic equation of each object is

Motion equation for mass is

T-m,g=m,{la) ...(2.12)
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Motion equation for mass is

m^g - r, -m2a

Motion equation for pulley is

r,+ —2T=m a

...(2.13)

...(2.14)

Multiplying equation-(2.12) by 2 and adding with equation-
(2.13)and(2.14)

m^g + - 2mjg= (4wj +Wp +m^a

or
7W2 + Wp - 2m,

a — g
4mi + Wp + W2

In above case if pulleys are considered as massless, we have
Wp = 0, thus directly from equation-(2.14), it gives = 2rand
the acceleration a can be given as

# Illustrative Example 2.3

/«2 ~ 2^2
^ g4^2 + W2

Find the acceleration ofmasses .W2 W2, moving down the
smooth incline plane. The string and the pulley are massless
and fiictionless.

Solution

As discussed in previous problem, by observation we can say
thatifacceleration of Wj down theplane isa, then acceleration
ofW2, verticallyupwillbe2a.Asit isalsogiven thatpulleys are
massless, the tension in second string can be taken as 2T, ifTis
the tension in the first string, shown in figure-2.16.

Here we can directly write the dynamic equations of motion of
the two masses Wj and as

V777777777777777777777777777777777777777//

FSD o/wi

Figure 2.16
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Motion equation for mass mj is

m^gsma-2T=m^a

Motion equation for mass is

T-m2g =m2(2a)

87

...(2.15)

.:.(2.16)

Multiplying equation-(2.16) by2 andadding toequation-(2.15),
we get

Wf sina - 2w2

/«] +4^2.
a =

# Illustrative Example 2.4

A toytruckofmassMis moving towards leftwithanacceleration
asshown infigure-2.17. Itis connected toa mass m^ with a

massless and fiictionless string,going over a movablemassless
pulley, to which another mass Wj is connected. Find the force
actingonthe truck towardsright and theaccelerationsof masses

////////////////////////

Figure 2.17

Solution

Useful forces actingon the bodiesare shownin the diagramin
figure-2.18. The direction of accelerations initially we have
assumed are also shown.As we have explained earlierthat if a
movablepulleyis present, firstwe arerequiredto findtherelation
in accelerations of the bodies. Here it is given that truck is
moving towards left with acceleration a^, for and we
assume that they are moving down and up with acceleration a^
and respectively.

////////////////////////

\
Figure 2.18

Let we consider if mass moves up by a distance pulley
attached to it will also move up by x^, which will result a
slackness of2^2 inthestring attached to truck andwj. If inthe
same duration truckmoves byXj andmass m.^ moves down by
Xj, we have X2 + X3 = 2x2. Same relation we have among the
acceleration of the respective bodies as

fli + a-^ - ...(2.17)
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According to the forces shown in figure-2.18 and the force of
gravity, wecanwritethedynamic equations of thethreebodies
as

For Truck F-T=Ma^

For mass Wj

For mass/«2 TT-m^ = m^^

Subtractingequation-(2.18) from(2.19), we get

m^a^ - Ma^=^m^g-F

or

Wig-P'+ Ma^
a-, =

w,

...(2.18)

...(2.19)

...(2.20)

...(2.21)

O] m,g—F+MaAFromequation-(2.17) 2m .••(222)

Adding the above.equations-(2.18), (2.19) and (2.20), we get

F+tn^g-m2g-Ma^+m^a^ + m2a2

or F = - Wjg + Ma^ + m^a.^ + W2<32

Where given by the equation-(2.21) and (2.22)

# Illustrative Example 2.5

Findtheacceleration of thebodyofmass ^2 inthearrangement
shown infigure-2.19, ifthemass W2 isrj times great asthemass
mj and the angle that the inclined plane forms with the horizontal
is equal to 0. The masses ofthe pulleys and threads, as well as
the friction, are assumed to be negligible.

Figure 2.19

Solution

Here the small pulley is movable and by observation we can say

thattheacceleration ofmjis double thatofmj.Soweassume if
mj is moving up the inclined planewithan acceleration a, the
acceleration of mass m2 going down is la. The free body
diagrams ofWj andmj areshown in figure-2.20.

Forces'^and^Newton'Si Law® of 'Motion

Figure 2.20

I

The dynamic equations can be written as

Formass m^, IT-m^g sin0 =

Formass mj, m2g-T=m^d)

...(223)

...(2.24)

Multiplying equati6n-(2.24) by 2 andadding to equation-(2.23)

2m2g -m^g sinO =(w j+4m2)a

2m2g-WigsinO
a =

nil ^^2

2g[2r\-sin0]

4ii + l
[As W2 = T1Wj]

# Illustrative Example 2.6

In the arrangement shown in figure-2.21,the mass
of ball is rj times as great as that of the rod the
length ofthe rod is /. The masses of the pulleys
and the threads, as well as the friction, are
negligible. The ball is set on the same level as
the lower end ofthe rod and then released. How

soon will the ball be opposite the upper end of
the rod.

Solution

Figure 2.21

As usual here we can observe that the acceleration ofthe rod is

double than that ofthe acceleration ofthe ball, as it is supported

by a movable pulley. If ball is going up with an acceleration a,
rod will be coming down with the acceleration 2a, thus the
relative acceleration of the ball with respect to rod is 3a in
upward direction. If it takes time t seconds to reach the upper
end of the rod, we'have

PTF
...(225)

Let mass ofball bem and that ofrod is M, the dynamic equations

of these are

For rod Mg-T=M{2a) ...(2.26)
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Forball 2T~mg = ma ... (2.27) (iii) The masses ofblocks .<4 and 5 in figure-2.24 are 20 kg and

10 kg, respectively. The blocks are initially at rest on the floor
Multiplying equation-(2.26) by 2 and adding to equation-(2.27) and are connected by a massless string passing over a massless

and firictionless pulley. An upward force F is applied to the
pulley. Find the acceleration and ofthe two blocks A and

B whenFis (a) 124 N (b) 294 N (c) 424 N.

F
or

or

2 Mg -mg = (4M+ m)a

2Mg-mg
a =

4M+m

r| + 4

From equation-(2.25), we have

t =
2/(Ti-f4)

3g(2-q)

[As m = r\M\
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Practice Exercise 2.1

(!) Find the tensions in the two cords and the accelerations of
the blocks in figure-2.22 iffriction is negligible. The pulleys are
massless and frictionless, = 200 gm, ^2 = 500 gm and

=400gm. Take g = 10m/s^.

B-
"ZVTT/TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTZ.

Figure 2.22

[0.94 N, 3.06 N,'4.7 m/s^ 2.35 m/s^, 2.35 m/s^]

(11) Two blocks with masses wj=3kgandWj=4kgaretouching
each other on a frictionless table, as shown in figure-2.23. Ifthe
force shown acting onWj is 5 N (a)Whatis theacceleration of
the two blocks and (b) How hard does push against ?

[0.714 m/s2, 2.85 N]

V77^77777777777Z^y

Figure 2.23

rh

20 kg 10 kg

VTTTTTTTTTTTTTT?

Figure 2.24

[(a) 0,0 (b);0, 4.7 m/s2,'(c) 0-.6 m/s^, 11.2 m/s^]

(Iv) The three blocks in figure-2.25 are released from rest and
accelerateat therate of5m/s^. IfA/= 4 kg, whatis themagnitude
of the frictional force oh the block that slides horizontally ?

'

2M

M
12 M

Figure 2.25

[140 N]

(v) Find the acceleration ofthe blockA and B shown in figure-
2.26 (a) and (b)

2 kg
V////////////y

5 kg

(a)

500;

////////////////////////z

(b)

Figure 2.26

[(a) lOg/13 forward, 5g/13 downward, (b) 8g/13 do^ward]
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(vi) A block ofmass Mis pulled along a horizontal fiictionless

surface by a rope ofmass m, as shown in figure-2.27.Ahorizontal
force F is applied to one end of the rope, (a) Find the force the
rope exerts on the block, and (b) the tension in the rope at its
midpoint. . . -

M
m

F

777777777777777777777777,

, MF

M+m' M+m

Figure 2.27

(vii) Two masses m and 2 w are connected by a mass less string
which passes over a light frictionlesspulley shown in figure-2.28.
The masses are initially held with equal lengths of the strings
on either side of the pulley. Find the velocity of the masses at
the instant the lighter mass moves up a distance of 6.54 mts.
This string is suddenly cut at that instant. Calculate the time
takenby eachmass to reachthe ground.Takeg = 9.8 nVs^.

m. |2w|
13.08 m

^7777777777777777.

Figure 2.28

[3.27 m/s^, 2.78 sec, 2/3 sec]

(viil) A block A of mass M on an inclined surface and a small
weight B ofmass m is attached to a string as shown in figure-
2.29. Determine the acceleration of block.(4 and 5 after system is
released from rest.

V777777777777777777777777:^.

Figure 2.29

. {M + m)svi\d-m cos^ {M + m)sia.6-m cosg
A/-f-2m M + 2m

,Forces and .Newton's, taws^ of Motion,

2,6 Static Equilibrium

An important part ofphysics has to do with objects and systems
that are at rest and remain at rest, which is known as static

equilibrium. In this section we discover that two basic
conditions must be satisfied if an object it to remain at rest.
Also we'll discuss how to use these conditions to different

situations.

Figure 2.30

To start with static equilibrium consider figure-2.30, an object
supported by a hand. We all know why the object does not fall,
butwe'llfirstexarhine thissimple situation indetailso thatwe
may easily understand more complicated situations.

What are the forces acting on the object ? We know that if we
release, it will fall. This shows that a force is puling downward
on it, the force ofgravity. To support the object, the hand must
push it upward. Let the upward push is P. As the object is a
motionless, means the weight ofthe object Mgznd the upward
push P are equal in magnitude. In other words, the vertical
forces acting on the object must balance ifequilibrium is to be
achieved.. • • . ^

In theanalysis of objectsat equilibrium, it is helpfulto sketcha
free body diagram, and balancing all the forces acting on the
body in two perpendicular directions, in which the forces are
resolved. This is the first condition of equilibrium, stated as-
"Thevector sum ofall theforces acting on a body is equal to
zero." " .

We take few examples to explain the concept of static
equilibrium.

# Illustrative Example 2.7

The object in figure-2.31 weighs 40 kg and hangs at rest. Find
the tensions in the three cords that hold it.

y//////////////////.^/.

40 kg

Figure 2.31

•J'/
37^ /\5r

T,
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Solution

Because the object is at equilibrium, the vector sum ofthe forces

acting directly on it must be zero. There are only two such
forces, Ae tension in the lower cord and the pull of gravity,
400 N. Therefore, the tension in the lower cord must be 400 N. It

is the tension that supports the object.

Figure-2.31 shows the junction where'the three cords meet. As
the system is in equilibrium, net sum of all the forces at the

junction must be zero. For this we resolve the tensions in

horizontal and perpendicular direction as

In horizontal direction

0.67-2-0.8 rj=o

In vertical direction

0.6 7-1 + 0.8 7-2-400= 0

On solving the above equations we get

7-1= 240N and 7-3 = 320N

...(2.28)

...(2.29)

and the tension in third cord we already have

7-2= 400N.

a Illustrative Example 2.8 '

A cubical block is experiencing three forces as shown in figure-

2.32. Find the friction force acti;ig on the block if it is at rest.

Given that = 30"N; = 50 N and = 42 N.

Figure 2.32

Solution

As shown in figure force F^ is having three components, one

F }
alo'ng'vertical other along-force ^d one

againstF3 . Here thenethorizontal force acting onthe

block is given by

91

or =7(50 +15)^ +(42-15)^ =70.384N.

As it is given that block is in static equilibrium, thus sum ofall
horizontal forces acting on it is must be zero. Sum of given
external horizontal forces is 70.384 N and is in a direction

0=tan"^ (65/67) from the direction offorce Fy We can state that
friction force acting on block must be exactly opposing this
force so as to keep the block in static equilibrium.

a Illustrative Example 2.9 . .

A chain ofmass m is attached at two points A and B oftwo fixed

walls as shown in figure-2.33. Due to its weight a sag is there in
the chain such that at point A and B it makes an angle 0 with the

normal to the wall. Find the tension in the chain at: (Assume
tension is always along the length of chain)

(a) Point A and B

(b) Mid point of the chain

Figure 2.33

Solution

(a) Let the tension in the chain at point.4 and B is T, so at these
point cham will pull,the wall hinges with the same forcennd
wall hinges will also exert same force on chain in tangential
direction as shown in figure-2.34.

T sin 0 T sin 6

TcosS

Figure 2.34

Now for vertical equilibrium ofchain we have

or

2Tsin0 =mg

1
T=—mg cosec0

T cos 6

(b) Let tensionat themidpoint of chainis 7-g. It mustbe along
horizontal direction as at mid point slope is zero. For horizontal
equilibrium ofchainwe can state that at every point horizontal
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component of the-tension in the chain must be equal as no
other external force is acting on it in horizontal direction. Thus
we have

Tq = Tcos8

or = -mgcotQ

# Illustrative Example 2.10

Figure-2.35 shows a cylinder .<4 of mass Mwhich is resting on
two smooth edges, one fixed and other is that ofa block of5. At
an instant block B is pulled toward left with a constant speed v.
Find the force exerted by the cylinder on the fixed edge after

some time when the distance between the two edges will become

X-^R. At r=0the distance between the two edges was zero.

y7777777777777/.

V77777777777777777777777777777P7/,

Figure 2.35

Solution

Analysis ofthe situation is shown in figure-2.36. Ifwe consider
the distance ofblock B from the fixed edge is x at an instant we

have

dx

71
v =

y//////////////

V7777777Z77777777777ZV7777777?^,

r
Figure 2.36

We can see from figure that the centre of cylinder is at a
distance x/2 from the fixed edge, thus its horizontal velocity is
always v/2 and remains constant. As in horizontal direction

Forces and Newton's l^ws of Mbtipn;

there is no acceleration we can state that the two normal forces

acting on the cylinder due to two edges remains same in
magnitudeas there is no horizontal net force on it. For vertical
motion ofthe cylinder we can write.

4

differentiating with respect to time

or

or

X dx dy ^
- — +2y — =0
2 dt ^ dt

— v-2yv =0
2

X

r ^ ^
dt

Differentiating again with respect to time

X cfy V dx
4y^ dt 4^ dt •

For cylinder equation ofmotion in vertical direction is

Mg - 2N COS0 = Ma [As Ni=N2 = N]

R
Whenx =V2i?,wehaveS = 45° andj=we have

XV V 2 (V2fl)v f V
2 24/:-'

72

272R 272R 72R

Thus we have Mg - Tl N=
72R

or N=
Mg Mv^
V2 " 2/?

A.
A

2.6.1 Torque

An object may not remain at rest even if the first condition of

equilibrium is satisfied. There is a second condition that must

be satisfied if an object is to be in static equilibrium. It is
easy to show this by referring to figure-2.37(a). We see there



IForces\arly^ewtoh'S:Laws of Motion

a meter stick supported by a table top. The stick is at
equilibrium in a part a because the pull of gravity on it is
balanced by the upward push ofthe table and we have XF = 0.

(a)

Figure 2.37

Now consider what happens when you push near its two

ends with equal but oppositely directed forces Fi and - Fi
as shown in figure-2.37(b), the meter stick does not remain at

rest. Even though Fi balances -Fi "and therefore the

condition XF = 0 is satisfied, Ae stick begins to rotate. There
must be another condition, one involving rotation, that must

be satisfied if the object is to be in equilibrium. We will discuss
second condition for equilibrium in the next section. First,
however, we must discuss how forces cause rotation.

Figure 2.38

To leam how forces and rotations are related, we can perform

the experiment shown in figure-2.38. We see there a wheel that
consists oftwo disks cemented together. It is free to rotate on a

^931

stationary axle that we call the axis, or pivot, of rotation. By
hanging objects from the two cords, we can determine the

turning effect of a force. The force Fj tries to turn the wheel
clockwise, while Fj tries to turn the wheel counterclockwise.
By experimenting with different radii and for the two disks,
we find that the two turningeffectsbalance whenever '

The above relation, product offorce and the radii, is known as

torque. Torque is the physical quantity which measures the

turning effect of a force on a body. Its magnitude is given by
the product of the force and the perpendicular distance from

the axis of rotation or pivot. In above case it is simply the
product of force and the radii.

We can leam more about tuming effects from figure-2.39. A

meterstickpivoted at its center is subjected to two forces Fj
andFj as shown. Fj is actingin a directionperpendicularto the
rod, to theleftofpivotandFj is acting at an angle 0 to therod,
to theright of thepivot. Theforce F, hasa tendency ofrotating
the rod in clockwise direction and Fj will tend it to rotate in
anticlockwise direction.

Figure 2.39

Heretorqueprovided by forces Fj.is

Ti=FiXri

and torque provided by force F- is

Tj = Fj XTj sin0

Tj and Xj are the tuming effects of the forcesFj and Fj on the
rod. The rod will rotate in the direction ofthe torque whichever
is higher.

One important point should be noted that "When the line of

force goes through the pivot, or axis of rotation, the torque

due to the force xibout the pivot is zero."

Now we know how to express the tuming effect of a force in

terms of torque, we can state the second condition for static
equilibrium. Experiments show that, for an object to remain
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motionless, tKe clockwise torquesactingon it mustbebalanced
by the counterclockwise torques or for an object to be in
equilibrium, thesumofall thetorques acting onitmust bezeroJ

# Illustrative Example 2.11-
/ •

In figure-2.40(a), weseea beamof length Z, pivoted at oneend
andsupporting a200kgobject at the other end. Findthetension
Tin the supportingcable that runs upwardto theceiling.Assume
that the weight ofthebeam isnegligible. Take g = 10 m/s^ •

Solution

200 kg 200 kg

(a) . (b)

Figure 2.40

The lower cord supports the 200 kg object, thus the tension in
it is 2000 N. First we isolate the beam as the object for discussion.
Its free body diagramis shownin figure-2.40(b). Be careful.that
here we are not drawing the free body diagram by taking the
object as a point. Here we also don't know about the force
which the hinge exerts on the beam, we represent this force in a
general way by giving itsx andy components, asZZand V. Now
we apply the two conditions ofequilibrium on it.

The translational equilibriumof beam,wewrite forceequations :

7-801(30")=// ...(2.30)

7-cos(30")+F=2000 ...(2.31)

The rotational equilibrium ofbeam, we write torque equations
about the pivot P. In case of hinged objects, it is convenient to
choose the hinged point as axis ofrotation. In next section we
we'll discuss that we have a wider choice. As we consider the
axis ofrotation at P, the forces H and Fhave zero torque about
P as the lines ofHand Fpasses through P, hence perpendicular
distance of/fand KfromFis zero.

We find torque due to Tby its components. The component Fsin
(30°) again passes through the point P, so its torque is equal to
zero, but due to Tcos (30°), it is in anticlockwise direction. Due to
weight of the hanging mass, the torque at P is in clockwise
direction, thus for equilibrium, we have

Fcos (30°) xZ, = Mgxi:

or

Forces and' Ne^on's _hawsi of

2000 i
T=

100 cm

cos(30®)

=23101vl

Ifwe wish to find the forceexertedby the hinge on the rod from
equations-(2.30) & (2.31),we have

' //=1155N and F=0

# IllustrativeExample 2.12

Fortheuniform5 kgbeamshown infigure-2.41(a), howlargeis
the tension in the supporting cable and what are the
components of the force exerted by the hinge on the beam ?
Takeg=10m/s^.

40 cm

(a)

ICON

Figure 2.41

Solution

We first isolate the beam and draw the free body diagram
shown in figure-2.41(b). Notice that the weight of the beam,

50 N, is taken as acting at the beam's centre ofmass. Fmther
we have replaced;the tension in the cable by its components,
as the application oftorque is simpler with components. Here
we can eliminate the torques of force components at the
wall, H and V, by taking point P as pivot. We have

Et=0 => • 7-2S'^(3O^1-0-50x0.7-100x1.4 =0

E/;-0 => ' //-r2cos(37°)=0

2P^ =0 => F+r2S"i(37°)^50-100 =0
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On solving the equations weget ' '

r2=291.66N; ^=233.33N and K--25N

Here Vcomes with a negative sign, it implies thatthedirection
ofvertical force from hinge on beam shown in figiire-2.41(b) is
opposite tothattheactual one, it isacting indownward direction
on the beam.

# Illustrative Example 2.13

The uniform 20 kg ladder hinged atthe bottom infigure-2.42(a),
leans against a smooth wall. If a 40 kg person stands on the
ladder shown, how large are the forces at the wall the ground.
Takeg= lOm/s^.

Solution

W77777777777777777777Z^.

(a)

^ P. /A
j y \ y^yy

X/

y yyy/
^ ////

\ yyy/

2 m

X/

xy y
y

'

400 N

m •200 N

4I^^53° H
? ? J ?

(b)

• Figure 2.42

Considerfigure-2.42(b), all the forcesactingon the ladder are
shown. For horizontalandverticalequilibrium, weuse

In;c-dir H-P = Q

Inj'-dir V- 200 ~ 400 = 0

On solving we get V= 600 N

For rotational equilibrium about points, we have E x= 0, which

Solution

VTTATTTTTTTTTTTTTTTTT^.

Figure 2.43

can be given as . .

P(6)(0.8) -200(3X0.6) - 400(4)(0.6)=0

On solving it gives P=H=275 N..

Illustrative Example 2.14

Calculate the force P required to cause the block of weight
=200 Njust toslide under the block ofweight Ifj= 100 N

shown in figure-2.43. What is thetension in thestring AB and
the normal forces acting'between the blocks and that applied
by ground on ? Surifaces ofthe blocks in contact are rough
and the fnctional force between the two blocks is 25 N and that

between lower blockandground is 75N. Take g = 10m/s^.

Free body diagrams ofthe blocks and ITj are shown in figure-
2.44. When just slides, we can state that the system is in
limiting equilibrium and forces are just balanced to slide. For
equilibrium ofblocks we have for block .

and

and for block

^=/i+/2 = 100N

N^ = W^+N^

T

^2 +^

and

r=25V2N

' -

Ni y
p 1 /i+/2 A

W,

FBDotW^, FBDoiWy

Figure 2.44
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from above equations we get

A^2 = 75N

and A^,=275N

(ii) In figure-2.47 the tension in the diagonal string is 60 N.
Find the magnitudes of the horizontal forces and the
must be applied to hold the system in the position shown in
figure-2.48. What,is the weight ofthe suspended block.

# Illustrative Example 2.15

Figure-2.45 shows a platform on which a man of mass M is
standing and holding a string passing over a system of ideal
pulleys. Another mass mis hanging as shown in figure. Find
the force man has to exert to maintaintheequilibriumof system.
Also fmd the force exerted by platform on man.

f
Figure 2.45

Solution

If tension in siringwhich themanis holding is F, thetension in
the string to which the mass m is cormected is r/4 which must
balance m%. Thus we have

r= 4 mg = force exerted by man on string

Iftheforce, which platform isexerting onmanisN, forequilibrium
ofman we must have

A+T=Mg

or . A'=M^-4mg

Practice Exercise 2.2

(i) Threeequalmasses aresuspended from fiictionless pulleys
asshown infigure-2.46. Iftheweight^2infigure is400 N,what
mustbe the values of the weights w, and w^.

^////////////////////.

Figure 2.46

[240 N, 320 N]

y/z//////////////////

f2"

Figure 2.47

[42.4 N each, 42.4 N]

(iii) Aim rod ofniass 100 kg ishanging from two inextensible
support strings at its ends ofequal lengths. Ifananother mass
of20kgisplaced'onrod ata distance 30cmfrom the left end,
find the tension in the two support strings, if rod remains
.horizontal. Take g = 10 m/s^

[560 N, 640 N]

(iv) Find the tension ineach cord infigure-2.48, ifthe weight of
the suspendedblock is w.

y////////////////////. /////////////////////A

[(a)

(a)

Iw >/6k

Figure 2.48

2w •JSw ,
;(b)

1+n/3'i +^ S-l'yli-l

(b)

(v) A horizontal'uniform boomthatweighs 200N and is 5 m
long supports a load of1000 N,asshown infigure-2.49. Find all
the forces acting on the boom.

Figure 2.49

[r= 1833.33 N,H= 1466.67 N, F= 100 N]
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(vi) A step pulley system is shown in' figiire-2.50. Find the
relation in masses m and M for which the system remain in
equilibrium. Assume string will not slide over the pulleys.

i n
Vn

V//////,

m . 8

'////////////////. V//////A

Z777777.

, Figure 2.50

(vii) A nut cracker is used to crack a nut. In it hut is held in two
arms at a distance 2 cm from the hinge and the handle of it is at
a distance 25 cm" from hinge.The force required to crack a walnut
is 30 N. What is the minimum force'required to crack it with the
nutcracker. . . .

[2.4 N]

2.7 Pseudo Force

In previous sections we've discussed about external and internal
forces. Pseudo force is always treated as an external force for a
system. Before understanding the concept of a pseudo force,
we have to make our concepts deaf about reference frames as
pseudo force is a frame dependent quantity. In general reference
frames are classified in two broad categories - Inertial and Non-
inertial reference frames.

2.7.1 Inertial and Non-inertial Reference Frames

Inertial frames are those which do not have any acceleration,
that is either the frame at rest or it is moving with a uniform
speed. In such frameswe can directly applyNewton's laws and
generate dynamic equations ofthe objects present in the frame.

The cases and examples we have taken are all in the inertial
reference frame.

Non-inertial frames are accelerated reference frames and

Newton's laws are not direcfiy applicable in such frames, before
application ofNewton's laws, some modifications are required
to solve a problem, if such frames are present.

97?

2.7.2 Requirement of Pseudo Force

Consider the situation shown in figure-2.51. A block of mass
10 kg is placed on a smooth table resting on ground.A child is.
standing on the table and there is sufficient friction present
betweentable andfhe shoesof child so that childwill not slip.

10 kg
5 m/s^

Figure 2.51

If we push the table with some acceleration, say 5 m/s^. The
child will not slip on the table but there is no friction between

block and the table, so block remains at rest and table will slide

under the block.

Ifchild observes the block, it appears to him that block is going
backward with the same acceleration 5 m/s^ in backward

direction, because table is at rest with respect to the child. (As
earth is moving but it appears to be at rest with respect to us).
Here child, observes that a 10 kg mass is moving with an

acceleration 5 m/s^ with respect to table and hence a force
10 X5 = 50 N is acting on the 10 kg block in backward direction.
This force is known as Pseudo Force. Actually there is no force
acting on the block, it only appears to be acting on it, if it is

observed from the table, the, nonTnertial frame. Due to this

force, whatever acceleration is produced in the block is also
with respect to the table only. But be careful in applying the
pseudo force on an object, take care of these points

# Apply a pseudo force on an object if and only if it is placed
on another object (non-inertial frame) accelerating with respect
to some inertial reference frame (i.e. earth).

# The direction of pseudo force must be opposite to the
direction ofacceleration ofthe nori-inertial frame.

i .1

# The magnitude ofpseudo force is the product ofmass of the
body and acceleration ofthe non-inertial frame.

Applying pseudo force is convenient to solve the problem as
after application ofa pseudo force on a body, all equations and
results associated with it become relative to the respective non-
inertialframe.Forbetter understanding, we take someexamples
for it.

# Illustrative Example 2.16

Figure-2.52 shows a box of mass m is placed on a wedge of
mass Mon a smooth surface. How much force F is required to
be applied on M so that during motion m remains at rest on its
surface.
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Solution

r77777ZV777777777777ZVZ^77777.

Figure 2.52

The force actingonthe bodies mand Mare shownin fignre-2.53
along with free body diagrams of mass m and M. As the two
bodies move together, we can find the acceleration of system
towards right directly as

777777777777,

m+ M

77777777777777777/.

mg

FBD ofm

Figure 2.53

a.

F.

n/^ Mg

FBD ofM

Here the condition is, the small block ofmass m should remain

at rest on the incline surface of the wedge block. Look at the
FBD ofw in figure-2.53, the force acting on it towards left ma is
the pseudo force on it as its reference frame is the wedge block.

As wedge block is moving with an acceleration, we consider m
relative to it. Now with respect to wedge block m is at rest or in
equilibrium, we canbalance all the forces along the tendency of
motion of body (i.e. inclined plane) and perpendicular to it
shown in FBD of it.

For m to be at rest, from FBD ofm, along the plane

mg sin0 = ma cos0

a = g tan0or

or

F

m+ M
- g tan0

or F'={m + M)g tan0

Forces and. NejMon'&jJawsjbf

# Illustrative Example 2.17 ^

Figure-2.54 shows a blockof mass m is placedon an inclined
wedge of mass M If the systemis released from rest find the
acceleration ofm and M

Solution

V777Z7777777777777777777.

Figure 2.54

Figiire-2.55shows the forces acting on the bodies and the free
body diagrams of M and m. Due to the normal reaction
actingon M, it movestowards left andm slidesdownward. As
Mslides in leftdirection, withanacceleration Oj, it becomes a
non-inertial reference frame for m and due to this in the free

body diagram of w, we have applieda pseudo force on it wcr,
toward right. Let we consider that m slides down with an
acceleration 02 relative tothewedge block. Now wewrite down
the dynamic equations for both the bodies.

V7777777777,777777777777777777?.

1

^2 Mg'

FBD ofM

•' FBD ofm

Figure 2.55

Motion equation for M with respect to earth

Along the plane

...(2.32)

Perpendicular to the plane

; N^ = Mg+ N2Co&^ ...(2.33)

Motion equation for m with respect to M

Along the plane

sin0 + wcr, COS0 = ...(2.34)

Perpendicular to the plane

N2 = mg COS0 - wflj sin0 ... (2.35)
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Fromequatioiis-(2.32) and (2.35) we have

Max
r-r ~ nig cos0 - ma, sin0

sin0 '

or a, =
7Kgcos0 • m^sin0cos6

sin0

..,(2.36)

Substituting thevalue of a, in equation-(2.34), we get

flj= g- sin0+
wg sin 9 cos 0 '

M + msin^ 0
...(2.37)

Equation-(2.36) gives the acceleration ofA/but equation-(2.37)
gives the acceleration of m with respect to M. The net
acceleration of m, is the vector addition of a^ anda2i as m is
alsomoving witha^ toward leftalongwithM.

Net acceleration ofm can be obtained by the vector sum shown
infigure-2.56.

.n-0 ' , Along the motion

Figure 2.56

a^=[oj +al~^^1^2 cos0]''̂

# Illustrative Example 2.18

Figure-2.57 shows a large block of mass M, supporting two
smallmassw, and W2, connectedbya light,-ftictionless thread.
A force F is acting on M, such that the block is sliding down,
withanacceleration a^. Findtheforce F applied onMand also
the acceleration of M Assuming all surfaces are ftictionless.

Solution

V77P7777777777777777777777777777,

Figure 2.57

Figure-2.58 shows the forces acting on bodies and free body
diagrams ofA/, Wj and^2. Nowwetaketheacceleration of the
massA/isa on floorandas isgivenforWj downward, W2 will
alsomove forward withOj, relative to M. Forsolvinig, wewrite
the dynamic equations for masses.

T T

•N2

M

iV, -

P.

.N,

V77777777777/. 7777777777777777777}

N, '

99:

+ r

W3 a

F mjfl
T N2 JL

T

Afj + r+Mg

FBD ofM FBD of FBD of/M2

Figure 2.58

Motion equations for mass M

F-N^-T=Ma

Normal to the motion

N^=N2+T+Mg

Motionequations for mass Wj

Along the motion

Normal to the motion

= WjCt

Motion equation for mass

Along the motion

T-m2a = m2a^

Normal to the motion

N2 = m2g

Adding equation-(2.40) and (2.42), we get

Wjg - m2a - (Wj + m,^a^

or

m\
a=—g.

^2

/ \

T-h^
V ^2/

...(2.38)

...(2.39)

, ...(2.40)

...(2.41)

...(2.42)

...(2.43)



Now adding equa1ion-(2.38),(2.42) and (2.43), we get

F-m^a - m^a = Ma + WjOj

or F=m^a +{M-^m^a + m2a^

Substituting the value of a in above expression we get

F=(Wj +M+ Wj)

(A/+Wi )wi
= w^g+

»h

m m

—g~a^ '-a^
m2 }VW2

{g-a^~{M+2m{)a^

# Illustrative Example 2.19

Find the weight shown by the weighing machine on which a

man of mass m is standing at rest relative to it as shown in
figure-2.59. Assume that the wedge ofmass Mis in free fall.

Solution

Weighing
Machine

v.

V77777777777777777777777777/

Figure 2.59

Ifthe wedge is in free fall, its accelerationmustbeg sin0. Here we
are required to find the weight shown by the weighing machine
i.e. the normal force acting between man and the weighing
machine. For it we solve the problem in the reference frame ofthe

wedge. The force acting on man in the reference ofwedge block

are shown in figure-2.60.

7777777777777777777777777777

Figure 2.60

With respect to wedge frame, man will experience a pseudo
force mg sin0 as shown opposite to the acceleration of the
wedge. Now for equilibrium ofman relative to wedge we have

N+mgsm^B^mg

or N=mg-mg sin^0 = mgcos^0

/ 'Forces and

# Illustrative Example 2.20

Inthefigure-2.61 abarof massmison thesmoothinclined face
of the wedgeof massM,the inclinationto thehorizontalbeing
0. The wedge is restingon a smoothhorizontalplane.Assuming
thepulleyto be smoothandthe stringis lightandinextensible.
Find the acceleration ofM, when Mand m are alwaysin contact.

Solution

7777777777777777777777777777777777//

Figure 2.61

Here it can be easily shown by constrained analysis that if
wedge move toward right by a distance x, the small bar will
travel equal distance x on the inclined plane of wedge. Thus
both the bodies will move with same acceleration, wedge
towards right on earth and bar downward along incline on
wedge. As bar is taken on wedge, a non inertial frame, a pseudo
force is applied on bar towards left as shown in its free body
diagram. Now we )rate down the motion equations ofw and M
according to forces shown in their in figure-2.62.

V///////////////////.

N.

W77777777777777//

_

T

Mg

FBD ofM

Figure 2.62

Motion equation for M

Along the plane

T+N^ sin0- Tcos0= Ma

FBD ofm

...(2.44)

Its vertical motion equations will not be used here as, no motion
ofit is in vertical direction.



Motion equation for m

Along the plane

ma COS0 + mg sin0 - T= ma

Normal to plane ^

N-^ + ma sin0= mgcos0

...(2.45)

...(2.46)

Substituting the value of and from equations (2.45) and
(2.46)in equation (2.44), weget

OTg"sin0
a =

M+2ot(1-cos0)

Alternative Treatment •

The problems of above category can also be solved in earth
frame (without using pseudo force) as follows but still it is
advisable to consider acceleration ofwedge in earth frame a^
and that ofbarrelative towedge a^. Now while drawing FBD,
be careful abouttheresolution of forces. Atthe timeof solving
problem in earth frame it is favourable to resolve force along
horizontal and vertical direction andto write the equations of
motioninhorizontal andvertical direction. Therespective FBDs
are shown in figure-2.63.

777777777/7777777777/. V7ZV7777777777777777/,

^2

T

Tj/^ e\.

Mg

FBD ofM

N,

a-a cos 6

asin ©I •fmg

FBD ofm

Figure 2.63

Equations of motionformassA/willremainsameas equation-
(2.44)

r+iV, sin0- T COS0 = Ma ...(2.47)

Motion equation for m are (now written in horizontal and vertical
direction relative to earth)

and

T COS0 - N sin0 - m{a - a cos0)

mg-T sin0 - N cos0 = ma sin0

I5i3H
...(2.48)

...(2.49)

Solving equations-(2.47), (2.48) and(2.49) wegetthe same result

wgsin0
a =•

M+2w(l-cos0)

NOTE : Be careful while solving theproblem in earthframe
that you should consider acceleration of mass relative to its

surface (accelerating) butwritethe equations in horizontal and
vertical directions relative to earth(ground).

# Illustrative Example 2,21

Figure-2.64 showsa block of massMsupportinga bar of mass
mthrougha pulleysystem. Ifsystemis releasedfromrest, find
theacceleration ofblock A/andthetension in the strings.

y7/777777777777777777/7777777777777?77777ZW777777,

Figure 2.64

Solution

Theforces acting onblockA/andbarm,^e shown infigure-2.65.
Herefirst wecaneasily develop theconstrained relation among
the acceleration of mass M and m..We can observe that if M
moves towards left with acceleration a, bar m will move down

on inclined surface ofA/with an acceleration 2a relative to it;

The free body diagrams of the masses are also shown in
figure-2.65.

2^/1
mg

U

'̂ ^7^7^^^^7^/)77777777777777777777h7777777,

N,

. U

Mg

Figure 2.65



The equationofmotion for Mis ' ' • •

27'+ rcos6-A''j sin0= Ma

The'equationsofmotion for ware •
(

wg sin0 -T- ma cos0 = 2wa

and mg cos0 + ma sin0

On solving above equations we get

2wgsm0,

M + w(5 + 4cos0)

mgsin 0(M + w + 2w cos 0)
M + w(5 + 4c6s0)

a =

and r=

NOTE: Similar toprevious problem, youcansolvethisproblem
also in ground frame. Try yourself. !
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Topic - Forces and Newton's Laws ofMotion - '
Module Numbers -17,18, 19,20,21. and 22

Practice Exercise 2.3

(i) Find the rhass Mofthe hariging block shown infi^e-2.66;
which will prevent the smaller block from slipping over'tHe
triangul^ block. Allthesurfaces arefrictionless andthestrings
andthe pulleys are light. ' '' -

7:^7777777777:^7777777777777/

i
Figure 2.66

[(M+ m)/(cote - 1)]

(ii) Two cubes of masses Wj and m^ lie on two frictionless
slopes ofthe block/f which rests on horizontal table. The cubes
are connected by a string, which passes over a pulley as shown

in the figure-2.67. To what horizontal acceleration "f the block
accelerates so that the cubes do not slide down the planes ?

What is the tension in the string in this situation ?

Forces' and Newton's Laws ^ Motidri

•//A///////////////////////)//////'
Figure 2.67 •

W) sina +CT2siPp I • ^ mim2gsm(a-p)
^ '̂.7«iCosa +m2c6spJ ' miCosa +m2CosP

(ill) In the arrangement showninfigure-2.68 themasses of the
wedgeM andthebodyw are known. Thereis no frictionat any
of thesurfaces. The' massof thepulleysandthreadis negligible.
Find the acceleration of the.body m relative to the horizontal
surface on which the wedge slides. . .

77^77777777777777777^7777777^^77^7,
Figure 2.68

mg

A/ + 2/M

(iv) A bodywitha massmslidesalongthesurfaceofa trihedral
prismofmass M,whose upperplane is inclined atan angle a to
the horizontal. The'prism rests on a horizontal plane having a
vertical ledge at the rear edge of the prism to keep it at rest as
shown in figure-2.69. Find the force exerted by the base of the
prismon the plane ? Also find the force exerted by ledge on
prism.

77777?777777777777777777;

Figure 2.69

[Mg + mg cos^a, mg sina cosa]



fFqrc^ Ind.Newrtorj's, Laws Motion

(v) Findtheacceleration ofthemass mshown in figure-2.70.

W77777777777777777777777777777777777777,

PImg sinaV5-4cosa ,
M+m(5-A cos a)

Figure 2.70

(vi) Ifthe man managesto keep himself at rest on platform, as
showninfigure-2.71. Find theaccelerationofthe systemmasses
mandM.Allpulleys, platformandstringarelightandfrictionless.
Also find the force man has to exert on string in this situation.

i
0

Figure 2.71

Im-M
•g:49m + A/^' 49m + M g]

2.8 Friction

Before we start with the problems based on applications of
Newton's laws, let us discuss fhction because friction forces

play an important part in nearly all application of Newton's
laws.- - •

There are three major categories offriction forces:

1. Viscous friction or wet friction forces occur when objects
move through gases and liquids. The most commonexample is
air fi^iction, which acts when we run, we throw an object in air.

2. Rolling fi-iction forces arise as, for example, a rubber tire
rolls on pavement, primarily because the tire deforms as the
wheel rolls. The sliding ofmolecules against each other within
the rubber causes energy to be lost.

3. Sliding friction forces occur when the two surfaces in
contact with each other oppose the sliding of one surface over
the other.

It is the third type of friction that is our main concern in this
section.

^031

Consider theexperiment shown infigure-2.72. Ifsomeone pulls
lightly the box shownwith a horizontal force, it does not move.
Apparently, the tabletop also pushes horizontally on the box
with an equal and opposite forcef. This equal force which is
preventing theboxto slide,is the friction/ opposingtheboxto
slide and it is directed parallel to the sliding surface.

Figure 2.72

If we slowly increase the force with which we are pulling the
box, as shownin figure-2.73, graph showsthat the frictionforce
increases with ourforce upto a certain critical value,/_, thebox
suddenly begins to move, and as soon as it starts moving, a
smaller force is required to maintain its motion as in motion
friction isreduced. The friction value from 0to/ isknown as
static friction, which balances the external force on the body
andprevent it from sliding. Thevalue/ isthemaximum limit up
to which the static friction acts is known as limiting friction,
after which body starts sliding and friction reduces to kinetic
friction, (figure-2.73)

/=/i

F=fL

Figure 2.73

External force F

The main reason behind this behaviour is shown in figure-2.74.

As you see, the surfaces in contact are far from smooth. Even
highly polished surfaces look like this when observed at high
magnification. The jagged points from one surface penetrate
those of the other surface, and this causes the surfaces to

resist sliding. Once sliding has begun, however, the surfaces
do not have time to "settle down" onto each other completely.



m4.

As a result,-less force is required to keep then moving than to
start the motion.

Surface ofsliding body

Surface of sliding ground.

Figure 2.74

From the above explanation, it can be said that the friction force
depends on the roughness of the two contact surfaces and also
on the force ofcontact between them, that is how forcefully two

surfaces are pushed together. The magnitude offi'iction force is
proportional to the normal reaction between them, given as

Here and are called static and kinetic coefficients offriction,

respectively. The factors p^ and p^are depending on whatthe
surfaces are made ofand how clean and dry they are. Although
friction forces are dependent on the roughness of the surfaces,

there are two approximate statements about friction can be given
as (1) at low speeds,does not change much with speed as one
surface slides over the other, and (2) for given surfaces and a
normal reaction between them, the values of static and kinetic

friction is independent of the area of the contact between

surfaces. ' ' .

2.8.1. Pulling on a Rough Surface is Always Easier Than
Pushing

\

Consider figure-2.75(a), a boy pushes the block. There are two

components of the pushing force, horizontal and vertical.
Horizontal force tend the block to move and vertical force is

increasing the value of normal reaction. In this case normal

reaction is given as •

-N=Mg + FsmQ ...(2.50)

F cos 9

F sm 0

(a)

^TTTTTtTTTTTTT?

Forces and Nevvtor!^ Laws 61 Motton

• -C
Ai

Fcos 6/y\ \

'///////////////////////////.

N

(•>)

Figure 2.75

As increases, thelimiting friction = p^also increases and
hence it is difficult to push the object. But unlike to this case in
figufe-2.75(b), aboy pulls a box with a rope, here again there are
two components of the tension in the rope, horizontal and
vertical. Horizontal force is tending the box to move but here
the vertical force is in upwards direction, which decreases the
normal reaction between the box and the floor. As normal

reaction between surfaces decreases, it is easier to slide the

object in this case, the normal reaction is given as

N = Mg - F sinG ...(2.51)

We now take some examples to understand the above concepts

regarding friction in a better way.

# Illustrative Example 2.22

A 100 kg load is uniformly moved over a horizontal plane by a
force F applied at an angle 30® to the horizontal. Find this force
if the coefficient of friction between the load and the plane is

0.3.Takeg= lOm/s^

' i

Solution

As shown in figure-2.76, F is the pulling force due to which the
normal reaction between the load and the ground decreases,

which will also decrease the friction. The normal reaction at the

bottom contact is given as

or

Fsm 30®*

' /V—
y///////////.

N

Figure 2.76

A"=iW^-F'sin30'

= 1000--F
2



I's laws of Motion

As it is given that the loadmovesuniformly, net sum of forces
in the direction ofmotion must be zero. Thus

Fcos30° = ^jV

or

or

" V3 1
—F=0.3x(1000--/)
12 • , . 2

300x2 . .
-- -F.= ^ ' =219.6N '

,V3 + 1

# Illustrative Example 2.23

Consider the situation shown in figure-2.77, the block- B
moves on a frictionless surface, while the coefficient of

fiiction'between^ ahd the surface on which it.moves is'0.2.

Find Ae acceleration with which the masses move and also the

tensionin the strings. Take.g='10 m/s^.. • . . , "•
• i • '\S ' . V.

. i r "

-:4 kg .

V/////////M

I

8 kg

B

VP777P777777/.

-

20 kg

Figure 2.77

Solutions

• • 1 , I '

Let dibe the acceleration with which the masses move arid T,
^ 1

andTjbe.the tensions in left^d rightstrings; Friction onmass
A is pmg=8 N. Then we have equations ofmotion ofmasses A,

B and C are

Formass^ " =

For mass 5' "

^1'-; •-•
Formass C • 200 - Tj - 72-20fl

I • i; 1 • I "u ;

Adding the above three equations, we get

32^ = 192 .

or

'r2=8a^"'''

a = 6 m/s^

From equatons-(2.52)and (2.53),we have

and" '̂ r2=32N

...(2.52)

•...(2.53)

•-•(2.54)

f « - it.

mm

# Illustrative Example 2.24

A smallbodystartsslidingdownan inclinedplane ofinclination
0, whose base length is equal to I. The coefficientof friction
betweenthe body and the surface is p. If the angle 0 is varied
keeping / constant, at ;what angle,wll the time of slidinghe
least.?: , , V. . , .

Solution ,

When bodyslidesdownas showninfigure-2.78 its acceleration
can be given as • '

a = g sin0^- pg COS0

•- '• l< .. -7

'• Figure 2.78 '

The length of incline travelled by'the body is:/ sec0, thus the
time taken by the body to come down is 1- r'l \

t =
2/sec0

2/sec0
or

gsinO-figcosO
as

<- dt ,
Timewill be leastwhen ^=0, thuswe have

cfid

cos^O - sin^O + 2p sinO cos0= 0

. •cos20 + psin20=O . >-' •

or- • - " ' tan20'=- — • ' •
; ^ 1 H-

^ Illustrative Example 2.25 .

A block slides down an inclined plane of slope angle 0 with
constant velocity. It is then projected up the same plane with an
initial velocity Vq. How far up the incline will it move before
coming to rest ?•

Solution

As block slides with uniform velocity, its weight component mg
sin0 is balanced by friction between its surface and ground.



Thus we have

or

mg sinG= \img cosG

ji = tanG

" , . ' Formass w,
When it isprojected upwith avelocity v^, itwill beretarded by
both, g sinG and friction and as friction is equal to force of ^or mass ^2
gravity, it will now be retarded by 2g sinG, hence the distance
covered by the particle along the plane is Solving equations-(2.55) and (2.56), we have

s =
vo

2a 4gsin0

# Illustrative Example 2.26

Two blocks ofmasses Wj and respectively areconnected by
an inextensible andweightless stringwhichpassesovera smooth
and light pulley fixed at the top comer of a long carriage. The
upper surface of the carriage is frictionlessand the bodyv4 rests
on it. B hangs vertically in contact with the rough vertical side
of the carriage. The carriage moves with an acceleration gH
towards right hand side as shown in figure-2.79. If the blocks
remain stationary with respect to the carriage and = 7.5 m2,
calculate the coefficient of friction between the block B and

vertical side ofthe carriage. .

Solution

^5
a = gn

777777772777777777777777777777777Z

Figure 2.79

In thisproblem thereference frame ofmasses andrrij, the
carriage is moving with an acceleration a = gH. On both the
masses there will be a pseudo force when these are observed,
with respect to the carriage. Pseudo force on Wj in backward
direction tendto pull themass Wj upward. In thiscasefriction
on will act in downward direction. We solve the situation

using the figure-2.80, which shows all the forces acting on the
bodies except gravity and pseudo forces.

iV, \^2'

N-,

a = gil

\^2
777777Z^7^V7777777777777777777777Z'

jPigure 2.80

Forces and Ne^on'sTaws of Motlpn,-

As the masses OTj and are atrest with respect tocarriage, we
must have sum of all the forces acting on it are zero. Thus we

have

T=m^a

T=m^g + \ini2a

mj-7m2
=0.5

...(2.55)

...(2.56)

[As Wj = 7.5
m-i

# Illustrative Example 2.27•

Aplank ofmass mj- with abarofmass Wj placed onit lies ona
smoothhorizontalplane.'Ahorizontalforcegrowingwith timet
zs F = kt {k is d. constant) is applied to the bar. Find how the
acceleration of the plank and of the bar depend on r, if the
coefficient offriction between the plank and the bar is equal to

P- ^ '

Solution

As force is proportional to time, initially this force will be less
than frictional force hence the bar and the plank will move

together.After some time when the frictional force is less than
applied force^ then both the blocks will move with different
accelerations. Thus initiallycombined acceleration ofthe system

will be . 1 •- --

kt
a =

Wj + W2 Wj + W2

After some timewhen the applied force exceeds frictional force,

starts sliding onwj. Letus take theacceleration ofw^ is
on ground andthatof Wj is Qj onthe surface of /Wj. Consider
the forces acting on the two bodies shown in figure-2.81.

•F = kl

V-'"2S

V7777777777777777777777777777777777777777777.

Figure 2.81

When starts sliding over the plank, friction on it will oppose
its motionwith respect to. plank,so pmjg will act in backward
direction and its reaction on the plank is in forward direction
which will move the plank with acceleration as it is the only
force acting on plank, which can be given as



[Forces-priij N^\^bn'S Laws of Motion

ms-
a, =

Wi

As plaiik isaccelerated, itbecomes anoninertial frame for m2,
with respect to it a pseudo force mjflj is applied onthebar. As
it is sliding with acceleration ^2 with respect toplarik', wehave
its motion equation as

F —pWjg" - j =-'«2'̂ 2

kt
or =

m-)

This acceleration of bar is with respect to plank, hence net

acceleration ofbar is ^2 + Oj. Thusthenetacceleration ofbar is

kt

'bar= «2+ «I= —-1^^
mi •

Now one more thing is to be calculated, the time instant when

bar start sliding on plank. It is the instant when the acceleration

ofbarwithrespect.to plank<32 isjust started orzeroorwhen the
external force on bar just balances the friction plus pseudo force

on it. Let us takethis instant is fj, it canbe givenas at time

kty=^m2a^ + [Lm2g

or

m^k

# Illustrative Example 2.28

A bar of mass m is placed on a triangular block of mass Mas

shown in figure-2.82. The friction coefficient between the two

surface is p and ground is smooth. Find the minimum and

maximum horizontal force F required to be applied on block so

that the bar will-not slip on the inclined surface of block.

77777^777^77777777777777777777,
Figure 2.82

Solution

Here, ifboth the masses are moving together, acceleration ofthe

F , .
system will be ~r; . Ifwe observe the mass m relative to M.
^ M+m

107'

it experiences a pseudoforcema towardleft.Alongthe incline
it experiences two forces, mg sin9 downward and ma cosG
upward. If mg sin0 is more than ma cos6, it has a tendency of

slippingdownwardso frictionon it will act inupward direction.
Here ifblock m is in equilibrium on inclined surtace, we must

have

mg sin0 - ma cos0 < \i{mgcos0 + ma sin0)

or

or

sin0-ucos0
a > g

cos0 + )a,sin0

sin9-ucos0
F> r^(Af+7«)g

cos 0 + p sin 0
...(2.57)

If force is more than the value obtained in equation-(2.57), ma

COS0 will increase on m and the static friction on it will decrease.

At <3 = g tan0 [when 7^=(Af+ m)g tan0], we know that the force

mg sin0 will be balanced by ma cos0 at this acceleration no

friction will act on it. If applied force will increase beyond this

value, ma cos0 will exceed mg sin0 and friction starts acting in

downward direction.
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Practice Exercise 2.4

(!) A child pushes a box that has mass m up an incline plane at

an angle a above the horizontal. The coefficients of friction

between theincline andtheboxarep^ andp^. Theforce applied
by the childis horizontal, (a) If p^ is greater thansome critical
value, the child cannot start the box moving up the incline, no

matter howhardhe pushes. Calculate this critical value of p^.
(b) Assume that p^ is less than this critical value. What
magnitude offorce must the child apply to keep the box moving

up the plane at constant speed.

wg(sina + Ui. cosa) ,
[cot a, 1

cosa-nt

(11) Calculate the force P required to cause the block of

weight = 200 N just to slide imder the block of weight

= 100 N shown in figure-2.83. What is the tension in the
string AB ? Coefficient of friction p = 0.25 for all surfaces in

contact.



_

[90 N, 20 -B N]
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Figure 2.83

(iii) Figure-2.84 shows a man of mass Mstanding on a board
ofmassm. Whatminimumforce is required to exert on string to
slide the board. The friction coefficient between board and floor

is n and there is sufficient friction between man and board so

that man does not slip.

U(M+w)g

^ 1+p •'

///^//////////////y
0; e:

I ®
77777777777^^77777^777,

Figure 2.84

(iv) A uniform ladder .<45 of length 3 metres and wei^t 20 kg
rests with the end A against rough vertical wall and the end B
on level round. If the wall and the groundare equally rough and
the coefficient of friction is 0.5, find the limitingposition of
equilibrium. Takeg = 10m/s^.

[37° with horizontal] - '

(v) Figure-2.85 shows a block B ofmass m, cart C ofinass My
and the coefficient of static friction between the block and the

cart is p. Neglect fiictional between wheels and axles and the

rotational effects ofthe wheels. Determine the minimiim value

ofF" which must be applied oh B such that it will not slide.

//////////y

Figure 2.85

Forces and :N~ewtoi1'S iLaift'S of

(vi) In figure-2.86, the blockA of mass A/j rests on a rough
horizontal surface. The coefficient offriction between the block

andthesurface is p. ^4 uniform plank5, ofmassMj rests onA.
B is prevented from moving by connecting it to a light rod R
which is hinged at one end H. The coefficient offriction between

A and B is p. Find the acceleration ofblocks and C.

777777777777777^7777777777^

Figure 2.86

(Mi+Mj)

(vii) In the arrangementshownin figure-2.87the massesofthe
wedge Mand the body m are known. The appreciable fnction
exists only between the,wedge and the body w, the friction
coefficient being p. The masses of the pulleys and thread is
negligible. Find the acceleration of the body /w relative to the
horizontal surface on which the wedge slides. ;

VT^TTTTTTTTTTTTTTTTh'̂ TTT^^^^.
Figure 2.87

Bg
(2+F+%)

2.8.2 Friction Between Pulley and String

The part of dynanucs we've covered we were mainly dealing
with ideal pulleys and strings which are massless and
fiictionless. If we considerthe frictionbetweenthe string and
the surface of pulley over which it is passing, the tension on
the two sides of the string must be different. To develop the
relation in the two tensions we take a simple illustration.

Asituation is shownin figure-2.88. A stringis passingoverthe
surface of a pulley which is free to rotate about the axle O
passing through its centre. The angle of contact of the string



on thie pulley surface is 0 and the static friction coefficient And here dN can be obtained by our conventional method
between pulley surface andthe string is p. ' " - ' ^

'dN=liT+dT)s\n^ =Tm

.'.V 1.

. : v-

• >l r I

Figure 2.88
J

or

or

dT =ii TdQ

dT'
— =ndQ

Integrating withthe proper lirnits

r=r.

or

|f=jMe
T

T=Ti 0

as

or T2 = T^e^* ...(2.58)

Tcos^
dQ/2

• T+df

T + 'dT

To understand the applications of this relation we take few
exanples. •' '

if Illustrative Example 2.29 .

Figure-2.90shows a cylindermounted on an horizontal axle.A
massless string is wound on it two and a halfturn and connected
to twomasses mand2 w. If thesystem isin limiting equilibrium,
find diecoefficient offriction between thestringandthepulley

^'surface.'' '•

Figure 2.89, . .

If the tensionon rightpart of stririg is and if it is more than
that in left part(i.e. Tj), itwill haye a sliding tendency toward
right and on string friction will act in the direction ofTj, so as to
balance Tj(as string'is. massless)

Figure 2.90

As the'difference in Tj and Tj increases, friction acting on
string will increase till itreaches limiting friction and then the Solution
stringstartsslipping overthepulley. Nowwedevelop a relation
in the two tension when the string just starts slipping over ifthe system is in equilibrimn; the tensions in the two knging
pulley. Analysis is shown in figure-2.89. We consider. asmall pans of the string will be mg and 2mg respectively. From
element- ofthe string in contact with pulley surface; Let the equation-(2.58) we have
tension (tangentially acting) toward left isT and that toward
right is r>+ dT. The excess tension dT on right is cause of
friction toward left,'if it is we must have • . j-

dT=df=yLdN ' [Atthe timeof slipping] or

2 m

2wg - mg [As the angle ofcontact = 5?i]

p=^ln(2)



# Illustrative Example 2.30

Two masses kg and Wj kg passes over anatwoods machine.
Find the ratio ofmasses and W2 so that string passing over
the pulley will juststart slipping over its surface. The friction
coefficient between the string and pulley surface is 0.2.

Solution

Fora simple atwood's machine wecanwrite forthetwo masses

m^g~Ty=m^a

and T^-m2g = m2a

and if string starts slipping, we have

or m^(g~a) = m2(s + a)e^^

Ifstringjust slips, we can use a = 0, thuswe have , .

W2

2.8.3 Conditions For Sliding

There are several cases of dynamics in which a smdent .get
confosed to check whether there is sliding between two given
surfaces or not. In this section we will mainly discuss the
conditions under which sliding takesplace but again the basis
ofjudgementwill remain same, the fundamentals ofstatic, kinetic
and limiting friction, we'vediscussed till now.

Consider thesimple caseshown infigure-2.91. Theshown block
of mass 4 kg on a surface S is moving with an acceleration
8 m/s^. External force acting on it is 50 N.

F=50N 4 kg

' Forces and

If we find the friction force acting on the block using friction
coefficient we get

/=pmg=20N

How it is possible ? It shows that if block is sliding on the
surface, friction on it must be 20N but anal>4ical calculation
shows thatit is 18N. It implies thateitherthegiven dataiswith
some erroror we are not interpreting the correctsituation. Yes
it is! actually here oncalculations wefind thefriction acting on
theblock isless thanlimiting orkinetic friction, it straight forward
implies that block isnotsliding onthe surface itisplaced sowe
canstate that theblockalongwith the surfaceS is movingwith
the acceleration 8 m/s^.

What we have discussed its reverse is also true. If we initially
assume thatblockis slidingohS,weusefriction as20N, weget
acceleration ofthe block

50-20 =4 (a)

or cr = 7.5m/s^

Which is less thanthat given in the situation. Thismeans that
theaccelerating force is more than thatwearei^ingwhich is
possible only when friction isless than 20N,which implies the
block must be at rest relative to surface M.

To understand this conceptin detail we take fewexamples.

#Illustrative Example 2,31

Find the acceleration of the two blocks of 4 kg and 5 kg mass
if a force of 40 N is applied on 4 kg block. Friction
coefficients between the respective surfaces are shown in
figure-2.92. Takeg= 10m/s^

F-40N 4 kg H2 = 0.5 .

5 kg H,=p.3

y//}//////////. '> CCC ^̂ 8m/s2

Figure 2.91

The friction coefficient givenbetweenthetwosurfaces is0.5. If
we will write the dynamicsequation for this mass, we have

F—f= ma

•y///y/yyy/y///////y?/////y////A • •

Figure 2.92

Solution !;

In suchtypeof problems wehaveto checkfirstwhether there
is a slidingbetween4 kg and5 kg blockor not.Wefirstassume
that there is no sliding between the two blocks and the two'are
moving together on the surface. In this case friction on 5 kg
block will be opposing and is sliding frictionor

or

50-/=4(8)

/=18N /j = p(mi+m2)g=27N
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On4 kg friction willbeopposingbut itmustbestaticfriction
as 4kg isnot sliding on 5kg block we assume initially. On 5kg
block^ isacting inopposite direction asshown infigure-2.93.
If the two are moving together again be careful, we are.only
assuming that two are moving together this,^ will be an internal
force of the system and the two blocks will move'with an
acceleration

40-27 13 ,a=^— =—m/s2

F=40N ,
4 kg

^2 = 0.5A-.—

A=27N., ,
5 kg

•*3i

Pi = 0.3

Figure 2.93

Nowif we consider4 kg block onlywe have

13
40-/=4 X —

or
52

/=40- — =34.22N

The maximum possible value off^ canbe =20Nand the
above foundvalue is more than this. It implies that the block
4 kg can neverbe at rest relativeto 5 kg block.

NOTE : If in above case if the value of/ obtained could be
less than 20 N, it would imply that this is the value of static
friction andbotharemoving together, (check nextexample)

Herewehavechecked andfound thatthereis slipping between
4 kg and5 kg block, thus the friction between 4 kg and5 kg
blockmust be20N.Buthereif20N isacting on5kgblockit is
insufficient to displace the5 kgblockas the limiting friction at
thebottom of 5 kg is 27N thus it will remain at restand4 kg
block only will move with acceleration

40-20
a = = 5 m/s^

# Illustrative Example 2.32

Solve previous problem again ifpj =0.1 and pj=0.8,

Solution ' , .

Again we start our analysis by assuming that both the blocks
are moving together. Their acceleration will be •

40-9 31 ' " '
a= —-— = —m/s^ [As here/ =p(wj +Wj) 9N] or

For 4 kg block we have

or

• 31
40-/-4X —

/=26.22 N

Here the maximum possible value of/ will be pm^g = 32 N,
which ismore than that value found above. It implies that here
/ isthe static friction force asitisiess than limiting value hence
both the blocks are moving together with acceleration
31/9 = 3.44m/s2.

# Illustrative Example 2.33

Find themaximuih possible force which canbe applied to the
8 kg block shown, in figure-2.94 to move both the blocks
together ifbottom surface is (a)fnctionless; (b)having friction
coefficient 0.3.Take^= lOm/s^

Solution

5 kg
0.4 •-

• S'kg T

Figure 2.94

(a) If bottom surface is frictionless and we assume both are

moving together, acceleration ofthe combined mass will be

F
a = — m/s^

Force offriction between thetwo blocks willbeacting asshown
infigure-2.95. Here it is importantto notethedirectionof friction
acting on the two blocks. As first 8 kg is pulled fnction will
opposeit andon 5 kg it is inopposite(forward) direction which
will drive it to move in same direction.

5 kg m= 0.4
/

8 kg

^7777777777777777777777777777777,

Figure 2.95

Now as F increases / will also increase but not beyond
p wg=20 N.Thetwo'blocks canmovetogethertill /will become
equal to 20 N. At this instant we have

/=5x — =20N
^ 13

F=52N [maximumvalue]



ThuswhenF exceed52N,/will tendto exceed20 N but it can
not go slipping betweenthe two surface starts.

(b) If ground hasa friction coefficient 0.3, thefriction acting
on8kgblockwillbe39N ifit slide onapplying external forceF
as shown in figure-2.96. If we assume thatboth theblocks are
movingtogether, acceleration of the twowill be givenas

or

5 kg

39 N
8kg " —F

Figure 2.96

13
•i

Ifweconsider 5kgblockonly, friction/j istheonlyforce acting
onit.The maximum possible value of^ will bepmg=20 N.IfF
is increased will also increase but slipping between the two
blocks will not start till its value will reach 20 N. Thus for 5 kg
block

F-39

13
/=20 = 5x

F=91N

# Illustrative Example 2.34

In the situation ofthree blocks shown in figure-2.97.

F-— 1 kg
0.8

1 kg
0.3

1 kg

Figure 2.97

(a) Forwhatmaximum valueof forceF, canalldiefriree blocks
move together ? Where does the sliding first begms.

(b) For what value ofthe force F, will the sliding starts at other
rough surface ?

(c) Find theaccelerationof blocks, nature and value of friction
forces at rough surfaces for following value of force F.
Takeg=TOm/s^

(i)3N (ii)15N

Solution

(a) When the force F starts acting,the friction forcesactingon

'-Fbrces ^and "Ney|6H%

the threeblocksare as showninfigure-2.98. The limitingvalues
ofthe two friction forces is

/j^=0.8(10) =8N and /2^ =0.3 (20) =6N

as bottom surface is fiictionless and ifwe assume that the three
blocks aremoving together, acceleration of the system willbe

A'

F
Y7 = — m/s^

1 kg

1 kg

I kg

ji = 0.8

•/l
H= 0.3

Vz

777777777777777777777777777777ZV777777>

Figure 2.98

Considering lowerinost block,it is experiences^, wehave

F

or F=18N

This implies that the sliding between lower and middle block
takeplacewhen applied force exceeds 18N.Nowwecheckfor
the sliding between middle and the top block. For this we
consider the motion ofmiddle block, assiuning that no sliding
at the lower surface, we have

F - , .
f\L~'fl~ o

As we have

or

f^= —,we have

fM=

3

2F

3

F=12N

Thus sliding at the top surface take place when the applied,
force exceeds 12N which is less than the force required to start
sliding at the lower surface. So this is the maximum force which
can be applied to move the tluee blocks together and when
force increases sliding first start at the upper surface.

(b) Now when force exceeds 12 N at upper surface friction
becomes sliding friction and sliding starts and at this moment
and for higher values of F friction at the upper surface will be
constant and is equal to 8 N. If we write the equation of motion
for the middle and lower block together, we have

' 8-/2=1
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and f. = \'x-a

Solving we get 'a = 4m/s^

Nowfrom theequation of lower blockwehavej^ =4N which is
less than its limiting value, thus sliding at this surface can never
takeplace.

(c) (!) If applied force isF=3 N, no slidingtakesplace at any
of the surface and the three blocks move together with
accelerationF/3 = 1m/s^, themagnitude of friction at lowerand
upper surface remain same, we obtained in part (a) as

^ 2^ ' F '
/,= —•=2N • and - f^= - '••• .

(ii) IfappliedforceisF= 15N, slidingatuppersurfacestarts
and as we have discussed in'part (b) that lower and middle
blockwill always movetogether. For upperblockwe can write

• ' '15-8 = 1x0,

or a, =7m/s^

For middle and lower block we can write

S=(l+i)a^

or ^2 =4m/s^

Frictionat the upper surfacewill be slidingfriction8 N and at
the lower surface it is static friction 4 N which we've obtained in

part (b) and it can also be given as

/ = 1 X4 = 4 N ' ^ [For lowerblock]

# Illustrative Example 2.35

In the situation shown in figure-2.99.

A
1 kg o.r

1 kg
B 0:4

' c
I kg H= 0.2,

Figure 2.99

(a) For whatminimum value of the forceF will the systemor
any part of it start to move ?

(b) Find thevalues of force F when slipping startsbetween (i)
.^ahdFand (ii)jBandC.Takeg=10m/s^ '

113

Solution

The limiting values ofthe friction at the three surfaces are given
as

At the top surface = 0.1 (10) = 1 N,'at the middle surface
f~j = 0.4 (20)= 8N andat thebottomsurface/,, = 0.2(30)= 6N.

h

/t

1 kg

1 kg

1 kg

A

H= 0.1
•h

B
H= 0.4

A c

li = 0.2

7777777ZV77777777777777777777777777777y

Figure 2.100

If the three blocks are moving together (if system slides at the
bottom surface only), acceleration of the system will be given
as

.

If systemdoes not slide at the bottomsurface also a = 0, thus
F=6 N. As the limitingfriction at the middle surface is 8 N, no
sliding takes place anywhereunless F exceeds 6 N.

(b) As we have discussed that the systemstarts sliding at the
bottom surface when F exceeds 6 N. Sliding between blocks A

and Btakes place when/ will approach itslimiting value of1N
andsliding between BandCtakes place when/ willapproach
its limiting valueof 8N.Nowforchecking theslidingcondition
for surface between B and C we write equations for the three

blocks as

and / = 1Xa

and

Solvingweget a =2m/s^;/ =2N and F=12N

Here we foimd/=2N, which ismore than its limiting value of
1 N which is not possible. It implies that before sliding starts
between B and C, sliding between A and B is started. Now to
check the slidingbetween^ and B we againwrite equations for
the three blocks as '

and /,=1X^



[tif V,.

and

Solving we get

/2-/iL = l^«

<3 = 1m/s^;_^ =7N and Fi=9N

Thus when force Fbecomes 9 N, sliding betweenyi and B starts
first. Now to check when sliding between B and C will start we
again write equation of the three blocks taking fiiction at the
upper surface as sliding fiiction as

and

and

^ ^2L f^L 1 ^

Hereweareassuming thattheupperblockalreadystartedsliding
with acceleration a and the sliding between B and C is just
startedandat this instantbothareaccelerating withacceleration
a,. , ....

Solving we get

a=lm/s^; a, =2m/s^ and f-llN

Thus slidingbetweenB and C is startedwhen applied forceF
exceeds UN.'"' '
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Practice Exercise 2.5

(1) Find the acceleration of the two blocks shown in

figure-2.101.Takeg= lOm/s^. -

5N-

lON-

2 kg

3 kg

H2 0.2

^il = 0.1

' Figure 2.101 , ,

[2 m/s^, 2 rn/s^] . ,

(ii) In the situationshownin figure-2.102, (a). What minimum
force will make any part for whole system move, (b) For the
following valuesof force, find the acceleration of two blocks,
nature and value of fiiction at the two surfaces 2 N and 6 N.

Take^= lOm/s^.

Forces and Newton's La^^of Motion

2 kg
F2=0-2

4 kg
^,=0.1 ^

i'' ' Figure 2.102 'i,

[(a) 4 N. (b) I m/s2, 0]

(til) In previous question if force acts on the lower block, (a)
Where does the sliding begins first, (b) What is the minimum
force at which any-part of system starts sliding, (c) At what
value offorce F will the sliding starts at the other surfaces, (d)
For the following values ofF, find the acceleration ofthe two
blocks, nature and value offiiction at both rough surfaces-3 N,
12N,24N.Take^=10m/s2

^y I; .• . ' i *« V. J ^
[(a) lower; (b) 6,N; (c) 18 N; (d) 0 m/s^,. 3 N, 0 N, 1 m}s2, 6 N, 2 N,
3.5 m/s^, 2 m/s^, 6 N, 4 N]

(iv) hi the situationshownin figure-2.103, (a) forwhat maximum
valueof forceF canall threeblocksmovetogether, (b)Find the
valueof forceF at whichslidingstartsat otherrough surfaces,
(c) Find acceleration ofall blocks, nature and value of fiiction
force for following value of force F - ION, 18 N and 25 N.
Take^= lOm/s^.

1 kg

2,kg

.2 kg

H = 0.5

^ = 0.2

V777777ZV77777777777777777777777?^^ .

Figure 2.103 '

[(a) 15N (b) 21 N (c) (2 m/s^, 2 m/s^, 2 m/s^), (3 m/s^, 4 m/s^, 4 m/s^),
(3 m/s^, 7 m/s^, 5 m/s^]

2.9 Spring Force

Weknowthat the more force we applyto a spring,the more it
stretches.For a spring that obeys Hooke's law,the extensionof
the spring is proportional to the applied'force. Figure-2.104
shows a spring in its equilibrium length. If we stretch it by a
distance x from its equilibriim position, it applies a restoring
force F, towards itsequilibriumposition, which isproportional
to x, given by . ^ ^

f-kx .-..(2.59)

Herekisa proportionality constant, knownas spriiigconstant.
A spring has a tendency of restoring its equilibrium position,
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thus whether we stretch it or compress, it always opposes the on length and shape of spring. First we discuss different
external force inthedirection towards itsequilibrium position, configurations of spring combinations.

Onemorepoint is to benotedthat a springappliestherestoring
force .equallyat both ofits ends, doesn't matter whether an end

isfixedornot. \

As shown infigure-2.104, an end ofthe spring isfixed towail
and other is pulled by applying a force.As the restoring force is
directly proportional to the stretch! of compression in it, for
stretching it by x, we apply a force F on it and for stretching it
to double the length to 2x, we have to apply a force double of
the previous value.

F=0

Figure 2.104

We take fewexamples ofdynamics, which includes the concept
of spring force.

2.9.1 Force Constant of a Spring ^

In previous section we have discussed about the force exerted
by a spring when stretched or compressed. The spring exerts a
force due to its elastic properties. When a spring is stretched or
compressed from its natural (relmced) state, its potential energy
increases and the work done in stretching or compresririg is
stored in it in the form of its elastic potential energy. As every
system tend to retain its minimum energy state for greater

stability, spring tries to restore its natural state, hence applies
the restoring force on the external agent pulling or pushing the
spring. Already we know that the restoring force which is
proportional to the deformation length 6f the spring'as F = kx,
where k is the force constant of the spring which depends on

the spring shape, material and its elastic properties. Ifwe cut a
spring in two equal halves, what will be the k for each part of
the spring ? Or if two springsof force constantskj and Aj are
connected in series, what will be the equivalent force constant
ofthespring. ,.n- -•

For answering above questions, we must know how Adepends

Springs in Series : Look at figure-2.105. Two
light springs of force constants and ^2 are
connected in series and a mass m. is hanging
frorh'theni. Other endbf the spring is rigidly
connected to the'ceiling.-. '

We know that the stretch in a spring'is
proportional to the tension in it. As springs are
light, in both the springs, tension remains same
as /wg. ThusifXj and^2 arethestretch inthe two
springs, we have tension in them. ••

k^x^ =k^2 ='mg _• • '

If is considered as the equivalent'force constant of the
combined spring, we have

= ...(2.61)

Substituting the value of x, and.Xj from equation-(2.60),to
equation-(2.61), we get -

1

"eq

1 1
— + ~

Figure 2.105

;[;(2.60)

...(2.62)

Equation-(2.62) can be generalized for more than two springs
connected in series as

1 1 1 r

kgg ky '^2 A3 ...(2.63)

Where Aj, kj, A^, .... are the spring force constants of the
respected springs.

Springs in Parallel : As shown -in
'figure-2.106j if:two springs are .connectedr in ; .i

parallel'and a mass Wiis hanging from,the,,
cpmbinatipn ,than both the springs,are , , -J.
stretched by equal amounts say.Xiand.fpr.
.equilibriumofmass wwe haye., . , ^ ,

k,x^k^=mg ...(2.64)' Figure 2.106
• ' i • .-'1 ' I" ' j'.-- ir •_ ••'i'-

If A^^ bethe equivalent force constant of the cbrhbination, we
have " " / " • ' ' ' ^

•'I .'Sii '-'iiv-f . -i-i-,--' -j'... •'

•• ••• - '7..(2.65)Kq^='mg

From equations-(2.64) and (2.65); we have^

Kq = ^l^K

iA,'''

...(2.66)
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Above equation canbe generalized formore thantwo springs
I

as

k =k, + k^+k. + .
ea \ Z i

...(2.67)

Parts of a Spring; If a spring of force constant k of length / is
cutin two parts say of /, and let us assume that new force
constants are k-^ and k^ for the two parts. If we connect these
twopartsinseries, theequivalent force constant mustbe initial
k. Thus we have • .

1 1
= — + [...(2.68)

According to the molecular properties of a spring, the force
constantof a part of the spring is inverselyproportional to its
length, which gives us

c

and ^2 L ...(2.69)

Where c is a positive constant. Substituting the above values
'ofnew force cotistants and /Tj in equation-(2.68), we get

or

1 =!l +h.
^eq

c=,
eg

I

Using value of c in equation-(2.69), we have

K

'1 ^2

^ K,i
and ...(2.70)

I'y

2.9.2 Concept of a Spring Balance
" i't , I • * . '

A springbalanceis used to measurethe tensionin the string in
whichthe springbalemce is connected. It is generallycalibrated
to measure tensioii in units ofkgf. When a body is hung from a

spring balance and'in static equilibrium, the tension in string
connected to body is equal to the weight of bo'dy which
elongates the spring balance to some extent and the pointer on

spring balance reads the value of tension on the calibrated
scale attached to it. Similar to the case ofa weighing machine if

a body hanging from a spring balance is kept in an elevator

which is acceleratingupwardthen the readingofspringbalance
will be more than the actual weight of the body as for upward

acceleration tension in string attached to body will be more

than the weight for upward acceleration and if elevator is
accelerating downward its reading will be less than the actual

weight of the body.

Forces anij Nbvrton's. Lsrtvs^

# Illustrative Example 2.36

Figure-2.107 shows a block ofmass mattached to a spring of
force constant k and connected to ground by two string of
equal lengths making anangle 90° with each other. Inrelaxed
statenatural length of the spring is /. In the situation shown in
figure, find the tensions in the two strings.

'////////////y

V77m7777777777777777777777777777. '

Figure 2.107 '

Solution

As the natural length ofspring is I, and in the situation shown
in figure-2.108, its length is 3//2. Thus the spring is stretched
by a distance //2 hence it exerts a restoring force on blockk(//
2) upward as shown in figure-2.108, which shows also the
tensions acting on the block along the directions of the strings.
As the block is in equilibrium, we can balance all the forces
acting on it along horizontal and vertical directions.

'////////////z

V77777777777777777777777777777777.

Figure 2.108

Along horizontal direction

sin30°= 72sin60=

or

Along vertical direction

or • ^ n+T^^kl-2 mg ...(2.72)
''•<[ • . • 'r- .

Substituting value ofTj fromequation-(2.71) to (2.72), weget

• ' •4r2 =;t/-2mg "

::.(2.71)
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1

^2= 7 (^^-2mg)

From equation-(2.71), we have

V3r,= ^(/r/-2mg)

# Illustrative Example 2.37

L--, - /••i'-. -

X = I sec6 - /

or =/(sec0--l) ...{2.73)

Ifmass A breaks offfrom ground below it, we have

fcccos6 = OTg ...(2.74)

From equations-(2.73) and (2.74), substituting the value ofx,
we get

Figure-2.109 shows a block ^4 on a smooth surface attached
with a spring of force constant k to the ceiling. In this state
spring is in its natural length /. The block ^4 is connected with a

massless and frictionless string to another identical mass B or

hanging over a light and smooth pulley. Find the distance moved
by A before it leaves contact with the groimd.

kl (sec0 - 1) cos0=wg

kl (1 - cos9) = mg

COS0 = I-

H
V777777777777777777777777777777,

Figure 2.109

Solution

y////y

kx cos 6

Figure'2.nO

T .
s

Due to weight ofblocks, it moves down and pulls the blocks
now as both the block/4 and B move, spring gets stretched and
becomes inclined as its lower end is attached to the block A. It

will break off from the ground below it when the vertical

component ofthe spring force on block/4 will balance its weight
mg. Let it happens when A moves by a distance s as shown in
figure-2. llO.

At this instant let the spring be inclined at an angle 0 with the
vertical. If the stretch in the spring at this instant is x, then it is
given as

or

or tan0 =

mg

kr

[lc^I^-(kl-mgYY
kl~mg

At this instant the distance travelled by masses A and B is
given by

5 = /tanG

[kV-ikl-mgY]
or 5 = /

# Illustrative Example 2.38

kl —mg

1

212

When a mass Mhangs from aspring oflength I, it stretches the
spring by a distance x. Now the spring is cut in two parts of
lengths //3 and 21/3, and the two springs thus formed are
connected to a sttaight rod ofmass M which is horizontal in the
configuration shown in figure-2. III. Find the stretch in each of
the spring.

•/////////////////y : .

IM
A • B

Figure 2.111

Solution

As it given that the mass M stretches the original spring by a
distance x, we have

kx-Mg



or A: =
Mg

...(2.75)

The, new force constants of the two springs .can be givenby
using equation-(2.70) as

k^ = 'ik and
2

Letwetakethestretch in the twosprings bex, andX2, wehave
for the equilibrium ofthe rod

A:jX, + = Mg

3k
or 2kx^ ^2~

From equation-(2.75), we have'

Xi X
...(2.76)

As the rod is horizontal and in static equilibrium, we have net

torque acting on the rod about any point on it must be zero.

Thus we have torque on it about end A are

L
. ^ ^2^2 L = Mg —

or
_ Mg

^2 2^2 ,

= MK. = £
' (• „ -3

A

Usingthisvalue ofxj in equation-(2.76), wehave •''̂ i ~

This can also be directly obtained by using torque zero about
point B on the rod as

L •
A-jXjI = Mg —

• _

2k,

# Illustrative Example 2.39

Mg _ ^
6k ~ 6

Find the stretch in the springs shown in figure-2.112. The

respective data are given in the figure. The fiiction and masses

in pulleys are negligible.

tD
M

(a)

Solution

Forces and Nevvton's. liawsiof Motion:

Figure 2.112

•///////Z

V77777777y

(b)

(a) As mass Mis, in equilibrium, the tension in the string with
which it is hanging will be Mg. As pulley is massless the tension
in the upper string must be half of the lower string, MgH. The
stretch in the spring must be such that the restoring force in the

string is equal to the tension in it. Thus we have

A:jX,=
Mg

or X. =
Mg

> 2k,

(b) Here again mass Mis in equilibrium, thus the tension in the

string coimected to it must be equal to Mg and hence the
restoring force in thelower spring willalsobe Mg. Ifx^be the
extension in this spring, we have

: i^Xj=Mg

or

Mg
X, =

As pulley is light, the tension in upper string must be twice that
ofdie lower string, 2 Mg which is equal to the restoring force in
theupperspring. If X2 is the extension in the upperspring, we
have

^-x, = 2 Mg

or

2M^
Xo —
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2»10 Breaking of Supports

Whenevera body is in equilibrium,dueto inertia
it is maintained in a state of rest. If any"of the
supporting force of bodyis removed, bodystart
from rest with some acceleration in the dir-ection

opposite to the force applied by the support,
as all other forces acting on body will have a
resultant in that direction.

Wediscuss the situationwithan example shown,
in figure-2.113. Two masses 5 kgand 10kgare
hanging in equilibrium withthe stringS:^ andB. If tensions in
the strings Aand Bare Tj and respectively, then wehave -

T^=5gr50N

T^ = l5-g=l501A

If at some instant we break string B, tension T^ become zero
instantaneously and block will start falling from rest under
gravityand 10kgblock, asitisstill inequilibrium, will instantly
change to 10 N to balance its weight.

If insteadof string5, webreakthe string^4;^tension becomes
zero and both the blocks will start falling wi^ acceleration g.
NoW'Tj isjust an internal forcefor thesystem oftwoblocksand
as there'is no interaction between the two blocks and both are

falling under gravityTj will also instantly become zero.

Nowto understand the conceptin a betterwaywe'
slightly modify thesituation ofprevious example;'
Instead of strings, we use springs as showri^in
figure-2.T 14.Initially theblocksareinequihbrium,.
If springBbreaks, its tension willinstantly become
zero as we are using ideal springs

(massless/inertialess), but due to inertia initially
10kgmass willnotmove fromits initial position,
so tension in upper spring will not change
instantly hence itwillaccelerate inupward direction
with acceleration given as

or

Ti-m^
a -

m

150-100
d =• ~—TT—' -5 m/s^

^ - i V

10 kg

B

5 kg

Figure 2.113

//

r
SA
0

3

10 kg

j4—'

5 kg

Figure 2.114

Ifspring^ breaks tension inspringAwill instantly become zero,
butasdue toinertia 5kgand 10 kgblocks will start moving from
rest. As initiallyjust after breaking of spring A the 'twomasses
are at rest, tension in spring B will not change at this instant

\Og~kx 100 + 50
•a,= = 15m/s^

10 10

and that of 5 kg mass is

5g-kx 50-50
- = 0 .m/s^, ,

JF 'HII
which is 5g= 50 N. Thus atthis instant (just after spring A
is cut) acceleration of 10kg massis.

We take few more example to understand this concept in a
better way.

# Illustrative Example 2.40

Find the readings ofspring balances 5",, and ofthe springs
shownin figure-2.115(a). If the stringsnapsat pointA find the
readings of thethreespring balances just afterthestringsnaps.
All pulleys and strings are ideal.

Solution

Force analysis of the situationis shownin figure-2.115(b). Let
the tension in the string Ais Tfandthat in string B" is and
that in C is Ty So for equilibrium of the two masses, it'is
obvious that ='200 N, -400 Nand 73-156 N. So initial
readings of the springs must be 40 kg, 20 kg and 15 kg
respectively.

////////////.

5 kg

10 kg

5 kg

(b)

Figure 2.115

When the string A snaps, tension in this string will,instantly
become zero and hence as upper pulley is ideal the tension in
string B will also become zero instantly, so readings of the
balance and S2 will be zerojust after stringA snaps. After
breaking of stringAmasseswill start fallingfromrest from their
initial position, thus due to inertia of 5 kg'and 15 kg the stretch
in balance 1S3 will not change instantly thus its reading will
remain same as 15 kg.



# Illustrative Example 2.41

(a) Find the acceleration of the three massesshownin figure-
2.116(a) andthe extension in the spring. The force constant of
the spring is 100 N/m. Assume all strings and pullies are ideal.

(b) Find the acceleration of the masses A andB just after the
string snaps at P. . .

(c) Findthe acceleration of the masses A andB just afterthe
string snaps at P but in this case the spring is replaced by a
string. Takeg= 10 ni/s^.

5 kg

*0 fumnmn-

5 kg
10 kg

Figure 2.116(a)

Solution

(a) Constrainmotionofthe block showsthat if5 kg masses are
moving with an acceleration a, 10 kg will move with 2a. The
force diagram of the masses is shown in figure-2.116(b).

10 kg

Figure 2.116(b)

Now we write equations ofmotion for the three blocks as

10gsin60°-T=10(2a)

2T-ri=5a

r, -5g sin 30° =5a

Solving we get

and

a ——(I-4-\/3 )m/s^

T=10(4-v/3-l)N.

(b) Ifstring snaps at point P, tension in this string will instantly
become zero but due to inertia ofthe blocksA and B, the extension

ofthe spring will not change instantly thus tension in this string
will remain same.

h Forces and; Nevvton's Laws

The acceleration ofblocky4will remain same 2a as no change is
there in the forces acting on it but the acceleration of block B
willchange as oneof theforce acting on it disappears (tension
Tj), thus itsnew acceleration is

•: - 2T=5a^

or

2T '
= — =4(4V3-l)m/s^

(c) If the spring is replaced by a stringthenoncutting the left
stringat P, block C will start slidingdownwithacceleration g
sinSO® andthetension in rightstringwillchange to ^2'andfor
the masses A and B we can write

10gsin60®-r2 = 10(2fl)

and

Solving we get

and

2T.^ = Sa

20V3 ,,
a m/s-^

50 r7^2=^ (4V3-1)N.

Practice Exercise 2.6

(i) Two blocksA andB areconnected to eachotherby a string
and a spring; theistring passes over a fnctionless pulley as
shownin the figufe-2.117. Block5 slides over the horizontal
top surface of a stationaryblock C and the block^f slides along
the vertical side of C, both with the same uniform speed. The
coefficient offiiction between the surfaces ofthe blocks is 0.2.

Force constant ofthe spring is 1960 N/m. Ifthe mass ofblocky4
is 2 kg, calculate the mass of block B and the extension in the
spring. Take g = 9.8m/s^.

V7ZV77777777777777777/.

Figure 2.117

[10 kg. I cm]

(ii) A smooth semicircular wire track ofradius R is fixed in a
vertical plane as shown in figure-2.118. One end of a massless
spring ofnatural length 3 i?/4 is attached to the lower point O of
the wire track. Asmall ring ofmassw = 1 kg, which can slide on
the track, is attached to the other end ofthe spring. The ring is
held stationary at point P such that the spring makes.an
angle of 60® with the vertical. The spring constant ^ = /«g/P.



Forces and Newton's Laws: dt McQon:

Consider theringtobesmooth (ii)draw free body diagr^ of (iv).In figure shown if2kgblock ismoving at anacceleration
theringand(ii)determine the tangential acceleration ofthering 2 m/s\ findthe elongation in springand acceleration of4 kg-
andthenornialreactionactingonit;Takeg='10m/s^./, blockatthisinstant-Takeg-ipm/s^. .

•

,• rfio i

•l-J

•••.hi . • •

[25 -^ m/s^ 3:75 N]."

,, • , :n. _

T-' Ui :'•. . > '•>

''^gure 2.118

(iii) Find the acceleration pfmassesm,,m2
W3showninfigure-2.119justafterthestringis
cut at points.

.j.51,-'. i

.'-i . ./i

" il !

77777?:

...n:']-';' ' -fiO.:!'". il.st'

Figure 2.119

4 kg
k= lOOON/m

2 kg •20N

777Z777777Z7777777777777777777777777/
^ = 0.1 ^ = 0.2

Figure_2.120

[0.012 m;'2 "fh/s2]' '• '
!j'.| ;i, . 1 . ." ; 'j ' '-i
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!122 Forces and=Newton'^ Laws df Wdiorj i

Discussion Question

Q2-1 Objects on the moon weigh only about one sixth as much'
as they do on earth, you would almost certainly be able to lift a

heavy person. Could you easily stop him ifhe was running at a
fast rate across the moon's surface ?

Q2-2 A ball is thrown fi^om the edge ofa high cliff. No matter
what the angle at which it is thrown, because of air resistance
the ball will eventually end up moving vertically downward.
Justify this statement. " - , - -

Q2-3 Suppose youareriding inacaratconstant velocity when
thedriver suddenlyslamsonthe brakes so thatyou are "pushed^
forward. Was this "push" exerted on you by some other object.
Discuss about this "push" in different frame ofreferences, with
respect to car and with respect-to earth. ' •

Q2-4 A block with mass m is supported by a cord C from the
ceiling, and a similar cord D is attached to the bottom of the

block. Explain this : ifyou give a sudden jerk to D, it will break;
but ifyou pull on D steadily, C will break.

//////////

c

/

D

Figure 2.121

Q2-5 A spring scale is used to weight beans on an elevator.
How will the readings for a given amount of beans change
when the elevator is (a) going down with constant velocity, (b)
moving with a constant downward acceleration less than g, (c)
moving upward with a constant velocity, (d) accelerating
upward with an accelerationa. What happens in above cases if
we use a beam balance.

Q2-6 A bird alights on a stretched telegraph wire. Does this
change the tension in the wire ? If so, by an amount less than,
equal to, or greater than the weight of the bird ?

Q2-7 Is there any directional relation between the net force on
an object and the object's velocity ? If so, what is that relation ?

Q2-8 Ahorseis urgedto pull a wagonthe horserefusesto try,
citing Newton's third laws as a defense: the pull ofthe horse on
the wagon is equal to but opposite the pull of the wagon on the
horse. "If I can never exert a greater force on the wagon than it
exerts on me, how can I ever start the wagon moving ?" Asks
the horse. How would you reply ?

Q2-9 A coin is puton a long play record. The player is started
but, before the final speed ofrotation is reached, the coin flies

off. Explain why?

Q2-10 "In a tug-ofrwar one team slowly gives way to the other.
Work is done by losing team on-winning team" Is it true.

02-11 Youare an astronautin the lounge of an orbitingspace
station and you remove the cover from'a long thin jar containing
a single olive. Describe several ways to remove the olive from
the jar.

Q2-12 If you stand facing forward during a bus or subway
ride, why does a quick deceleration topple you forward and a
quick increase in speed throw you backward ? Why do you
have better balance if you face toward the side of the'bus or"

subway train ? " ' - - . > •

Q2-I13 When anobject is thrown inair, does ittravel a greater
horizontal distance while climbing to its maximum height or
while descending from its maximum height back to the ground ?
Or is the horizontal'distance travelled the same for both ?

Q2-14 Two 2 kg weight are attached to spring balance as
shown in figure-2.122. What is the reading of the scale ?

^77777777777777777777777777777777/777,

Figure 2.122

Q2-15 An elevator is supported by a single cable. There is no
counterweight.The.elevator receives passengers at the ground
floor and takes them to the top floor, where they disembark.
New passengers enter and are taken down to the ground floor.
During this round trip, when is the tension in the cable equal to
the weight of the elevator plus passengers ? When greater ?
When less ?

Q2-16 Under what conditionscouldunequalmassesby strung
over a pulley without the pulley having any tendency to turn ?

Q2-17 The Sim is directlybelow us at midnight, in line with
the earth's centre. Are we then heavier at midnight, due to the
sun's gravitational force on us, than we are at noon ? Explain.

Q2-18 A blockrestson an inclinedplanewithenoughfriction
to prevent its sliding down, to start the block moving, is it



of Motion"^

easierto push it up the plane, do^'the plane, or sideways ?
Discuss all the three cases in detail.

Q2-19 Asodawaterbottle isfalling freely. Where thebubbles
in the water will go. • • " ' s

Q2-20 "Work donein raising a boxon to a platform does not
depend'on how fast it is raised" Justiiy the statement;

Q2f21 ' Ina tugofw^ threemenpullona ropeto theleftatA
and three men pull to the right at B with forces of equal
magnitude. Then a 5 /fe weight is hung from the centre of the
rope.'(a) Can the men get the rope ABto be horizontal ? (b) If
iiot,"explain. If so, determine the magnitudes ofthe forces ati4
and 5 required to do this.

Q2-22 Air is thrown on a sail attached to a boat from an electric

fan placed on the boat. Will the boat start moving ?

Q2-23 A massless rope is strungover a fiictionless pulley. A
monkeyholds onto one end of the rope, and a mirror, having
the same weight as the monkey,is attached to the other end of
toeTOpe at the moi±ey's level. Can the monkeyget awayfrom
its imageseen in the mirror (a) by climbing up the rope, (b) by
climbing down the rope, or (c) by releasing the rope ?

Q2-24 Two teams of students are having a tiig-of-war. The
rope passes through a small hole fence that separates the two
teams.Neither teamcan see the other.Both teamspull mightily,
but neither budges. As limch time approaches the members of
one teani decide to tie their end of the rope to a stout tree while
they take a lunch break. Can the other team tell that the first is
notpulling biithemotionless'rope ?Analyse theforces in this
problem. ' • '• ' ' ' • ' ' • '

Q2-25 If we start polishing two surfaces,' resistance force
between there contact increases rather than decreases friction,

^qjlain. - ' • :

Q2-26 iWhydo tires grip the road betteron'levelgroundthan
they do when going uphill or downhill ? - '; • •

Q2-27 :Abox, heavierthanyouis placedon aroughfloor. The
coefficient ofstatic friction between the box and the floor is the

sameas that betweenyour shoes and the floor.,Can you displace
the box across .the floor. . . , , •

Q2-28 "The path of a projectile under gravity is a parabola
because it has no horizontal acceleration", Discuss the above
statement. ..

Q2-29 A heavy iron ball is taken into space where it is
weightless. Will it hurt to kick this football since it is weightless ?

Q2-30" When .you tighten a nut on a bolt, how are you
increasing the fiictiohal force ? • — - -

Q2-31 Suppose thatyoudrop amarble ofmass minto ajar of
' honey. As the marble sinks, its speed is effectively constant.,

What is the net force on the marbleus it sinks ? What are the

magnitude anddirection of the forces exerted by the honey ?

Q2-32 Couldyouweighyourselfon a scale whosemaximum
reading is less than your weight ? If so, how ?

Q2-33 A ladderis resting against a wallanda person climbs
up the ladder. Is the ladder more likely to slip out at the bottom
as the personclimbscloser to the top of the ladder? Explain.

Q2-34 Amansitsinachairthatissuspended from a rope. The
rope passes over a pulley suspended from the ceiling, and the
man holds the other end of the rope in his hands. What is the
tension in the rope, and what force does the chair exert on the
man ? • .. . . . ^>

Q2-35 What happens to a baseball that is fired downward
through air at twice its terminal speed does it speed up, slow,
down, or continue to move with its initial speed?. •

Q2-36 Youthrowa baseballstraightupward. If air resistance
is not neglected, howdoes the timerequired for theball to.go,
fromthe heightat which it was thrownup to its maximumheight
compare to the time required for it to fall from^ its rqaximum
height back down to the height from which it was thrown ?
Explain your answer.

Q2-37 Acaratrestisstruckfrom therearbya second c^. The
injuries incurredby the two drivers are of distinctly different
character.Explain. ' ' • . •

Q2-38 ThCTe is more water in a beaker placed in the pan of a
springbalance.Ifwe dipourfingerin thiswaterwithout'touching
the bottom ofthe beaker, then what would be the effect on the

reading of the balance ?

Q2-39 A ball is suspended by a cord from the ceiling of a
motor car.What will be the effect on the position ofthe ball if(i)
car is moving with constant velocity on horizontal road, (ii)
accelerated on horizontal road, (iii) retarding on horizontal road,
(iv) car is turning towards right (v) car is moving on an inclined
plane with constant velocity, (vi) accelerating on incline plane
with g sin9, where 9 is the angle of incline,(vii) acceleratingup
the incline with g sm9.

Q2-40 In a box car a helium filled balloon is tied to the,floor
with a string. Car is moving on a horizontal road. If suddenly.
breaks are applied, what happens to the balloon. Will it jerked
forward, backward or remain at rest.
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ConceptualMCQs Single Option Correct

2-1 Letflj &^2 are the accelerations of8c B. LetZ), fcZ^jthe
accelerations of C & D relative to the wedges A and B
respectively, choose theright relation, (directions of a^, a^,
&^2 are shown infigure below): - '

Figure,2.123

(A) - ^2 + 6, - ^2 ^ 0 (^) ^2 ~ ^1 ~ ^2 " ®
(Q a^ + a^ + b-^-'rb^^i) (D) a^-^b^^a^ + by .

. I _
2-2 Whilewalking onice, oneshouldtakesmallstepsto avoid
slipping. This is because smaller steps ensure :
(A) Largerfriction (B) Smaller friction
(Q Larger normal force P) Smallernormal force

2-3 In the arrangement shown in figure-2.124 •///////////////
pulleyA and B are massless and the thread is
inextensible. Mass ofpulley C is equal to m. If
friction in all the pulleys is negligible, then:
(A) Tension in thread is equal to 1/2 mg
P) Acceleration of pulley C is equal to g/2'

(downward)
(Q Acceleration of pulley14 is equal to g/2 . Figure 2.124

(upward)

p) Acceleration ofpulley^ is equalto 2g (upward) ,

2-4 A ballisdropped vertically fromheightd abovetheground.
It hits the groimd and bounces up vertically to a height dH.
Neglecting subsequent motion andair resistance, its velocity, v
varies with height h above the ground as : ,

(A) (B)

(Q' (D) :

2-5 A bicycle moves on a horizontal roadwithsomepositive
acceleration. The force of friction exerted by the road on the
front andrearwheels areF, andFj respectively :• .
(A) Both F, and F2 actinthe forward direction
(B) Both Fj and actin the reverse direction • '
(C) F, acts in the rforward direction, Fj act in the reverse

(D)

direction

Fj acts in the'forward direction, Fj act in the reverse
direction

2-6 Consider the situation shown in figure-2.125. The wall is
smooth but the surfaces ofA and B in contact are rough. The
friction on B due to A in equilibrium:
(A) Is upward
P) Ts downward •

(Q Is zero :

P) The system cannot remain in
equilibrium ' Figure 2.125

B

2-7 A block is about to slide down an inclined plane when its
inclination to the horizontal is 0. Ifnow a 5 kg weight is attached
on the block: '

(A) It is still about to slide down the plane
P) It will.not slide down the plane unless the inclination is

increased

(Q It will not slide downthe plane unless .the inclination is
decreased . :

P) It willnever slidedownwhateverbe the inclination

2-8 Two objects A and B are thrown upward simultaneously
with the samespeed.The massof.^ is greaterthan themass of
B.Suppose theairexerts a constant andequalforceofresistance
on the two bodies :

(A) The twobodies willreachthe same height
p) ^ will go higher that 5
(Q 5 will go higher than y4
p) Any of the above three may happen depending on the

speed withwhich the objects are thrown

2-9 BlockA is placedonblockB,whose mass is greater than
thatof..4. There is friction between the blocks, while the ground-

is smooth. A horizontal force F, increasing linearly with time,
begins to act on A. The acceleration and ^ B
respectively are plotted against time (t). Choose the correct
graph : ' •' '

. B

777777777777777777777^.:
Figure 2.126
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(B)

(Q P)

2-10 A boy ofmass Mis applying a horizontal force to slide a
box ofmass Af on a rough horizontal surface. The coefficient of

fiiction between the shoes ofthe boy and the floor is \i and that

between the box and the floor is |i'. In which of the following

cases it is certainly not possible to slide the box ?
(A) p<p',M<M' p) p>p',M<M'
(Q p<p',M>M (P) \i>n\M>M'

2-11 A block rests on a rough plane whose inclination 0 to the
horizontal can be varied. Which ofthe followinggraphs indicates
how the fiictional force F between the block and the plane

.varies as 0 is increased ? .

F

(B)

90°

P)

90®

2-12 In the balance machine, shown in the figiire-2.127 which
arm will move downward ?

(A) Left
(Q None

2in

-L/l—^

Figure 2.127

P) Right
(D) Carmot be said

1:251

2-13 In a situation the contact force by a rough horizontal
surface on a body placed on it has constant magnitude. If the
angle between this force and the vertical is decreased, the
frictional force between the surface and the body will:
(A) Increase p) Decrease

(Q Remain the same P) May increase or decrease

2-14 In the figure-2.128, the blocks .<4, B and C ofmass m each
have acceleration <3,, and respectively. and are
external forces ofmagnitude 2 mg and mg respectively:

F, = 2 mg

(A) flj = ^2 = £73
(Q £2, = flj, ^^2 ^ ^3

•/////////////Z '/////////////A

Figure 2.128

^ P) £7i > £73 > £72
P) £7j > £72, £72 = £73

F2= wg

2-15 A block y4 kept on an inclinedsurfacejust begins to slide
ifthe inclination is 30°. The block is replaced by another block
B kid it is found that'it just begins to slide if the inclination is
40°:

(A) Mass of^ > mass of5 P) Mass of.^4 < mass of5 .

(Q Mass of^ = mass of5 p) All the three are possible.

2-16 When the force of constant magnitude always act
perpendicular to the motion ofa particle then:
(A) Velocity is constant p) Acceleration is constant

(Q K.E. is constant P) None of these

2-17 Essential characteristic ofequilibrium is:
(A) Momentum equal zero p) Acceleration equals zero

(Q K.E. equals zero p) Velocity equals zero

2-18 The force required to stretch a spring varies with the

distance as shown in the figure-2.129. If the experiment is
performed with the above spring of same stifftiess and half its
natural length, the line OAwill:

(A) Rotate clockwise

(Q Remain as it is

Figure 2.129

p) Rotate anticlockwise
P) Become double in length



2-19 A person standing on the floor of ah elevator drops.a
coin. The coin reaches the floor ofthe elevator in a time ifthe

elevaton is;stationary and in time if it is moving uniformly.
Then: ' j. . ^

= , .. 1

(B) •

(Q t^>t2
(D) tj < ^2 or/j > ^2 depending onwhether theliftifgoing upor

down. • / • •

.' ' . ' j •

2-20 A scooter starting from rest moves with a constant
acceleration fora time At,, then with aconstant velocity forthe
nextAtj andfinally with a constant deceleration forthenext At^
to come to rest. A 500 N man sitting on the scooter behind the
driver manages to stay at rest with respect to the scooter without
touching any other part. The force exerted by the seat on the
man is:

(A) 500 N throughout the journey
(B) Less than 500 N throughout the journey
(Q More than 500 N throughout the journey
P) >500NfortimeA/, andAt3 and500NforA/2 .

2-21 A block of mass m is supported by a string passing
through a srnoothpeg as shown in the figure-2.130. Variation of
tension in the,string T as,a fraction, of 0 best represented by
(here the total length ofthe string is varied): >

Smooth peg

Figure 2.130

T-

mg!2

(A)

(Q

T

mg/2

Forces and Newton's Laws of

2-22 A metal block ofmass m is placed on a smooth metallic
plane in support with string as shown in diagram. If, after long
time due to corrosion, the contact surface becomes'rough

with coefficient of friction p, then friction force acting on the
block will be:

(A) pmg COS 9

(Q . -

Figure 2.131

(B) mg sin 0

"'(tf) None

2-23 Inanimaginary atmosphere, theairexertVa small forceF
on anyparticlein thedirectionofthe particle'smotion.Aparticle
of mass'm' projected upward takes a time in reaching the
maximum height and t2 in the return journey to the original
point then: . • . . _

(A)t,<?2 ^ • •• •
(B)/i>/2' '
(Q ^ '2
p) Therelation between and^2 depends onthemass of the

particle
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-.O.. NumeficalMCQsSingleOption Correct
•• 2^1 Two.blocks,: '̂ and B, attached to each other.by amassless
spring, are kept on a rough horizontal surface (p - .O.T) and
pulled bya force F = 200 Nasshown inthe figure-2.132. Ifat
some instant, the 10 kg mass has acceleration of 12 m/s^, what
is theacceleration of20 kgmass?

A B

10 kg -iitlooOOOOOOODOOd- 20 kg F = 200N

"^^^^77777.777777777777/77777^77/
"n = 0.1 " ~

Figure 2.132

(A) 2.5 m/s^
(Q 3.6 m/s^

, (B) 4.0m/s^
(D) 1.2m/s^

2-2,Ac^ ofmass Mhas ablock ofmass wincontactwith itas
shown^in the, figure-2.133. The coefficient ofAction between

,theblock andthecartisp.What isthe minimum acceleration of
the cart so that the block m does not fall ?

(A) Hg

(Q

Figure '2.133

'M

(B) g/\i •

P) M\xglm

2-3 A body ofmass mis kept stationary ona rough inclined
plane ofangle ofinclination 0. The magnitude offorce acting
on thebody bythe inclined plane is equal to :
(A) mg (B) mgsin0
(Q mgcos-0 , p) None . , , ,

.2-4 Two blocks .4 (1 kg) andF (2 kg) are connected by astring
passing oyer a smooth pulley as shown in the figure-2.134. B
rests on rough horizontal surface and A rest on B. The

coefficient offriction between^ & 5 is the same as that between
B and the horizontal surface. The minimum horizontal force F

required to moveA tofhe left is 25 N. The coefficientoffriction
-is:(g=10m/s2) " ' " >

(A) 0.67"

(Q .0.4,..j

F-
1 kg

2 kg

W7777777777Z/7777777777^.
Figure 2.134

P) 0.5

i -,;. , . -P).025, :

2-5 A particle moving on the inside ofa smooth sphere of
radiusr describing a horizontal circleat a distance rll belowthe

centre of the sphere. Whatis its speed? \ ,•

(A) P) V4gW3 •

(Q (D)

2-6 In'the systeni of pulleys show what"
should bethe value'of Wj such that 100 ^
remains at rest: (Take g = 10m/s^)
(A) 180gm '' •'
P) 160gm

,, . Q
P) 200gm

"(A) •^(/-a)up--^^^

'py '̂ (a4-/jdo™'

(Q |-(a+/)up

P) yP-/)up:il'

'////////

200gm

Figure'2.135' '

2-7 A body of mass M is kepton a rough horizontal surface
(friction coefficient =p). Ap,erson is ^ing to pull the body by
applying a horizontal force but the body is not moving. The
force by thesurface on.4isF,where:- - • , ,
(A)F=Mg ' P) F=pMg , . ,

(Q Mg<F<Mg^l+p2 (D) Mg>F>Mg^^V^,
^ ^ ' ' • '///////////.
2-8 In the figure-2.136 at the free end of the
light strihjg,'a force F is applied to keep the
.suspended, mass of ,18,kg at rest. Assuming
pulley is-light.then-the force exerted;.by the
ceiling on.the system is: (Takeg= 10m/s?) ,
(A) 200N..-,^.j ' p), 120N,
(Q 180N p) 240N

' ( ^Figure 2.136

2-9 Aball weighing 10 gm hits ahard surface vertically.with a
speed of 5 m/s and rebounds with the same speed. The ball
remains incontact with the surface for (0;01) sec. The average
forceexertedbythesurfaceontheballis'iJ"' • •
(A) lOON -^ p)' ION - '< • • -• ' '
(Q IN - p) 150N- • •• '• ' •

2-10 The pulleys inthe diagram are all smooth and light. The
acceleration of k is a upwards and the acceleration ofCis/
downwards. The acceleration ofF is: '

/////^^^^

18 kg

Figure 2.137



2-11 In the system shown, the
"initial acceleration of the wedge

'ofmass5Mis(there'-isnofrictioh i '
^ywhere) :'
(A) Zero " • ' '' '
(B) 2g/23 r . :)
(Q 3g/23

P) None

7^777^^ZV7777777777777/.
Figure 2.139

2-12 Findtheacceleration of3kgmass when acceleration of
2kgmassis2ms"^as^owninfigure-2.140:, .of'';

3 kg 2 kg 'ION

F=30tN

»1 II "2
vW/'/W/'///.

2 ms->

Figure 2.140

(A) 3ms-2 .^ . (B) 2ms-2
(Q 0.5ms-2 _ ^ (P) Zcto

'2-13Torce'Fis applied onupper If
30 / where Vis time in'second. Find the

time when loses contact with floor: (Take
g=10m/s^)
(A) 1 sec .1
(B) 1.66sec'
(Q 2 sec
P) None of these ' • "- a' "»i=;4,kg,/n2=\l kg

i'j-' ..Figure2.141-j

2-14 Avarying horizon^forceF= 6/acts onablodcbfmaK m
kept on asmooth horizontal surface. Ah identical block iskept
onthe first block.The coefficient of frictionbetwwn theblock
isp.'The time after which.the relative sliding between the block
takes place is: ' ' • •' ''

'•(A)'2mg^/fc (B) 2]mg
(Q [img/b: j.-'w' • •p) None of these

,2Tl5iThe system shown is just on , }f"=40N

the verge of slipping. The co-
efficient of static friction between

the blockand the table top js:
(A) 0.5 .

.(B) 0.^. ,
(C)-,0.15. ,^..

P) 0.35 . ; o ,., p, .

3(fy

777777777777y

Farcer

2-17^A-block4 kepton.a rou^plate {00^) with coefficientof
*static frictionPs =p.'75 &coefficient ofkinetic friction 0;5.
'The plate is leariin'g with horizontal at an angle 6=tan-'(|ip.'If
;the plate isfurthCT-tilted slightly then the acceleration ofblock
willbe: 1 •

(A) 1.5m/s^
(Q 2.5m/s2

1

VP77777777777777X777X77777/^\

Figure 2.143

I'l •; (B) 2m/s2 . '
1/ " ' ' p) None of these

2-i6' For a particle rotating'in'a vertical circle with'uniform
ŝpeed, the maximum and rhiiiimum tension in ffie string are in

' theratio" 5:1 Iftheradius ofvertical circle is2m, thespeed of
revolving body is': -

(A) -JSm/s
(Q 5m/s

\ ! - -

, P) 4-\/5m/s
P) lOm/s

2-19 Block M slides down,on frictionless incline as shown.
The minimum frictioncoefficient so that mdoesnot slidewith
respect to A/would be:

1 j ' m

4
i My

•T'
I'xiM' -u ' ' - C •

'^2-
, ' ' -a. u

,1'

(Q f L.r.
p) None of these

Figure 2.144
i •

2-20' ATorceF=acts oh aparticle whose mass ismahd
'"whose velocity is 0 at/ = 0. It's terminalwelocityisv^ j". r..

B

(B) ^
IF=8N

'•\rv •

• ' o -J

. u! r. n

; • ..j"

Figure2.142 '
• ; ':i.. ' .j"j:.

2-16 Abody ismoving down a long inclined plane ofangle of
inclinatiofiO. The coefficient offiiction between the body and
theplane varies as p = 0.1 x, where x is the.distance moved
down theplane. The bodywill have themaximum velocitywhen
it has travelled a distance x given by: .
(A)x=10tane p)x=5tan0

' - •' ylio. i ... - .•:)(Q ,/2cot0 -

2-21 N^lectingMction andmassofpulley,
what is the acceleration of mass B ?....

(A) g/3 -
P) 5g/2

(Q 2g/3
P) 2g/5

''///////////,

3K
7kg

3kg

Figure 2.145

2-22 Two bodies ofmass mand4mare attached bya'string
shown in thefigme-2.146. Thebodyofmass mhanging from a
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string of length / is executing simple harmonic motion with
amplitude A while other body is at rest on the surface. The
minimum coefficient of friction between the mass 4m and the

horizontal surface mustbe to keepit at rest is :

(A) 4

(Q \'j COS0

4m

V//////////////////

\
0'

Figure 2.145

(B) i

P) 4

A

\ '• y

2-23 A spring of force constant k is cut into two pieces such
that one piece is double the lengthof the other. Then the long
piece will have a force constant of:
(A) (2/3)k (B) (3/2)k

(Q 3k (D) 6k

2-24 A man ofmass m stands on a frame of

massM. He pulls on a lightrope, whichpasses
over a pulley. The other end of the rope is

,attached to the frame. For the systemto be in
equilibrium, what force must the man exert
on the rope ?

(A)

(B) {M+m)g

(Q (M-m)g
(D) (M+2m)g

'/////////////y

%

M.
X

t
Figure 2.146

2-25 A car starts from rest to cover a distance s. The coefficient

of friction between the road and the tyres is p. The minimum
timeinwhichthe carcan coverthe distance is proportional to :

(A) n (?) 4^
(Q 1/n (D)

2-26 Three equal weights ofmass 3 kg each are
hanging on a string passing over a fixed pulley
as showninfigure-2.147. The tensionin thestring
connecting wei^tBand Cis: (Takeg = 10 m/s^)
(A) 1 kg wt

p) 2kgwt

(C) 3 kg wt

P) 4kgwt

rrk

Figure 2.147

129

2-27 Ablockofmass 1kgishorizontally thrown with avelocity
of 10m/sona stationary longplankofmass 2 kgwhose surface
has a p = 0.5. Plank rests on frictionless surface. The time when

Wj comes to rest w.r.t.plank is:

(A) 2 sec

4
(Q -z sec

(B) -sec

(D) 1 sec

2-28 Ahoard ofmass w= 1kg lies ona table anda weight of
M= 2 kg ontheboard. Whatminimum force F must beapplied
on the board in order to pull it out from under the load ? The
coefficient offriction between the load and the board is Pj =0.25
and that between board and table ispj=0.5 :(Takeg = 10 m/s^)
(A) 7.5N

(B) 15N

(Q 22.5N

P) 30 N
Figure 2.148

2-29 A man is standing in a lift which goes up and comes
down with the same constant acceleration. If the ratio of the

apparent weights in the two cases is 2 : 1, then the acceleration

of the lift is: (Take g = 10m/s^)
(A) 3.33 ms-2 (B) 2.50 ms'^
(Q 2.00ms-2 _ p) 1.67 ms-2

2-30 A blockofunknown massis at rest on arough, horizontal
surface. Ahorizontal forceF is appliedto the block.The graph
in the figure-2.150 shows the acceleration of the block with

respect to the applied force. The mass of the block is:

(A) 1.0 kg

(Q 2.0 kg

M

in •j

2 4 6 8 10 12 14
Applied force F(N)

Figure 2.149

P) O.I kg
P) 0.2 kg

2-31 In the shown mass pulley svstem. •//////////////,
pulleys and string are massless. The one end
of the string is pulled by the force ir= mg.
The acceleration ofthe block will be :

(A) g/2

P) 0

(Q ^

P) 3g

F = ms

Figure 2.150
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2-32 A block is given certain upward velocity along the incline
of elevation a. The time of ascent to upper point was found to
be half the time of descent to initial point. The co-efficient of
friction between block and incline is:

(A) 0.5 tan a •" (B) 0.3 tan a
(Q 0.6 tan a P) 0.2 tan a

2-33 Consider the shown arrangement the coefficientoffriction
between the two blocks is 0.5. There is no friction between 4 kg
block and horizontal surface. If a horizontal force of 12 N is

applied on 2 kg block as shown in figure-2.151, acceleration of4
kgblock wouldbe: (Take 10m/s^):

F

(A) 2.5m/s2
(Q 5m/s2

2 kg

4 kg

^777777777777777777777.

Figure 2.151

(B) 2m/s^
P) None of these

2-34 A 40 kg slab rests on a frictionless floor. A 10 kg block
rests on top of the slab as shown in the figure-2.152. The

coefficient of static friction between the block and slab is 0.60

and coefficient of kinetic friction is 0.40. The 10 kg block is
acted upon by a horizontal force of 100 N. The resulting

acceleration ofslabwillbe: (Takeg = 10m/s^)

lOON- 10 kg

(A) 1 m/s2
(Q 1.52m/s2'

40 kg

777/777777//7/77/7777/77777/

Figure 2.152 •

P) 1.47m/s2
p) 6.1 m/s^

2-35 A load attached to the end ofa spring and in equilibrium
produces 9 cm extension of spring. If the spring is cut into three
equal parts and one end of each is fixed at 'O' and other ends
are attached to the same load, the extension in cm of the

combination in equilibrium now is:

(A) 1 p) 3
CQ 6 P) 9

2-36 A heavy spherical ball is constrained in a frame as shown
in figure-2.153. The inclined surface is smooth. The maximum
acceleration with which the frame can move without causing
the ball to leave the frame :

(A) g/2

P) ,gV3

P) g4i Figure 2.153
77777777777777777777777.

Forces and Newton's Lawffi.of Motion

2-37 Find the reading of spring balance as shown.in
figur^e-2.154. Assume that mass Misinequilibrium: '

(A) 8N

(Q 12N

Spring
balance

'/7777777777/777/7777777777777/777?,

Figure 2.154

P) 9N

P) Zero

2-38 For what value of M will the

masses be in equilibrium. Masses are
placed on fixed wedge :

(A) 5 kg
P) 4kg

(Q 3.75kg
P)3kg

777777777777777777777777777777^

Figure 2.155

2-39 A body of mass m starts sliding down an incline of 30°
from rest. The body comes to rest just when it reaches the
bottom. If the top half of the plane is perfectly smooth and the

lower half is rough, find the force offriction:

(A)
mg

4

(Q

P)
mg

s

2-40 Amass of0.5 kg is just able to slide down the slope ofan
inclined rough surface when the angle ofinclination is 60°. The

minimum force necessary to pull the mass up the incline along

thelineof greatest slopeis : (Take g = 10m/s^)
(A) 20N P) 9N

(Q ICON P) IN

2-41 Minimum force required to keep a

block ofmass 1 kg at rest against a rough

vertical wall isP. Ifa force P/2 is applied

then the acceleration ofthe block will be :

(Take g' = 10 m/s^)
(A) Sm/s^ p) 2.5 m/s^
(Q 2m/s^ P) 0.9m/s^

-p = 0.5

1 kg

Figure 2.156

2-42 A 60 kg body is pushed with just enough force to start it
moving across a floor and the same force continues to act
afterwards. The co-efficient ofstatic and kinetic friction are 0.5

& 0.4 respectively. The acceleration of the body is : (Take
g=10m/s^)
(A) 6 m/s^ P) 1m/s^
iQ 2.5m/s2 P) 3.8m/s2
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2-43 Aparticle ofsmall mass misjoined toavery heavy body
by a lightstingpassingovera lightpulley. Both bodiesare free
to move. The total downward force on the pulley is :
(A) mg . (B) 2mg
(Q 4mg . p) »mg

2-44 A20kgmonkeyslides down avertical ropewitha constant
acceleration of 7 ms"^. Ifg = 10ms"^, whatis the tension in the
rope ?

(A) 140N (B) lOON

(C) 60N P) 30N

2-45 A block A ofmass 2 kg rests on another block B ofmass
8 kg which rests on a horizontal floor. The coefficient offriction

between A and B is 0.2 while that between B and floor is 0.5.

When horizontal force of 25 N is applied on the block B, the
forceof friction betweenA andB is: (Take g = 10m/s^)
(A) Zero p) 3.9N

(Q 5.0N P) 49N

2-46 A man slides down a light rope whose breaking strength
is T) times his weight (r| < 1). What should be his maximum
acceleration so that the rope just breaks ?

(A) frg P) g(l-Ti)

(Q
g

1+ Tl

2-47 A string ofnegligible mass going over a clamped pulley
of mass m supports a block of mass M as shown in the figure-
2.157. The force on the pulley by the clamp is given:

(A) V2Mg

p) V2mg

(Q + g

p) -yjiM +m)^ +M^ g
Figure 2.157

2-48 A mass m rests under the action of a force F as shown in

the flgure-2.158 on a horizontal surface. The coefficient of

friction between the mass and the surface is p. The force of
friction between the mass and the surface is ;

rF

(A) [vng

(Q ^

7777777777777777777777777777777,

Figure 2.158

P) \l{mg+—'[

P) pLmg-y]

2-49 A blockof mass0.1 kg is heldagainsta wallbyapplying
a horizontal force of5 N on the block. Ifthe coefficient offriction

between the block and the wall is 0.5, the magnitude of the
frictional forceactingon theblockis: (Take g = 9.8 m/s^)
(A) 0.49N P) 0.98N
(Q 2.5N p) 4.9N

2-50 A block of mass M= 4 kg is kept on a smooth horizontal
plane.Abar ofmassw= 1kg iskeptonit.Theyareconnected to a
spring as shown & the spring is compressed. Then what is the
maximum compression in the spring for which the bar will not
slip on the block when released ifcoefficient offriction between

themis 0.2 &springconstant= 1000N/m: (Takeg= lOm/s^)

(A) 1 cm

(Q 1.25cm

1̂
yVTTTTTTTTTTTTTTP'TTTTTZ^.

•}i = 0.2

A:=1000N/m

M

Figure 2.159

P) Im

P) 10cm

2-51 IfNewton is redefined as the force ofattraction between

two masses (each of 1 Kg) 1 meter apart, the value of G is :

(A) lONKg-^m^ p) 0.1NKg-2m2
(Q lNKg-2m2 p) 100NKg-2m2

2-52 Two weights and W2 aresuspended from theends of
a light string passing over a smooth fixed pulley. If the pulley is
pulled up with acceleration g, the tension in the string will be :

(A)

(Q

AWyW2

Wj-W2

(B)

(D)

2fVjW2

2(fF,-tW2)

2-53 Three weights are hangingover a smooth fixed pulley as
shown in the figure-2.160. What is the tension in the string

coimecting weights B and C ?

'/////////.

(A)g

(Q 8g/9

5 kg

1 kg C

Figure 2.] 60

(B) g/9

P) 10^/9

2-54 Figure-2.161 shows a wooden block on a horizontal plane
at a rest beingacteduponby three forces :F, = 10N, Fj = 2 N



and friction. IfFj is removed the resultant force actingon the
block will be:

(A) 2 N towards left
(B) 2 N towards right

(Q ON

P) Cannot be determined

' Fo

Figure 2.161

2-55 Figure-2.162 shows a wedge of mass 2 kg resting on a
fiictionless floor. Ablock of mass 1kg iskept on the wedge and
the wedge is given an acceleration of 5 m/sec^ towards right.
Then:

y7Z^77777777777777777777777777,

Figure 2.162

(A) Blockwill remainstationaryw.r.t. wedge.
(B) The block will have an acceleration of 1 m/sec^ w.r.t. the

wedge.

(Q Normal reaction on the block is 11N.
p) Net force acting on the wedge is 4 N.

2-56 A mandrags an mkg crateacross a floor by pulling on a
rope inclined at angle 0 above the horizontal. If the coefficient

ofstatic fiiction between the floor and crate is then the tension

required in the rope to start the crate moving is :

(A)

(Q

(sin0-pj COS0)

(cos0-p sin0)

(B)

(D)

(sin0 + p^ COS0)

(cos0 + p^ sin0)

2-57 If thecoefficient ofkineticfiiction be inabovequestion
then the initial acceleration ofthe crate will be :

(A)

P)

(Q

P)

^ T ^
mg

r j, N

mg

" T -
mg

(cos0-Hp^sin0) + p^ g

(cos04-Pi^ sin0)-p^ g

(sinO-t-p;^ cos0)-p^ g

j(sin0-i-p^ cos0)+p^

2-58 A block of mass 2 kg is given a push horizontally and
thenthe blockstarts slidingover a horizontal plane.The graph

Forces and Newton's laws of Motion

shows the velocity time graph of the motion. The co-efficient
of sliding fiiction between the plane and the block is :

(A) 0.02

(Q 0.04

nn sec 4

Figure 2.163

P) 02

P) 0.4

2-59 A force of 100N is applied on a block of mass 3 kg as
shown in the figure-2.164. The coefficient of fi^iction between

the surface and the block is 0.25. The firictional force acting on
the block is: (Take^=10 m/s^)

(A) 15 N downwards

(Q 20 N downwards

Figure 2.164

P) 25 N upwards

P) SON upwards

2-60 A block ofmass 1 kg is kept on a horizontal surface in a
truck. The coefficient of static friction between the block and

the surface is 0.6. If the acceleration of truck is 5 m/s^, then
fiictional force acting on the block is :
(A) 2N p) 3N
(Q 5N P) 6N

2-61 A block of mass M on a horizontal smooth surface is

Mpulled by a load of mass — by means of a rope AB and string

EC as shownin the figure-2.165. The length& mass ofthe rope

M '
ABare L and ~ respectively and BC is massless. As the block

is pulled fromAB= L toAB = 0 its accelerationchanges from:
~ A •

(A) ^ tog

(Q f tog

M

•/////////////////////.

M2 C

Figure 2.165

(B) f tof

(D) ^ to2g
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2-62 What should bethe maximum value ofMsothat the 4kg
blockdoes notslipoverthe5 kg block: (Take g = 10m/s-)

(A) 12kg

(Q 10kg

4 kg H = 0.4

5kg ^
V7777777777777777777777P/^

smooth X ^

Figure 2.166

(B) 8kg

(D) 6kg

2-63 Thedirection ofthreeforces 1N, 2 N and3N acting at a
point,are parallel to the sides of an equilateral triangletakenin
order. The magnitude oftheir resultant is :

(A) V3N '

(Q fN

(B)

(D) Zero

2-64 Abodyweighs 6gmswhenplacedin onepanand24 gms
when placed on the other pan ofa false balance. If the beam is
horizontal when^both the pans are empty, the true weight ofthe
body is :
(A) 13gm (B) 12gm
(Q 15.5 gm (D) 15gm

2-65 A 20 kg block placed on a level fiictionless surface is
attached to a cord which passes over two small frictionless
pulleys, as shownin figure-2.167, to a hangingblock originally
at rest 1 m above the floor. If the hanging block strikes the floor
2 s after the systemis released, the weight of the hangingblock
is:

'/////////////y

20 kg

(A) 3.5N

(Q 5.4N

%V/^/wtttttpttttttttttttttttttZvtttttttttttz-

Figure 2.167

(B) 5.27N

(D) 10.54N

2-66 For the arrangement shown in
figure-2.168, -the tension in the string to
prevent it from sliding down, is :
(A) 6N.
(B) 6.4N

(Q 0.4N

(D) None of these 2.168 ,

H = 0.8

2-67 A givenobject takes 3 times as muchtimeto slide down a
45°rough incline as it takes to slidedown a perfectly smooth
45°incline. The coefficient of friction between the objectand
the incline is:

(A) 1/8 (B) 8/9

(Q 1/2 V2 (D) 2V2/3

2-68 A stationary body of mass m is slowly lowered onto a
massive platform of mass M {M» tri) moving at a speed
Vq = 4 m/s. How muchwill the body slide with respect to the
platform (p = 0.2 andg = 10m/s^) ?

M
Vq = 4 m/s

(A) 4 m

(Q 12m

V7777777777777777777777777,

Figure 2.169

(B) 6m

(D) 8m

2-69 In thearrangement shown, thepulleys
are smooth and the strings are inextensible.
The acceleration ofblock5 is:

(A) g/5
(B)

(Q 2g/5
P) 2g/3

ZW7777Z/

Figure 2.170

2-70 An empty plastic box ofmass 9 kg is found to accelerate
up at the rate ofg/3 whenplaced deep inside water.Mass of the
sand thatshouldbe put insidethe box so that it may accelerate
down at the rate ofg/4 is :

(A) 7kg (B) 6kg
(C) 9 kg (D) None of these

2-71 With what minimum acceleration mass Mmust be moved

on frictionless surface so that m remains stick to it as shown

in figure-2.171. Theco-efficient of friction between A/&mis p:

(A) pg

pwg

(Q M+m

V7777777777777777777777777.

Figure 2.171

(B)

P)

g_

11

v-m

M

//////////////,

m

2-72 The coefficientof frictionbetween4 kg and5 kgblocks is
0.2 and between 5 kg block and ground is 0.1 respectively.
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Choosethe correctstatements : (Take g = 10m/s^)

4 kg

5 kg

7777Z77777777777777777777777P7.

Figure 2.172

(A) Minimum force needed to cause system to move is 17 N

(B) When force is 4 N static friction at all surfaces is 4 N to
keep system at rest

(C) Maximum acceleration of4 kgblockis 2 m/s^
(D) Slippingbetween4kgand5kgblocksstartwhenFis 17N

2-73 Find the friction force between the blocks in the

figure-2.173;

m= 0.3

(A) 6N

(Q 5N

V. 2 kg

4 kg -£= 15N

Figure 2.173

(B) 18N

(D) 12N

2-74 A pulley is attached to one arm of a balance and a string
passed around it carries two masses Wj and m.^. The pulley is
provided with aclamp due towhich Wj andtrij^ donotmove. On
removing the clamp, and start moving. How much change
in counter mass has to be made to restore balance ?

TT

Figure 2.174

(A)
(W1 + W2)'

^ Wl + W2

(D) W1-W2

Wi -m-

(Q 2wj-rM2

2-75 Blocks^ and 5 have masses of2 kg and 3 kg respectively.
The ground is smooth. P is an external force of 10 N. The force

exerted by B on is:
(A) 4N

(B) 6N

(Q 8N

p) ION Figure 2.175

2-76 Two blocks of masses Wj and Wj are placed in contact
with each other on a horizontal platform. The coefficient of
friction between the platform and the two blocks is the same.

3 kg
2 kg

?=10N
A B

Forces and Newton's La^ of Motioni

The platform moves witii an acceleration. The force ofinteraction
between the blocks is :

(A) Zero in all cases

(B) Zeroonlyif Wj =
(Q Nonzero onlyif Wj >/«2
(D) Nonzero onlyifWj <W2 Figure 2.176

2-77 A bodyof weight Wj is suspended from the ceiling of a
roomthrougha chainof weightWj- The ceilingpulls the chain
by a force:
(A) Wi (B) Wj

Wj+W2

"'1 *"2
a

(Q H'j+W2 (D)

2-78 A horizontal rope of length y is pulled by a constant
horizontal force F. What is the tension at a distance x from the

end where the force applied ?

F(y-x)
(A)

(Q

y

X

(B)

P)

F.y
y-x

y

2-79 A block of mass m slides in an

inclined right angle trough as shown in
the figure-2.177. If the coefficient of

kinetic friction between the block and the

material composing the trough is p, then
the acceleration ofthe block will be;

(A) (cos6 - p sin0)^

(Q (sin0- p cos0)^

Figure 2.177

(B) (sinB- p sin0)g^

P) (sin0 - V2 pcos0)g

2-80 A ball is held at rest inposition^ by two light cords. The
horizontal cord is now cut and the ball swingsto the positionB.
What is the ratio ofthe tension in the cord in positionB to that
in position A originally ?

(A) 3
(Q 1/2

V/////////////////////.

r
Figure 2.178

• • P) 3/4

P) 1

2-81 A boystanding on aweighing machine notices hisweight
as 400 N. When he suddenlyjumps-upward the weight shown
by the machine becomes 600 N. The acceleration with which

the boy jumps up is : (Takeg= 10 m/s^)
(A) 5ms"^ ; p) 3.4ms~^
(C) 6ms"^ , p) 9.8ms"^ • '
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2-82 Two massesA and5 of 5 kg and 6 kg are connected by a
string passing over a fiictionless pulley fixed at the comer of
table as shown in figure-2.179. The coefficient offriction between
A and the table is 0.3. The minimum mass of C that must be

placed on A to prevent it from moving is equal to :
(Take^= lOm/s^)

(A) 15 kg

(Q 5kg

^7?7777777777:p77777^^

Figure 2.179

(B) 10 kg

(D) 3kg

2-83 A heavy body of mass 25 kg is to be dragged along a

horizontal plane (p= 1/73 ).The,least force required to start
the body is :

(A) 25kgf (B) 2.5 kgf

(Q 12.5 kgf (D) 50 kgf

2-84 A heavy particle of mass 1 kg is -/////////////z
suspended from a massless string
attached to a roof. A horizontal force F is

applied to the particle such that in the
equilibrium position the string makes an
angle 30°with the vertical. The magnitude
ofthe force F equals :

(A) ION (B) 1o73N
(Q 5N - P) 10/^^N

2-85 The human body can safely stand an acceleration 9 times
that due to gravity which is 10 m/s^. The minimum radius of
curvature with which a pilot may safely tum a plane vertically
upward at the end ofa dive, when the plane's speed is 720 km/hr
is:

(A) 500m P) 612m"
(Q 475m (P) 323m

2-86 A1 kg block is being pushed against
a wall by a force F=75 N as shown in the
figure-2.181. The coefficient offriction is
0.25. The magnitude ofacceleration ofthe
block is: (Take g = 10 m/s^)
(A) lOm/s^
(B) 20m/s2
(Q 5 m/s^
P) None

Figure 2.180

Figure 2.181

2-87 A block of mass 10 kg is suspended
through two light spring balances as shown
in figure-2.182:
(A) Both the scales will read 10kg
P) Both the scales will read 5 kg
(C) The upper scale will read'10 kg and the

lower zero.

P) The reading may be anything but their
sum will 10 kg.

135

'/////////////z

£

I
I

10 kg

Figure 2.182

2-88 Three rigid rods are joined to form an equilateral triangle
ABC ofside 1 m. Three particles carrying charges 20 pC each
are attached to the vertices of the triangle. The whole systemis
at rest in an inertial frame. The resultant force on the charge
particle at A has the magnitude :
(A) Zero p) 3.6N

(Q 3.673N P) 7.2N

2-89 A rope of length L has its mass per unit length Xvaries
according to the function X (x) = The rope is pulled by a
constant force of 1N on a smooth horizontal surfece. The tension

in the rope at x = L/2 is:

(A) 0.50 N

(Q 0.62N

-IN

V77777777777777777777z
smooth

Figure 2.183

P) 0.38N

P) None

2-90 What force must man exert on rope to keep platform in
equilibrium: (Takeg-= 10m/s^)

(A) lOON
(Q 300 N

Platfomi, 40 kg

Figure 2.184

P) 200 N

P) 500N
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Advance MCQs with One orMore Options Correct
2-1 A particle is acted upon by a force of constant magnitude
which is always perpendicular to the velocity of the particle.
The motion ofthe particle takes place in a plane. It follows that:
(A) Its velocity is constant
(B) Its acceleration is constant

(Q Its kinetic energy is constant
P) It moves in a circular path

2-2 A reference frame attached to the earth:

(A) Is the inertial frame as motion of earth is at uniform speed.
(B) Cannot be the inertial frame because earth is revolving

around the sun

(Q Is an inertial frame because Newton's Laws are applicable
in this frame

P) Cannotbe the inertialframe because earth is rotating"about
its own axis

2-3 When abicycle is inmotion, theforce offriction exerted by
the ground on the two wheels in different cases is such that it

acts ;

(A) In the backward direction on the front wheel and in the

forward direction on the rear wheel.

P) In the forward direction on the front wheel and in the
backward direction on the rear wheel.

(Q In the backward direction on both the front and on the rear

wheel.

p) In the forward direction on both the front and on the rear

wheel.

2-4 AcarCofmass Wj, rests onaplank ofmass ^2.The plank
rests on a smooth floor. The string and pulley are ideal. The car

starts and moves towards the pulley with certain acceleration :

C(mi)

A"'2)r
77?777777777777777777777:!777777?77777//,

Figure 2.185

(A) Ifwj > ^2, the string will remain under tension
P) If wj < thestringwillbecomeslack
(Q IfWj = m^, thestringwillhavenotension, andCandP will

have accelerations of equal magnitudes
P) CandPwiIlhaveaccelerationsofequalmagnitudeifWj>

2-5 The blocks5 & Cin the figure-2.186 have mass 'w' each.
The strings AB & EC are light, having tensions 7, &
respectively. The system is in equilibrium with a constant
horizontal force mg action on C:

(A) tan 0j = - ;

P) tan 02 = 1

(Q 7j = V5 mg

P) ^2 ^ V2 mg

'/////////. 4

C

Figure 2.186

-F=mg

2-6 Five identical cubes eachofmass 'w' are on a straight line
with two adjacent faces in contact on a horizontal surface as

shown in the frgure-2.187. Suppose the surface is frictionless
and a constant force P is applied from left to right to the end
face of A, which of the followingstatements are correct; '

B C D E

' Figure 2.187

5P
(A) The acceleration of the system is —

m

p) The resultant force acting on each cube is y

IP
(Q The force exerted by C & D is

p) The acceleration ofthe cube Z) is y m

2-7 In the arrangement shown in
the figure-2.188'if system is in
equilibrium (^= 10m/s^):
(A) Tension 7j 50N
p) Tension 7;= 500N
CQ Angle 0 = 37".,
P) Angle 0 = 53°,

30 kg

Figure 2.188

I
40 kg

2-8 Acart with amass M= Yi connected by astring to
a weight ofmass m= 200 g.At the initial moment the cart moves
to theleftalong a horizontal plane at a speed Fq = 7 ms"h
(g-=9.8ms"^):

M 7-P

Figure 2.189

(A) The distance covered by cart in 5 sec is zero
P) After 5 sec weight of mass m will be in same position
(Q The distance covered by cart in 5 sec is 17.5 m
P) None of the above
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2-9 A block ofweight 9.8 N is placed on a table. The smooth
table surfaceexertsan upward force of 10N on theblock.Assume
g = 9.8ni/s^:
(A) The block exerts a force of 10 N on the table

(B) The block exerts a force of 19.8 N on the table
(Q The block exerts a force of9.8 N on the table

(D) The block has an upward acceleration.

2-10 A 10 kg block is placed on a horizontal surface whose
coefficient offriction is 0.2. Ahorizontal force/*= 15 N first acts

on it in the eastward direction. Later, in addition to P a second

horizontal force Q = 20 N acts on it in the northward direction:

(Takeg= lOm/s^)
(A) The block will not move when only P acts, but will move

when both P and Q act.

(B) Ifthe block moves, the acceleration willbe 0.5 m/s^
(Q When the block moves, its direction of motion will be

tan"'(13/4) east of north
p) When both/* and Q act, the direction ofthe force offriction

actingon the blockwill be tan~^(3/4) west of south

2-11 Two identical blocks are connected by a light
spring. The combination is suspended at rest from

a string attached to the ceiling, as shown in the
figure-2.190 below. The string breaks suddenly.
Immediately after the string breaks:

(A) Acceleration ofboth the blocks would be g
downward

P) Acceleration of centre of mass of the

combined block system would be g

downward

(Q Acceleration ofupper block would be 2g downward

P) Acceleration of lower block would beg upward

•///////.

Figure 2.190

2-12 A block ofmass m is pulled by a force ofconstant power
P placed on a rough horizontal plane. The friction coefficient

between the block and the surface is p. Then :

(A) The maximum velocity of the block during the motion is

P

ms

P) The maximum velocity of the block during the motion is

P

2pmg
(Q The block's speed is never decreasing and finally becomes

constant.

P) The speed ofthe block first increases to a maximum value
and then decreases.

2-13 The ring shown in the figure-2.191 is given a constant

horizontal acceleration =g/ ^). Maximum deflection ofthe

stringfromthevertical is 0q, then :

,137-!

© m

Figure 2.191

(A) 00 = 30"^
(B) 00 = 60°
(Q at maximum deflection, tension in string is equal to wg

P) at maximum deflection, tension in string is equal to

2-14 In the adjacent figure there is a cube having a smooth

groove at an inclination of 30° with horizontal in its vertical

face. A cylinder A ofmass 2 kg can slide freely inside the grove.
The cube is moving with constant horizontal acceleration Aq
parallel to the shown face, so that the slider does not have

acceleration along horizontal.

(A) The normal reaction
acting on cube is zero

p) The value of is g-^
(Q The value of is g.
•p) Acceleration of the

particle in groimd frame
isg

^ Op

Figure 2.192

2-15 Two blocks of masses Wj and are connected through
a massless inextensible string. Block ofmass is placed at the

fixed rigidinclined smface while theblockofmass Wj hanging
at the other end of the string, which is passing through a fixed
massless frictionless pulley shown in figure-2.193. The
coefficient ofstatic friction between the block and the inclined

plane is 0.8. The system of masses and is released from

rest. (Takeg= lOm/s^)

g == 10 m/s^

ff22=2kg

Fixed

VTTZ^TTTTTTTTTTTTTTTTTTZ^TTTTTT?

Figure 2.193

(A) the tension in the string is 20 N after releasing the system

P) the contact force by the inclined surface on the block is
along normal to the inclined surface

(Q the magnitude of contact force by the inclined surface on

the block m, is 20 ^/3 N
P) none of these
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2-17 The figure shows a blockof mass mplacedon a smooth
wedge of massM Calculate the-value of M and tensionin the
string, sothattheblock ofmass mwillmove vertically downward
with acceleration g: (Take g = lOm/s^)

M

Smooth

M"

Figure 2.194

McotG
(A) the value M'is •; -r
^ ^ l-cot0

M cot 0
(B) the value iVfis r
^ ^ l-tan0

(Q the value of tension in the string is

Mg
(D) the value of tension is ——r
^ ' cot0

: Forces andiNevrton's, Laws :of Motion !

2-18 Inthe figure-2.195, amanoftruemassMis standing on a
weighing machine-placed in a cabin. The cabinis joined by a
string with a body of mass m. Assuming no friction, and
negligible mass of cabinandweighing machine, the measured
massofmanis: (normal force between themanandthemachine
is proportional to the mass)

W/////////////////////

^ i

Figure 2.195

Mm
(A) Measured mass of man is

{M + m)

YflQ

(B) Acceleration of man is —
(M + w)

(Q Acceleration ofman is
(Af + w)

(D) Measured mass ofman is M

mg
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UnsolvedNumericalProblemsforPreparation ofNSEP, INPhO &IPhO
For detailedpreparation oflNPhO andIPhO students can refer advance study material on www.physicsgalaxy.com

2-1 A packet of 150 kg is released from an airplane travelling
due east at an altitude of7200 m with a ground speed of 100 m/s.
The wind applies a constant force on the packet of 300 N
directed horizontally in the opposite direction to the plane's
flight path. Where and when does the packet hit the ground,
(with respect to the release location and time)

Ans. [38 s, 2.36 km]

2-2 A block m= 0.5kg slidesdowna fiictionlessinclinedplane
2 m long as showii in figure-2.196. It then slides on a rough
horizontal table surface of p = 0.3 for 0.5 m. It then leaves the
top ofthe table, which is 1.0 m high. How far from the base of
the table does the block land ?

77777777777777777777777777777777777777.

Figure 2.196

Ans. [1.85 m]

2-3 A baseball is dropped from the roof of a tall building. As
the ball falls, the air exerts a drag force that varies directly with

the speed as/= is a constant. Show that the ball acquires a
terminal speed. Find the speed ofthe falling ball as a function of
time.

Ans. (1 - '

2-7 Consider the system ofpulleys as shown in
figure-2.197. Find the acceleration of the three
masses m^,m^ andw^. (Wj = I kg,^2 = 2 kgand
m3 = 3kg)

Figure 2.197

Ans. [19g/29, i7g/29, 2Ig/29]

2-8 A smooth ring.d mass m can slide on a fixed horizontal rod.

A string tied to the ring passes over a fixed pulley 5 and carries

a block C of mass M(= 2m) as shown in figure-2.198. At an

instant the string between the ring and the pulley makes an

angle a with the rod. (a) Show that, if the ring slides with a

speed V, the block descends with speed vcoso.', (b) With what

acceleration will the ring start moving if the system is released

from rest with a = 30®.

///////

2-4 A block ofmetal weighing 2 kg is resting on a frictionless
plane. It is struck by ajet releasing water at a rate of 1 kg/s and
at a speed of5 m/s. Calculate the initial acceleration ofthe |-g
block.

Figure 2.198

Ans. [2.5 m/s^]

2-5 Having gone through a plank.of thickness h, a bullet
changed its velocity v^. Findthetimeof motion of thebulletin
the plank, assuming the resistance force to be proportional to
the square of the velocity.

Ans. [
VQVlogeC^)

2-6 A particle of mass Mis dropped vertically into a ihedium
•that offers resistance proportional to the velocity ofthe particle.
The buoyancy of the medium is negligible, and the resisting

force per unit velocity isf. What uniform velocity will the particle
finally attain ?

Ans. [^] , , -

2-9 When an archer pulls on the bow string with a force of

500 N, the bow string makes angles of53® with the arrow. What

is the tension in the string.

Ans. [416.67 N]

2-10 A man with mass 85 kg stands on a platform with mass
25 kg. He pulls on the free end ofa rope that runs over a pulley

on the ceiling and has its other end fastened to the platform.

The mass of the rope and the mass of the pulley can be

neglected, and the pulley is frictionless. With what force does
he have to pull so that he and the platform have an upward
accelerationof2.2 m/s^. (Takeg= 10m/s^)

Ans. [15 N, 270 N]
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2-11 A body of mass 5x10"^ kg is launched up on a rough
inclined plane making an angle of30® with the horizontal. Obtain

the coefficient of fi-iction between the body and the plane if the
time of ascent is half ofthe time of descent.

Ads. [0.346]

2-12 Twoblocksofmass 2.9 kg and 1.9kg are suspendedfrom
a rigid support S by two inextensible wires each of length one
metre, as shown in figure-2.199. The upper wire has negligible
mass and the lower wire has a uniform mass of 0.2 kg/m. The
whole system of blocks, wires and support have an upward
acceleration of 0.2m/s^. (Take g = 9.8 m/s^)

10.2 m/s^

2.9 kg

1.9 kg

Figure 2.199

(i) Find the tension at the mid point of the lower wire.

(ii) Find the tension at the mid point of the upper wire.

Ans. [20 N, 50 N]

2-13 Thetwoblocksshowninfigure-2.200 are initially at rest.
Assuming ideal pulleys and strings and neglecting friction at
all the surfaces, find the accelerations ofthe two blocks and the

tensionin the cable. (Take g = 9.8 m/s^)

30 kg

wyyyyyyyyy/y

I25 kg

Figure 2.200

Ans. [2.49 m/s^, 0.831 m/s^, 74.8 N]

2-14 In the figure-2.201 shown the bigger block A has a mass
of40 kg and the upper block 5 is of 8 kg. The coefficients of
friction between all surfaces,of contact are 0.2 (static) and 0.15
(sliding). Find the acceleration of masses when set free.

Forces and Newton's Law« of Motion;;
—

Figure 2.201

Ans. [1.6 m/s^]

2-15 Figure-2.202 shows a two block constrained motion
system. Block has a mass Mand5 has a mass m. Ifblocks is

pulled toward right horizontally with an external force F, find
the acceleration of the block B relative to ground.

-0

Figure 2.202

Ans. [ /
M + m

2-16 Solve the previous problem ifthe blocks A and B are of
different shapes as shown in figure-2.203.

Ans. [

Wyyyyyyyyyyyyyyyyyyyyyyyy/yyyyyyyA

/ -3mg sinO

M+ldnt •

Figure 2.203

V(lO-6cos0)

2-17 At the momentr=0, the force F= kt is applied to a'small
body of mass m resting on smooth horizontal plane. The
permanent direction of this force forms an angle 0 with the
horizontal. Find: ,

(i) The velocity ofthe body at the moment ofits breaking off
the plane; •'

(ii) The distance fraversed by the body up to this moment.

Ans. [
mg COS0 'm^g^cos0
2i sin^0 6k^ sin^0
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2-18 Achain oflengtii / isplaced onasmooth spherical surface
of radius Rwith one of its ends fixed at the top ofthe sphere.
What will be the acceleration a of each element of the chain

when itsupper end isreleased ? It is assumed that the length of
the chain/<7ci?/2.

•Rg I
Ans. [— (1 - cos — )]

2-19 Ifmasses oftheblocks AandBshown infigure-2.204(a)
and2.204(b)are 10kg and5 kgrespectively, findtheacceleration
of the two masses. Assume ail pulleys and strings are ideal.
(Takeg=9.8m/s^)

— ^

I

' Figure 2.204

Ans. f^l.ni/s^ 77111/3^, 77111/32]

'/////////////////z

V777777777777J .

2-20 In the figure-2.205 shownin blocks^, B and Chas masses
= 5 kg, Wg = 5 kg and = 10kg respectively, find the

acceleration of the three blocks. Assume allpulleys andstrings
are ideal. (Takeg = 10m/s^)

'//////////////////////////z

% m 77777777ZW7,

B

Figure 2.205

Ans. —1.8m/s2 t , = 1 m/s^ -i , = 4.2 m/s^ «—]

2-21 Oneendofa stringisattachedto a 6 kgmasson a smooth
horizontal table. The string passes over the edge of the table
and to its other end is attached a light smooth pulley. Over this
pulley passes another string to the ends of which are attached
masses of4 kg and 2 kg respectively.Show that the 6 kg mass
moves with an acceleration of8g/17.

^

2-22 Two blocks ofmasses Wj and Wj ^re kept touching each
other on an inclined plane of inclination a with the horizontal.
Show that (i) the force of interaction between the blocks is

(Pi-P2Vi^2gcosa
(wi+mj)

and(ii) the minimum value of a at which theblocks just start
sliding is

a = tan"^
mj +W2

Where pj and ^2 are the coefficients of friction between the
block Wj and the inclined plane and between the block nij and
the inclined plane respectively.

2-23 Two blocksAand Bofmass 1kgand2kgrespectively are
connected by a string, passing over a light fiictionless pulley.
Boththeblocks are resting ona horizontal floor andthepulley
is held suchthat stringremains just taut.At themoment f= 0, a
force F = 20/ N starts acting on the pulley along vertically
upward directionas shown in figure-2.206. Calculate

(a) Velocities of when B loses contact with the floor.

(b) Height raised by the pulley upto that instant. •

A B

77777777777777777777^:V777z

Figure 2.206

Ans. [5 m/s, 5/6 m]

2-24 A worker wishes to pile a cone of sand onto a circular
area in his yard. The radius of the circle is r, and no sand is to
spill onto the surrounding area. If p is the static coefficient of
friction between each layer of sand along the slope and the
sand, show that the greatest volume ofsand that can be stored

in this manner is

2-25 A 30kgmassis initially at restonthe floorofa truck. The
coefficient of static friction between the mass and the truck
floor is 0.3 and the coefficient ofkinetic fiiction is 0.2. Before

eachacceleration given below, thetruckis travelling dueeastat
constantspeed. Findthemagnitude anddirectionof^the friction
force acting on the mass (a) when the truck accelerates at
1.8m/s^ eastward, (b)whenit accelerates at 3.8m/s^ westward.
Takeg^= lOm/s^

Ans. [54 N, 59 N]



2-26 At the moment f = 0 a stationary particle of mass m
experiences a time-dependent force F = kt{t^-1),where is a
constant vector, t' is the time during which the given force acts.
Find:

(a) Themomentum of theparticlewhenthe actionof the force
discontinued;

(b) The distance covered by particle while the force acted.

Ans. dt
Urn

2-27 An empty tin can of mass M is sliding with speed
across a horizontal sheet of ice in a rain storm. The area of

openingofthe can is The rain is fallingvertically at a rate of
n drops per second per square metre. Each rain drop has a mass
mandisfalling with aterminal velocity V^. (a) Neglecting friction,
calculatethe speedofthe canas a functionof time, (b) Calculate
the normal force of reaction of ice on the can as a function of

time.

Ans. [v = A/'
V,

M-¥mAnt
, Fn = Mg + tiAm (Vn + gt) upwards]

2-28 A crate is pulled along a horizontal surface at constant
velocity by an applied force F that makes an angle 0 with the
horizontal. The coefficient ofkinetic friction between the crate

and the surface is p. Find the angle 0 such that the applied force
is minimum to slide the block. Also find the minimum value of

this force.

mmg
Ans. [tan ' ji, — ]

^[7•

2-29 A uniform rod is made to lean between a rough vertical

wall and the ground. Show that the least angle at which the rod
can be leaned without slipping is given by

• , _> I
a — tan ''

2p2

where p, andPj standforthecoefficient offriction between (a)
the rod and the wall, and (ii) the rod and the ground.

2-30 A small body was launched up an inclined plane set at an
angle a against the horizontal. Find the coefficient offriction, if
the time ofthe ascent ofthe body is r| times less than the time of
its descent.

Ans. {k - ^ tana]
.(n'+i)

2-31 A motor-boat ofmass m moves along a lake with velocity

Vq. At the moment r = 0 the engine of the boat is shut down.

Forces and Newton's Laws of Motiqhl

Assuming the resistance of the particle to-be proportional to

the velocity of the boat F = - rv, find:

(a) How longthe motorboatmovedwith the shutdownengine;

(b) The velocityofthemotorboat as a function of the distance
covered with the shutdown engine, as well as total distance

covered till the complete stop.

(c) The mean velocity ofthe motorboat over the time interval
(beginning with the monientt=0), duringwhichitsvelocity
decreases rj times.

. r '"VQ VnCri-l),
Ans. [oo. V= Vf, —]

m' r' ln(Ti)

2-32 Block.^ in figure-2.207 weights 2.7 N and block5 weighs

5.4 N the coefficient of kinetic friction between all surfaces is

0.25. Find the magnitude ofthe horizontal force F necessary to

dragblocks to the leftat constantspeed '\SA and5 areconnected
by a light, flexible cord passing aroimd a fixed fiictionlesspulley.

B

Figure 2.207

Ans. [3.38 N]

2-33 A uniform cone ofhalfangle (p stands on a rough inclined

plane. Show that as the inclination of the plane is increased the

cone will slide down before it topples over if the coefficient of

friction is less than 4 tancp.

2-34 A weight of 200 kg hangs freely from the end ofa rope.

The weight is hauled up vertically from rest by winding up the

rope. The pull starts at 250 kg and diminishes uniformly at the

rate of one kg per metre wound up. Find the velocity after

30 metres have been wound up. Neglect the weight ofthe rope.

Ans. [.yjloTg m/s]

2-35 Blocks with weight 2w, slides down an inclined plane S

of slope angle37°i'at a constantspeed whilethe plankB, with
weight w, rests on top ofblock as shown in figure-2.208. The

plank is attached by a cord to the top of the plane. If the

coefficient of friction is the same between blocks A and B and

between S and block A, determine its value.
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Figure 2.208

Ans. [0.375]

2-36 A small disc Aisplaced onaninclined plane forming an
angle a withthehorizontal and is imparted an initialvelocity
Vq. Find howthe velocityof the disc depends on the angle 0,
shown in figure-2.209, if thefriction coefficient p = tana andat
the initial moment 0 = n/l.

Figure 2.209

vo

A"'-!""

2-37 A horizontal plane with the coefficient of friction p
supports two bodies, a block A of mass 2 m and an electric
motor with abattery fixed onanother blocks, alltogether having
the mass m. A thread attached to the block A is wound on the

shaft ofthe electric motor. The distance between the block and

the electric motor is L. When the motor is switched on, the
block A starts moving with constant acceleration a. How soon
will the bodies collide ?

2-38 Afixed pulley carries aweightless thread with masses Wj
and at its ends. There is friction between the thread and the

pulley. It is such that the thread starts slipping when the ratio
W2//«j=riQ find:

(a) The friction coefficient '

(b) The acceleration ofthe mass when = ri> tIq.

Ans. [ti-= In , a = g.]
\nJ n+no

Ans.
2 tana

.|43 ,

2-39 Abody with zero initial velocity slips from the top ofan
inclined plane forming an angle a with the horizontal.
Thecoefficient of friction p between the body and the plane
increases with thedistance s from the topaccording to thelaw
p = bs.Afterwhatdistance thebodywillstop.

2-40 A homogeneous chainof length2/and massMlies on an
absolutely smooth table. Asmall partof the chain hangs from
thetable. At the initial moment, thepartof the chain lying on
thetable is held andreleased, after which the chain begins to
slideoffthetableundertheweight ofthe hanging end. Findthe
velocity of the chain when the length of the hanging part is
equal to x(x < I). Also calculate the acceleration and the force
with which it acts on the edge of the table.

Ans. [a: J-^ ,—,
V21 2!

•j2Mi
41'

'^(2l-x)x]

2-41 A boy of mass M stands on a platform of mass m as
shown in figure-2.210, supporting two strings via a massless
support S. Strings are passing over the pulleys and other ends
are connected to the platform as shown. Find the acceleration
of the platformand the boy if he appliesa constant force T to
the string he is holding, which is connected to support S.

0 ch fh rf0 ffi 0

i:
Figure 2.210

M + m

2-42 An empty box is put on thepan of a spring balance and
scale is adjustedto zero.Astreamofsmall identicalbeads, each
ofmass 4.5gmarethendropped intotheboxfrom height7.6 m
at constant rate of 100 beads/sec. If the collision between each

bead and box is completely inelastic fmd the reading of the
scale, 10 seconds after beads begin to hit the box. '

Ans. [5 kg]

2-43 A veryflexible uniform chainof mass M and length / is
suspendedverticallyin a lift so that its lowerend isjust touching
the surface of the floor. When the upper end of the chain is
released, it falls with each link coming to rest the instant it
strikes the floor ofthe lift.Find the force exerted by the floor of
the lift on the chain at the moment, when one fourth of the
chainhasalreadyrestedonthe floor. Assume that lift is moving
up with an acceleration g/2. ~

Ans. [9Mg/8]
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2-44 A12 kg monkey climbs a light rope. The rope passes over
a pulley and is attached to a 16 kg bunch of bananas resting on
floor. Mass and friction in the pulley are negligible so that the
pulley's only effect is to reverse the direction of the rope. What
is the maximum acceleration the monkey can have without lifting
the bananas? (Take g = 10m/s^)

Ans. [10/3 m/s^]

2-45 A heavy^ mass Mresting onthe ground is attached to a
small mass m via massless inextensible string passing over a
pulley.The string connected to Mis loose. The smaller mass falls
freely through a height h and the string becomes tight. Obtain
the time from this instant when the heavier mass again makes
contact with the ground. Also obtain the loss in K.E. when Mis
jerked into motion.

Ans. [
2m

{M-m)g

Mmgh

M+m

2-46 A bar of mass m is pulled by means of a thread up an
inclined plane forming an angle 0 with the horizontal as shown
in figure-2.211. The coefficient offriction is p. Prove that

(a) a = tan"' p,where a istheangle
which the thread must from with the

inclined plane for the tension ofthe
thread to be minimum.

(b) T . =
mm

mgsin 0 + \Lmg cos0

Vi+ p^

Figure 2.211

2-47 Find the mass Min the situation shown in figure-2.212
such that m remains at rest on the front surface of My The
coefficient of friction between the front surface of Mj andthat
oim is p.

777777777777777777777777777777777/.

Figure 2.212

{m+ M])cos0
Ans. [- T r-^]

(jicose + nsm0)

2-48 Ablockofmassmj restson a roughhorizontal planewith
which its coefficient of friction is p. A light string attached to
this block passes over a light frictionless pulley and carries
anotherblock of mass W2 as shownin figure-2.213. When the
system isjust aboutto move, findthevalue of p in terms ofmj
Wj and 0.Also find the tensionin the string.

Forces and Newton's Laws of Motiba •;

Ans. ['

y7777777777777777777777Z

/H2cosa

—misina

Figure 2.213

2-49 With what minimum acceleration the bar A should be

shifted horizontal to keep bodies 1 and 2 stationary relative to

the bar ? The masses ofthe bodies are equal, and the coefficient

of friction between the bar and the bodies is equal to k. The
masses ofthe pulley and the threads are negligible, the friction

in the pulley is absent. See figure-2.214.

Ans. [ 1
•• 1+ A ^

777777777777777777777777777,

Figure 2.214

2-50 Find out the value(s) of0 ofthe inclined plane such that

the massm remains at rest on the wedge of massMj as shown
in figure-2.215. Friction between the small block and the wedge

plane is p and all other surface are smooth.

Ans. [sin a „ =

Figure 2.215

^4pV-4(p^+q^Xr^-p^)-2^
2(p^+g^)

wherep - m(g- pa), q^= m{a + ng), r= M^{a- g) and a -

+k^)ir? -f)-2kn
sin a - = 5 = ,2(/2+A-2)

where 1= m(a - ng), k=m{g + pa), « = M, (a-g) and 0 =

A/j + Ml + m

M,Iff

Mi + Mi+m
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2-51 In the figure-2.216, the masses Aand Bare of4kg and
12 kgrespectively. When the system isreleased from rest, find
the time after which the block Bwill hittheground.

y/z///////////////.

20 m

Figure 2.216

Ans. [2.05 sec]

2-52 .In the figure 2.217 all the surfacesare fnctionless. What
force F isrequired to be applied on thebiggerblockso that
andW3 willremain at reston it.

/////////////////////////////////////}////////,

Ans.

'"2

Figure 2.217

2-53 Mass of blockB shown in figure-2.218 is mand that of
cart C is M. Show that the maximum value of force F such that

theblock does notslipoverthe surface of C, hasa magnitude

F-

y/yyyyy^//yyy^i^////yy/.
Figure 2.218

2-54 Inthefigure-2.219 shown, if thesystem isinequilibrium.
Find the relation in pj and P2 for the case (i) if the bar is just
goingto slide and (ii) ifbox is just goingto slide.

m\

yyyyyyyyyyyyyyyyyyyy////////yy/y/
1^1 ^2

Figure 2.219
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Ans. [(1) > H2'"2^ s^a H2C0sa > V'̂ m^g
sina + |a2Cosa • ' '

.sing +̂^1 cosa ^
sina-|iicosa

2-55 Ameter stick ishung from two spring balancesAand Bof
equal lengths that are located at the 20 cm and 70 cm marks of
the meterstick. Weights of 2.0 N areplacedat the 10cm and
40 cmmarks, while aweight of 1.0 N isplaced atthe90cmmark.
The weight of the uniform meter stick is 1.5 N. Determine the

scale readings of the two balances A and B.

Ans. [3.8 N, 2.7 N]

2-56 A ladderishanging from ceiling asshown
infigure-2.220. Three menofmasses 10kg,12kg
and 8kg are climbing in such a waythat manA is
going do\^'nwith an acceleration of 1.6 m/s^ and
C is rising up with an acceleration of0.9 m/s^ and

man5 isgoing upwitha constant speedof0:6m/s..
Find the tension in the string supporting the
ladder.

Ans. [291.2 N]

yy////y/yyy/

''I

Figure 2.220

2-57 A 54kg girl on ice skates on a frozen lake pulls with a
constant force on all lightrope that is tied to a41 kg sled. The
sled isinitially 22mfrom the girl, and both the sled and the girl
start from rest. Neglecting friction, determine the distance the
girl travels to the point where she meets the sled."

Ans. [9.5 m]

2-58 The force which keeps a hot air balloon is the buoyant
force F. Suppose a hot air balloon of mass Mhas a downward
acceleration ofmagnitude a. Find the ballast mass that must be
dropped from it to cause theballoon toaccelerate upward with
same magnitude a.'

-2Ma •
Ans. [ ]

2-59 A 20 kg bucket is lowered by a rope with constant
velocity of 0.5m/s. What is the tension in the rope ?A20 kg
bucket is lowered with a constant downward acceleration of
1 m/s^. What is thetension intherope?A10 kgbucket is raised
witha constant upward acceleration withsame magnitude a.

Ans. [200 N, 180 N, 220 N]

2-60 A heavy chainwitha mass per unit length p is pulledby
the constant force F along a horizontal surface consisting of a
smooth section and a rough section. The chain is initially at



restontherough surface withx= 0asshown infigure-2.221. If
the coefficient of kinetic friction between the chain and the
rough surface is |i^, determine the velocity vofthe chain when
x=L.

; ' Forces and Newton's of lyfptibn 1

ratio of the smooth length to rough length is w : find the
coefficient offriction.

Smooth

Figure 2.221

2-61 A 400 kg ice boat moves on runners on essentially
ffictionless ice.A steadywindblows,applyinga constantforce
to thesail.Attheendof8.0secrun,theacceleration is0.5m/s^.
(a)What was the acceleration at thebeginning of therun? (b)
What was the force due to the wind ? (c) What retarding force
mustbe appliedat the end of 4.0 sec to bringthe iceboat to rest
by the endof thenext4 sec ? (assume boatwas at restat time
/-O)

Ans. [0.5 m/s2, 200 N, 400 N]

2-62 Aboxisplacedinthemiddle ofthebedof a flatbed truck
and is not strapped down. The coefficient p between the bed
and the box is 0.75. If the truck is travellingat a speed of 22 m/s
along a horizontal street, what is theminimum stopping distance
such that the box will not slide ?

Ans. [33 m]

2-63 A person weighting 400 N stands on springscales in an
elevator that is moving downwardwith constant speed of4 m/s
the brakes suddenly grab, bringing the elevator to a stop in
1.8 s. Describe the scale readings from just before the brakes
grab until after the elevator is at rest.

Ans. [400 N, 488.89 N, 400 N]

2-64 Determine the expression for the acceleration ofblocks
and B as shown in figure-2.222. Assume that the surface of
body A are small and have well lubricatedbearings.Also find
the force, the pulley exerts on the clamp ?

2M

B M

Figure 2.222

Ans. [g/3, 2g/3 V2Mg/3]

2-65 The upperportionof an inclinedplaneof inclinationa is
smooth and the lower portion is rough. A particle slides down
from rest from the top andjust comesto rest at the foot. If the

Ans. [
m + n

2-66 Alight container filled with apples is tobe dragged ona
rough floor where sliding friction coefficient is0.35. The rope
used for thepurpose can bear a maximum of 1100 N tension.
Find the angle with the horizontally which one has topull the
rope to carry maximum amount ofapples. Also find this maximum
amount ofapples in kilograms.

Ans. [(a) 19.3^ (h) 3329.5 N] '

2-67 A simple Atwood machine composed of a single pulley
and two masses and Wj isonan elevator. When w,=44.7 kg
and ^2=45.3 kg, ittakes 5.0 sec for mass /W2 to descend exactly
one meter fi"om rest relative to the elevator.What is the elevator's
motion?

Ans. [2 m/s^ upwards]

2-68 Whentravellingfi'eely a train is subjectedto resistances
which varydirectly as thevelocity andat 90 lq)h thisis equal to
1percent" ofthe weight of the train. The brakes when applied
create a furtherresistanceequal to l/16th of the weight of the
train. If the brakes are suddenlyapplied when the velocity is
90kph find the time and distance travelled before the train comes
to rest.

Ans. [37.92 sec, 467 m]

2-69 A bar of niass m resting on a'smooth horizontal plane
startsmovingdue to aforceF'=w^/3 of constantmagnitude. In
the process of its rectilinear motion, the angle 0 between the
direction ofthis force and the horizontal varies as 0 = fcs, where

jt is a constant. Find the velocityof thebar as a function of the
angle 0.

Ans. [J~sin0 ]

2-70 A20kgboxrests ontheflat floor ofatmck. Thecoefficients
offiiction between box and floor are = 0.15 and 0.10. The

truck stops at a stop sign and then starts to move with an
acceleration of 2 m/s^. If the box is 2.2 m from the rear of the

truck when the truck starts, how much time elapses before the
box falls offthe rear ofthe truck ? How far does the truck travel

(f • *

in this time.

Ans. [2.1 s, 4.4 m]

2-71 If the coefficient of static friction between a table and a

• uniformmassive rope is p, what fraction of tiie rope can hang
over the edge of a table without the rope sliding.
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2-72 Two small balls ofthe same size and ofmass Wj and ^2
(?Wj > are tiedbya thinweightless threadanddroppedfrom
a balloon. Determine the tension T of the thread during the
flight after the motionof the balls attainedsteady-state.

Ans. - '"2)^1

2-73 A block ofmass w is projected on a larger block ofmass
10 m and length Iwith a velocity v as shown in figure-2.223. The
coefficient of friction between the two blocks is 1I2 while that
between the lower block and the ground ispj.Given that Pj > Pp

m •v

10 m

Figure 2.223

(a) Find the minimum value of v such that the mass m falls off

the block ofmass 10m.

(b) IfVhas this minimum value, find the time taken by block m
to do so. • ' • '

Ans. 1(a) =
22(P2-^ik

10

20/

2-74 A blockwithmass w, isplaced onan inclined plane with
slope angle a and is connected to a second hanging block that
hasmass W2 by a cordpassing overa small, fnctionless pulley
asshown infigure-2.224. Thecoefficient ofstatic friction is p^,
andthecoefficient ofkinetic friction is p^. (a) Find themass
for which block moves up the plane at constant speed once
it has been set in motion, (b) Find the mass for which block
Wj moves down the plane at constantspeed once it has been
set in motion, (c) For what range ofvalues of will the blocks
remain at rest if they are released from rest ?

V77777777Z^7777777777777777777777777777/.

Figure 2.224

Ans. [m, sin0 + cos9, m,sin9 - jipwj cos0]

2-75 (a) Blocky4 in figure-2.225 weighs 90 N. The coefficient of
static friction between the block and the surface on which it

rests is 0.3. The weight w is 15N, and the system is in equilibrium.
Find the friction force exerted on block.^. (b) Find the maximum
weight w for which the system will remain in equilibrium.

147
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Figure 2.225

Ans. [8.66 N, 46.76 N]

2-76 A uniform rod oflength L rests against a smooth roller as

shown in figure-2.226. Find the friction coefficient between the

ground and the lower end ifthe minimum angle that the rod can

make with the horizontalis 0.

V777777^77777777777777777Z'

Figure 2.226

icosGsin 9
Ans. [ 1

2/f-Lcos 9sin0

2-77 Block.<4 ,ofmass m and block B ofmass 2 m are placed on a

fixed triangular wedge by means of a massless, inextensible

string and a frictionless pulley as shown in figure-2.227. The
wedge is inclined at 45° to the horizontal on both sides. The

coefficient of fnction between block A and wedge is 2/3 and

that between the block 5 and the wedge is 1/3. If the system of

A and 5 is released from rest, find (a) the acceleration ofyf, (b)

tension in sfring, (c) the magnitude and direction of the force

of friction acting on

V2Ans. [0, 2-^mg,

45" 45

7777777777777777777777777777?

Figure 2.227

372
downward]

2-78 Find the acceleration of the prism of mass Mand that of
the bar ofmass m shown in figure-2.228.
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Ans. [

V777777777777777777777777777,

Figure 2.228

(1+—cot^0) (tan0+—cot0)
m m

2-79 (i) AuniformladderoflengthLandweightwrestsagainst
a vertical wall and makes an angle 0 with the horizontal ground.
If the coefficient offriction at the point ofcontact ofthe ladder
with the wall and ground is p, show that the greatest height x,
measured along the ladder from the foot to which a man of
weight Wmay climb without the ladder slipping, is given by

ii(W+w) , w
—^ 5— (u + tan0)

(ii) If the wall be smooth and coefficient of friction between

ladder and ground be 0.25, show that

wL

2W
tahG-

2-80 Consider the situation shown in figure-2.229. Find the

acceleration of the system and the tension in the strings.

Ans. [

T5

M
F2

Fi
777777777777777777777^77777777777777777?^

Figure 2.229

(A/ + w)g

Af + /«[5 + l(ii2-M)]

2-81 Two masses A/j and are'connected by light string,
which passes over the top ofa smooth plane inclined at 30° to

Forces and Newton's Laws of Motion

the horizontal, so that one mass rests on the plane and the
other hangs vertically as shown in figure-2.23p. It is found that
A/j, hanging vertically can draw up the full length of the
planein half the tiihe inwhich hangingverticallydrawsMj
up. Find Assume pulley to be smooth. Initiallyat time
t = 0 smooth masses = 15 kg and = 10 kg are held at rest
and then they released. If after one second, the string snaps,
find the further time taken for the 15 kg mass to return to its
original position onthe plane. Take g = 10 m/s^

V777777777777777777777777777

Figure 2.230

Ans. [3/2, 0.69 sec.]

2-82 Two blocks, of mass andWj' placed as shown in
figure-2.231 and placed on a frictionless horizontal surface.
There is fnction between the two blocks. An external force of

magnitude F is applied to the top block at an angle a below the
horizontal.

(a) If the two blocks move together, find their acceleration.

. (b) Show that the two blocks will move together only if

p^mi(wi+m2)g
F<

OT2 cosa-p^Cwi + W2)sina

m, •

Figure 2.231
I

Where is the coefficient of static friction between the two

blocks.

. - Fcosa T
Ans. [ ]

nil •'"'"2



Worky Energy andPower

FEW WORDS FOR STUDENTS

In this chapter we introduce several important concepts in relation
to work, energy and power. Most important is the section on
conservation of mechanical energy, in other chapters we will
describe also how the concepts we read here are applied to other
forms ofenergy. The law ofenergy conservation is one ofthe most
powerful tools availablefor analyzingphysical situations. Further
well see that those difficultproblems, which, when solved using
other methods becomesimpler using work and energy methods.

3.1, Work

3.2' WorkDone by a Variable Force

3.3 The Work-Energy Theorem

3.4 Power

3.5 Circular Motion

3.6 Tangential and Normal Acceleration

3.7 Vertical Circular Motion ofa Pendulum Bob

3.8 Horizontal Circular Motion

3.9 Potential Energy and Conservative Force Fields

3
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In the previous chapters we have developed a straight forward
method for finding the motion of a particle. Newton's second
law connects the net force to the acceleration. Use of free

body diagrams makes it easier to apply Newton's second law
to the bodies. This method can be applied to determine the

motion of each particle in a complicated system of many
particles. In this chapter we introduce the concept of work and
energy, whichwill provide a new and useful perspective on the
motion of object.

Generally the most useful idea in whole of the science is the
concept of energy and its conservation. Energy is a vital part
of our daily life. The foodwe eat gives energy to oiu" bodies for
movement, electrical energy lights our homes and streets; oil

and gas propel our vehicles and keep us in motion. These are
all examples of use of energy. In this chapter we define work
and mechanical energy and arrive at the relationships between
them. Later we will develop the work-energy theorem which is
the heart of this chapter.

Mainly,we can describe all motions in terms of the forces that
causes them. However, as we explain in this chapter, the
conservation of energy greatly simplifies the description of

motion in many instance^. The principle of conservation of
energy is a universal concept that is important not only in
mechanics but also in other branches of physics. In order to

understand the concept we first discuss the concept of work
and the basic relation between force, work, and energy.

3.1 Work

Have a look at figure-3.1. A man pulls a box placed on a rough
floor. Ifman pulls the box with a force F, according to Newton's-

third law, the box will also pull man in opposite direction with
the same force F. Friction between floor and the surface ofbox

opposes the motion of box in forward direction. If F exceeds,
limiting friction, the box starts sliding. If it slides, its kinetic
energy increases. As we know that the total energy ofa system

can not change. It can neither be created nor be destroyed. If
energy of box is increasing, somewhere it must be decreasing.

Here we can see that only man is there who is pulling the
object so we can say that he is giving energy to it. Thus energy

of man is decreasing and that of box is increasing which

increases in the form ofkinetic energy of the box.

777777777777P777777777. 77777777777777777777.

Figure 3.1

Work, Energy and Power

IfF does not exceed limiting friction, no sliding occurs, hence

no transfer of energy takes place. Here the cause of energy
transfer is the displacement of box. Ifdisplacement takes place,
energy is transferred and ifno displacement there is no transfer
of energy. This transfer of energy is known as "IVork" and
work is said to be done if and only when the applied force
produces some displacement.

Whenever a force is applied to an object, it is ready to do work
but work will be done only if it displaces the object. In work
always at least two bodies are involved, one who is doing
work (whose energy is decreasing) and the other on which

work is beiiig done (whose energy is increasing).

Consider the situation shown in figure-3.2(a)..If a man punches

a hard wall, tlie energy he wishes to transfer to wall (to do work
on wall), is reflected back to his hand and he will be injured as

no displacement takes place on wall, hence no work is done
and obviously no energy is used by the wall. If the man makes
his punch strong enough to break the wall as shown in figure-
3.2(b), his hand will not be injured, the reason is the utilization
ofhis energy by the wall (work done in breaking). As the wall
breaks, displacement is produced by the force of his punch,
hence energy is transferred to the wall and.negligible amount
ofenergy is reflected.

77^^^77777777777^,
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. (b);

Figure 3.2

The concept of work is now clear that it is just the transfer of
energy due to the displacement produced by the applied force.
How much work we do depends on both levels as to how hard
we push and how far we move the obj ect. In physical sciences,
the meaning ofwork is more precise and restricted. Ifwe exert

a constant force F on an object, causing it to move a distance

parallel to F, then the work Wdone by the force is defined to be

the product of the magnitude of the force times the distance
through which it acts as the object is moved.

There are two important conditions in our definition of work.
First, the force must be exerted on the object through a distance.
In other words the force must move the object. Second, for
work to be done the force must have a component parallel to

the direction of motion. If an applied force is not along the
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direction ofmotion,we can resolve it into componentsparallel
to and perpendicular to the displacement(figure-3.3). Only the
component of force that is parallel to the displacement
contributes the work. Thus, if the force F makes an angle 0
with the line of motion, displaces the body by a distance x, as

shown in figure, the component of force that contributes the

work is F = FcosB. Mathematically the work done is

Fsin 0|
I

F cos 6

Figure 3.3

lf=F_x = Fxcos0 ...(3.1)

3.1.1 Positive and Negative Work

From equation-(3.1)we can say directlythat work can be either
positive or negative depending on 0, whether acute or obtuse.
This can be understood theoretically with an example. Consider

a boy riding a bicycle, another boy standing inffont of his
track tries to stop it and after some skidding he is able to stop
it. The boy standing applies a force in a direction opposite to
the direction ofmotion ofbicycle due to which bicycle retards

and stops. Here if we analyze the situation in mathematical
form, we say force applied by the standing boy is opposite to
the direction of displacement of point of application of force
hence work done by standing boy is negative and the force
applied by the bicycle on standing boy (due to Newton's Third
Law) is in the same direction as that ofdisplacement ofpoint of
application of force thuswork done by bicycle is positive. The
same situation can be-discussed on the basis of energy.'As

bicycle is being retarded thus its kinetic energy is decreasing

hence it is doing work (positive) and as the boy (which was
standing) is gaining energy from bicycle, we say it is the one

on which work is being done (negative work).

In all type ofinteractions (pair offorces) ifpoint ofapplication
of forces is displaced, always both positive work (energy
supply) and negative work (energy absorption) takes place
simultaneously. The force direction'which is same as that of
the displacement will supply energy and its (one who is
applying this force) energy decreases and the other agent or

object who is applying the other force of the pair will gain
energy. In this analysis the energy which decreases (in someone
who is doing the work) and energy increases (in someone on
which work is being done) can be in any form. It may be possible
that the one who is doing work will be loosing its chemical
energy and the one on which work is being done will be gaining
energy in kinetic or potential or in any other form.
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3.2 Work Done by a Variable Force

If the force exerted on a moving object is constant we can

calculate the work by the simple application of the equation-

(3.1). If the force changes after a given displacement and again
changes after some further displacement, but remaining
constant for that displacement, the total work can be taken as

the sum ofproducts of force and the respective displacements
in each part independently.

If force is having a continuous variation with displacement as

F=J{x\ then we find the elemental work dW which is done

when force produces an elemental displacement dx, it is given
as

dW=F.dx ...(3.2)

If total displacement is s then total work can be given by

integration ofthe above elemental work for a displacement dx

F.dx

S

W=^dw=\
0

...(3.3)

An important example ofthis idea is a spring that obeys Hooke's

law. We know that the more force we apply to a spring the more

it stretches. If force constant of a spring is k which exerts a
restoring force kxwhere x is the stretch or compression in the
spring.

/)V777777777777777777777777'/

y^777777777777777/777777.

Figure 3.4

Consider the situation shown in figure-3.4. Ifthe man stretches
the springAom its equilibrium length to a new position at a
displacements. The forcemanhas to exert, in order tobalance
the restoring force, is the same kx. In this process the work
done by the man is

^ f

W=^[kx. dx

...(3.4)
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Thisworkis doneby the manon the springso energy of man
is reduced by this amount and it goes into the spring. This
energy is stored in the form of elastic potential energy of the
spring. When the spring is set free it shoots towards its mean
position, the elastic energy is now released due to its
displacement back,to the initial position.

Theaboveexample shows thatwhenever a springis stretched

or compressed, it stores ~ kx^ energy in it, which is released,

when it moves towards theequilibrium position andduring its
motion towards equilibriumposition wecansaythatnowspring
is doing work.

3.2.1 Graphical Analysis of Work Done by a Force

Work done by a force is given by the numerical product of
force anddisplacement. This wecanalso obtain bygraphical
method.

In previous chapters, we've used graphical approach to find
displacement fromv-tgraph,-which wasgivenbytheareaunder
thevelocity-time curveas it is givenby theproduct of the two.
Similarly if force acting on a body is given as a function of
displacement, theworkdone by the force is givenby the area
underforce-displacement graph. For example if weconsider a
variable forceF=(3x +5)N acting onabody and ifit isdisplaced
from X= 2 m to X= 4 m. The workdone canbe givenby the
shaded area shown in figure-3.5.

Figure 3.5

Thus we have work done by this force is

W= area ofshaded trapezium

1
= - x2x(11 + 17) = 28joule

If we find the same using integration, we have

"3x'fF= j(3x+5) dx^ •+ 5x = 28joule

Work, Energy and f^v^r j

Now we take few examples about understanding the concept
of work and how it is evaluated.
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# Illustrative Example 3.1

A boy pulls a 5 kg block 20 m along a horizontal surface at a
constant speed with a force directed 45° above the horizontal.

Ifthe coefficient ofkinetic friction is 0.2, how much work does
the boy do on the block ?

Solution

The forces actingon the block are shownin figure-3.6

Fsin9*

: N

1 1

1 1 F cos 0

I i 1

K 20.0 m H

Figure 3.6

As the block moves with uniform velocity, we have

A+Fsin45° = mg

and Fcos45° = pN
From above equations we get

F =
\mg

cos45° +jisin45°
= ll.55N

The block is pulled through a horizontal distance 20.0 m. Thus
the work done is

W^=Fcos 45° X 20.0

or =(lI.55x0.707)x20.0=163.32Joule

# Illustrative Example 3.2

A body is thrown on a rough surface such that friction force
acting on it is linearly varying withdistance travelled by it as
/= ax +•b. Find the work done by the friction on the box if
before coming to rest the box travels a distance s.
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Solution • '

As the force is acting in the direction opposite to the box

motion, work done by this force must be negative. As force is
not constant, we use •

or

or

W=\f.dx
0

s

=|(ax-+6). dx

ax
•+ bx

= T as^ + bs

a Illustrative Example 3.3

A force varyingwith distance is given as = ae~'̂ ^ acts on a
particle ofmass m moving in a straight line. Find the work done

on the particle in its displacement from origin to a distance d.

Solution

As the applied force varies with displacement, its work is given

d •

as W= IF.dx '
' 0

or here

u

=1'w-

0

ae dx

b ^ Jo i ^ •'

# Illustrative Example 3.4

A 2kg body is displaced on a rough plane with friction

coefficient|i = 0.5 witha variableforce7^=(4x^ + 15)N. Find
the kinetic energy of the block after the block has travelled a
distance 5 m.

Solution

As displacement of the body is in the direction of force that
implies work done by the force is positive and as friction is

always in the direction opposite to displacement, its work is
always negative and it will always absorb energy from the
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body (in form of heat). Thus total work done on the body is

5

fV= I(4x^ +15) ah:-0.5 x2x9.8 x5
0

= 241.66^49 = 192.66joule

As we have discussed that the total amount of work done on

an object is its net increase in energy, here it is only the kinetic

energy of the block.

# Illustrative Example 3.5

A body of 4 kg mass placed on a smooth horizontal surface

experiences a force varying with displacement of block as

shown in figure-3.7. Find the speed of the body when force

ceases to act on it. •

Figure 3.7

Solution

As we know work done is given by the area under F-x curve,
we have from figure-3.7

1 1 1
x3x30+ - x 1 x50 + 20x2+ - x2x20= 130joule

Which is the gain in kinetic energy ofthe block as

^mv2 =130
or

Web Reference ofVideo Lectures at www.physicsgalaxy.ccm
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Practice Exercise 3.1

(!) A factory worker pushes a 25.0 kg crate downward at an
angle of 30° below the horizontal a distance of 6.0 m along a



[154 ""

level floor, (a) What magnitude of force must the worker apply

to move the crate at constant velocity, if the coefficient of

kinetic friction between the crate and floor is 0.3 ? (b) How
much work is done on the crate by this force when the crate is

pushed a distance of6.0 m ? (c) How much work is done on the
crate by friction during this displacement ? (d) How much work

is done by the normal force and by gravity ? (e) What is the

totalworkdone onthecrate ? Take g = 10 m/s^.

[(a) 104.74 N; (b) 544.27 J; (c) - 544.27 J, (d) 0,0; (e) 0]

(ii) Find the work a boy of weight 55 kg has to do against
gravity when climbing fi-omthe bottom to the top of a 3.0 m

high tree.

[1650 J]

(iii) A force of20.0 N is required to hold a spring stretched by
5.0 cm from its equilibrium position. How much work was done

in stretching the spring ?

[O.SJ]

(iv) A spring requires 46 J ofwork to extend it 12 cm and 270 J
ofwork to extend it 27 cm. Is the spring force linearly varying

with the stretch.

[No]

(v) A force is given by F = loP-, where x is in meters and
= 10N/m^. What is the work done by this force when it acts

fromx=0tOA: = 0.1 m?

[3.33 X 10-^ J]

5.5 The Work-Energy Theorem

In previous sections we've discussed about work as transfer

of energy and here in this section we develop a theorem that
relates the work to kinetic energy i.e. the energy of motion.

This.work-energy theorem provides a powerful method that
connects a particle's speed with its position, no matter how
complicated is the motion.

To understand this, first we consider the special case of an
object moving along a straight line, say alongx-axis. (figure-3.8).

At

^ F
m m

V777777/777777777777777777777777Z

Figure 3.8

position Athe kinetic energy of the object is y mv.
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constant force F acts on it in its direction ofmotion produces

an acceleration %, which increases its velocity. Letusconsider

after a displacemeiit x its velocity becomes or its kinetic

energy becomes ^ Its energy is increased. It is due to
the work done by the external force F on the object, which we
write as

If in above case force F acts in the direction opposite to the
motion of the body, the energy of object decreases as work is

done by the object in overcoming the opposition of the force
F, so we write our equation as

— 2wv,-' -Fx= —mvj

Thus, ifforce is acting in the direction ofmotion, it will do work
on object and its energy increases. If it is acting in opposition

to motion ofobject, obviously object will do work on it and its
energy decreases. We can define a general statement about
the work associated and the energy of an object as

Initial kinetic energy of the object + work done on it - work
done by it = Final kinetic energy

The result is called the work-energy theorem. The second and

third terms on left hand side of the work-energy theorem can
be combinedly termed as the work done by the net force, or the

net work. We can think ofcalculating this net work by adding

all the forces acting on an object to get the net force and
determining the work done by the net force. Equivalently, we
can determine the work done by each force separately and add

these individual contributions to get the net work.

We can also rearrange the above result as

Net work = Final kinetic energy - Initial kinetic energy of

the object

The above statement shows the connection between work and

kinetic energy as : "The work done by the net force acting on
an object is equal to the change in the kinetic energy ofthat
object".

The kinetic energy increases if the net force on the object does
positive work, means object displacement is in the direction of
force. The kinetic energy decreases ifthe net force does negative
work i.e. object displacement is opposite to the direction of
force applied. If the net work is zero, kinetic energy does not
change.
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Because the net work equals the change in kinetic energy, it is
often convenient to thinkof the network as the Measure of the
kinetic energy transferred to an object. For example, if you
throw a ball, the net work done on the ball is positive and the
ball gains kinetic energy. Your hand has given energy to the
ball. If youcatch a ball, the net work doneon the ball is negative
and ball loses kinetic energy. In this case ball has done work
on your hand or your hand has taken energy from the ball.

If we know the speed of an object at each of two points in its
motion, we can evaluate the work done by the net force by
using thework energytheorem, statedabove.These approaches
will be illustrated by the following examples.

# Illustrative Example 3.6

A trolley-car starts from rest at the top of a hill as shown.in
figure-3.9 and moves down the curved track. Determine its
speed as it reaches the bottom. Assume that the work done by
frictional forces is negligible.

Solution

As trolley-car moves along the curved track, the only force
acting on it is the force ofgravity in downward direction. Thus

net work done on the trolley-car by the gravity force is force

multiplied by the displacement ofthe trolley-car in the direction

of force i.e. in downward direction which is the height of the
hill. Total work done on the car is its gain in kinetic energy, if
speed ofcar at the bottom ofthe hill is v.

777777777777777777777777777777777777777777777.

Figure 3.9

According to work-energy theorem we have

mg • ^ ^

or
•=

# Illustrative Example 3.7

Figure-3.10 shows a rough horizontal plane which ends in a
vertical wall, to which a spring is connected, having a force
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constant k. Initially spring is in its relaxed state. A block of

mass m starts with an initial velocity u towards the spring from
a distance /^ from theendof springshown. Whenblockstrikes
at the end of the spring, it compresses the spring and comes to

rest. Find the maximum compression in the spring. The friction
coefficient between the block and the floor is p..

Figure 3.10

Solution

. , I
^^W777tW777777777777777777???^777777777777777//

-bOOOOOOOOOOOOOd-

During motion ofthe block, friction is the only force opposing
its motion before coming in contact with, the spring. After
starting the compression in spring, its force will also oppose
the motion. Both of these forces are opposing the motion of
the block thus reducing its kinetic energy. Ifx is the maximum

compression in the spring before block comes to rest, then
according to work-energy theorem we have

mu^ - nmg. (/q +x) — kx^ =0

or kx^~2[imgx + mu^ 2[imgL = 0

or x =
2k

[-ve sign discarded]

# Illustrative Example 3.8

Figure-3. i1shows arough incline atanangle 0with coefficient
of friction p. At the bottom a spring is attached with force

constant k. A block of mass m is released from a position at a
length / away from the spring. Write down the work-energy

equations to find the maximum compression in the spring and
the distance by which the block rebound up the inclined plane.

Figure 3.11
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Solution

During the downward motion of the block, mg sinO acts on it

downward along the incline and friction pwg cos0 will act
against the motion along the incline. Let the spring be

compressed by a distance x, when block comes to rest the
spring force will also oppose the motion of the block. Here
from the initial position block was started from rest (zero K.E.)

and finally also block comes to rest (zero K.E.). According to

work-energy theorem from initial to final point we have

O+ mgsin0. (/+ x)-pmgcos0. (/+;c)- = 0 ...(3.5)

Ifblock rebounds a distance /' up the plane then during upward
motion gravity and friction both will oppose the motion but

spring force will push the block upwards hence it will give the
energy to the block. Thus applying work-energy theorem from
initial (compressed position) to the final position where it comes

to rest, we have

0+1 Ax2 -mgsinO. (/'+;c)-)imgcos0 .(/'+j:) =0 ...(3.6) (i) Ablock shown in figure-3.12 slides on asemicircular
frictionless track. If it starts from rest at position A, what is its

Above equations-(3.5) and (3.6) will give the maximum speedatthepointmarkedfi?Takeg= lOm/s^.
compression in the spring and the rebound length along the
incline plane/'.

# Illustrative Example 3.9

A disc of mass w = 50 gm slides with the zero initial velocity
down an inclined plane set at an angle 0 = 30® to the horizontal,
having traversed the distance 5 = 50 cm along the horizontal
plane, the disc stops. Find the work performed by the friction

forces over the whole distance, assuming the friction coefficient
p = 0.15 for both inclined and horizontal planes.

Solution

Let the disc slides a length / along the incline and travels 50 cm

along the horizontal plane. Given that initial velocity of the
disc is zero (zero K.E.) and finally disc stops (zero K.E.).
Applying the work-energy theorem from starting to stop, we
have.

0 + mg^sin0 . /— p/ng^cosO. /- pwg .5 = 0

pwg5
or

or

/ =
wgsin0-pmgcos0

Along the incline work done by the friction is

If^= p7KgCOS0 X/

= 0.20 m

= 0.15 X 0.05.x 10 X 0.866 x 0.2 J = 0.013 J

Work, Energy and Power |

Along the horizontal plane work done by the friction is

= 0.15x0.05xl0x0.5 = 0.037j
/

Net work done by the friction is negative ofsum of and, Wj.^
as

0.013 + 0.037 = 0.05 J
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Practice Exercise 3.2

Figure 3.12

[3.76 m/s]

(it) A Stone is dropped by an astronaut from a height of 1.47 m
above the surface ofa planet. When stone reaches a point P at
a height of 0.32 m it attains a speed of 4.1 m/s. Is the planet

earth ?

[No]

(ill) Abrick is placed on a vertical compressed massless spring
of force constant 350 N/m attached to the ground. When the
spring is released the brick is propelled upward. If the brick

mass is 1.8 kg and will reach a maximum height of3.6 m above
its initial position on the compressed spring, what distance
must the spring be compressed initially ? Takeg = 10 m/s^.

[0.608 m]

(iv) In figure-3.13, a block slides along a track from one level to
a higher level, by moving through an intermediate valley. The
track is frictionless until the block reaches the higher level.
There a fhctional force stops the block in a distance d. The

block'sinitialspeed Vq is 6 m/s, theheightdifference Ais 1.1 m
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and the coefficient of kinetic friction n is 0.6. Find d. Take
^=10 m/s^.

u = 0.6

77777777,

777777,

Figure 3.13

[1.167 m]

(v) A smallparticleslidesalonga trackwithelevated endsand
a flat central part, asshown in figure-3.14. The flat parthas a
length 3 m. The curved portions of the track are frictionless,
butfor the flat partthe coefficient ofkinetic friction isp = 0.2.
The particle isreleased atpointy4, which isataheight ^ = 1.5 m
above the flat part ofthe track. Where does the particle finally
come to rest ? Take^=10 m/s^.

3.0 m-

Figure 3.14

[Mid point]
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3.4 Power

When we purchase a car or jeep we are interested in the
horsepower of its engine. We know that usually an engine
with large horsepower is most effective in accelerating the
automobile. Nowwe'll discuss themeaning ofpower indetail.

In manycases it is usefiilto know notjust the total amountof
work beingdone,but how fast the workis dotie. For example,
if youhave a machine thatcanprovide onlya certain amount
of work in a day andyou wish to accomplish double of that
much work, thenyouwill have toeither spend two days forthe
job or getanadditional machine. We define power as therate
at which workis beingdone. Its defining equation is

work done
Power =

time taken to do work

or
AJV

At
P =
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...(3.7)

Where AFTis the amount ofwork done in the time interval At.

Whenworkis measured injoules and t is in seconds, the unit
for power is the joule per second, which is called watt. For
motors and engines, power isusually measured inhorsepower,
where horsepower is

lhp=746W

The definition ofpower inequation-(3.7) applies toalltypes of
work, whether mechanical, electrical, thermal or any other.
However we can rewrite the definition in a special way for
mechanical work by simply rearranging terms. When a force
acts on an object so that it moves with a speed v, we can
calculate the power from the force andspeed. If we consider
the force to be constant the workis AIV= FAx, wehave

FAx
P =

At

P = Fv ...(3.8)

The above relation isvalid when we are finding average power.
For overall work it can also be written as the total work on an
object isequal to total change inits kinetic energy. Thus average
power can be defined as

Average Power =
work done

time taken to do work

_ Totalchangein kinetic energy
Total time

If force and velocity orany of these is riot a constant during
motion, therate of doing workwillchange with time. In such
situations we define another term i.e. Instantaneous Power,
poweratan instant. Which is equalto rate ofdoing workin the
very shortneighborhood of an instant, given as

or

dW

dt

dK

dt

P =

P = ...(3.9)

Where dK is t^e change inkinetic energy ofthe body intime
dt. If a force F is acting on the object during its motion, the
elernenml work done by it in the small duration dt is given as
dW = F. dx. Thus instantaneous power at this instant is
given as

dW

dt

P= F .

Fdx

dt

...(3.10)
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Where v is the instantaneous velocity of the particle and dot

productis usedas onlythat componentof-force will contribute
to power which is acting in the direction of instantaneous
velocity.

# Illustrative Example 3.10

Abodyofmass mis thrown at anangle 0 to thehorizontal with
theinitialvelocityu.Findthemeanpowerdeveloped by gravity
over the whole time of motion of the body, and the
instantaneous power of gravity as a functionof time.

Solution

The situation is shown in figure-3.13. Mean power of gravity
over the whole time of motion can be given as

Mean Power =
Net gain in kinetic energy ' •

Total time of motion

Asweknowthatinprojectile motion onhorizontal plane, particle
strikes the ground with the same speed with which it was
projected, kinetic energy of particle does not change hence
frominitialpointto finalpointthereis no gaininkinetic energy.

Mean Power = 0 • '

Now we find the instantaneous power of gravity at an instant
t = t whenparticle has velocity v shown in figure-3.15. This
velocity is vectorially given as

ttsinS

u cos

Figure 3.15

V =(mcos0) i +(usinQ—gt) J

And vectorial force on it is

F =-mg j

Instantaneous power can be given as

P=F.v

=> P={--mgj).iu COS0 i + u sin0 j -gt j)

•=> P = mg(gr-wsin0)

Work, Energy and Power

# Illustrative Example 3.11

An electric motor that can develop 1.0 hp is used to lift a mass
of 25 kg through a distance of 10.0m. What is the minimum
time inwhich it candothis ? (Take g = 10 m/s^)

Solution

If 25kg mass is liftedto a height of 10.0m,workdoneagainst
gravityis = mgA = 25 x 10 x 10= 2500J

If motorisworking atfullpower1.0hpor746Watt, itwilldothe
required workin timeIq seconds.

Thus we have 146 x =2500

or

. 2500

# Illustrative Example 3.12

A pump is required to lift 1000 kg of waterper minute from a
well12m deepandejectitwitha speedof 20 m/s. Howmuch
work is done per minute in'lifting the water and what-must be
the power output ofthe pump ? (Take g = 10 m/s^)

Solution

When lOOOkgofwaterisliftedfroma 12.0mdeep well

Work required \s=mgh = \2 x 10^ J

Work required per second is =
1.2x10'

60
= 2000J/s

Kinetic energy gained by the water per second is

= ~ mv^= "T- X• X(20)^ = 3333.33 J/s

Totalwork requiredper second by the pumpis

= 2000+3333.33 = 5333.33 J/s

# Illustrative Example3.13

A smallbodyof massm is located on a horizontalplane at the
pointO. Thebodyacquires a horizontal Velocity u. Find :

(a) The mean power developed by the friction force during
the whole time ofmotion, if the friction coefficient is k.

(b) The maximum instantaneous power developed by the
friction force, ifthe friction coefficient varies as /: = or, where
a is a constant and x is the distance from the point O.
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Solution

(a) The frictional force acting on the body

fr=mg

Retardation provided by this force is

a = -\ig

Total time taken by the body to come to rest is

u

t= —
a

or

u

\^S

Total change in kinetic energy due to friction is

' /SE= — m«^-0

Mean power can be given as

, Net gain in kinetic energy AE
Mean Power = —^ ^ 7—-• —

Total time of motion t

or

1 2
~mu ,
2 _ 1

(b) When friction coefficient is = cor, the friction force on
the body when it is at a distance x from the point O.is

f^= axmg

Retardation due to this force is

a = —agx

or

or

dv
v-=-agx

vdv = - agx dx

Integrating the above expression for velocity at a distance x
from point O, gives

or

V fIV i/v =- Jctgx £&

y2 _ U^-Xtg^d-

Instantaneous power due to friction force at a distance x from
point O is

P = F.v

or ^-amgx^{u^ -agx^) ...(3.11)

dp
This power is maximum when — = 0, thus

dx

dp cungx w

or x =

159

...(3.12)

Equation-(3.12) gives the value of x at which instantaneous
power is maximum. Using above value ofx in equation-(3.11)
gives the maximum instantaneous power as

//
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Practice Exercise 3.3

(!) A 80 kg person expends 400 W when walking on a horizontal

tracker belt at a speed of 7.2 kph. When the tracker belt is

inclined without changing the speed, the person's expended

power increases to 600 W. Estimate the angle ofincline ofthe

tracker belt by assuming that all ofthe increased output power

goes into overcoming the force of gravity. Assume constant

friction by tracker belt in both horizontal and inclined position.

Takeg=10m/s^.

[7.31°, 35.45°]

(ii) A bus of mass 1000 Kg has an engine which produces a

constantpower of50 kW. Ifthe resistance to motion, assumed

constant is 1000 N, find the maximum speed at which the bus

can travelon levelroad and'theaccelerationwhenit is travelling
at25 m/s. Takeg= lOm/s^

[50 m/s, 1 m/s^]

(iii) An automobile engine develops 30 hp in moving the

automobile at a constant speed of 50 miles/hr. What is the

average retarding force due to such things-as wind resistance,

internal friction, tire friction, etc. ?

[1007.1 N]
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(iv) The force needed to pull the tape through an audio cassette

player is 0.98 N. In operation the tape travels at a constant

speed of 2.5 cm/s. The motor consumes a power of 1.8 W.
What percentage ofthe power input to the motor is required to

pull the tape at its operating speed ?

[1.36%]

(v) The power P delivered by a windmill whose blades sweep

in a circle ofdiameter Z)by a wind ofspeed v is proportional to

the square of the diameter and the cube of the wind speed.

Show that this dependence on diameter and wind speed exist

when 100% energy transfer takes place. Also show that

P=-pZ)V

Where is p the density of air.

(vi) A train of mass 10^ kg is going up an incline plane with
incline 1 in 49 at a rate of 10 m/s. Ifthe resistance due to friction

be 10 N per metric ton, calculate the power ofthe engine. Ifthe

engine is shut off, how far will the train move before it comes to

rest ? Takeg = 9.8 m/s^.

[2.1 X 106 w, 238.095 m]

5.5 Circular Motion

Up to this point, about motion we have studied one dimensional

motion and projectile motion which is two dimensional. In this

section we begin with the circular motion which is also a two

dimensional motion. Some part of the terminology in this

section will be useful in further chapters for describing other

types of motions such as rotational motion and oscillations.

Considera pointparticle movingalong a circular path of radius
r,with constant speed v. A particle moving in this manner is

said to undergo imiform circular motion. By a "particle" we
mean an object ofnegligible size and constant mass. As shown

infigure-3.16, ifa door is opened about its hinges on the wall,
pointsA, B and C on door are in circularmotion of radii r^,
and ^3, as thesepoints move in circularpaths of the respective
radii, when door is opened. But here the motion ofdoor is not

considered as a circular motion, it is a different type ofmotion

which we will discuss in further chapters, rotational motion. In

rotational motion different points (particles) of a body are in

circular motion of different radii. We will discuss several

concepts related to circular motion but before proceeding with

our anlayzation, we've to leam first, some basic properties of

circular motion.

Work, Energy and Power,

Figure 3.16

3.5.1 Angular Coordinate, Velocity andAcceleration

The quantities we use to describe the angular motion of an
object about an axis (centre of circle) are the object's angular

coordinate 0, angular velocity co, and angular acceleration a.

Now first we define these quantities and make them analogous

with the respective linear quantities.

Angular Coordinate

The angular coordinate.ofa door can be measured as shown in

figure-3.17. Let we consider Z-axis along the hinges and the xy
plane be the plane ofthe ground with the x-axis along the wall.

When.the gate is opened, its angular coordinate is measured

in anticlockwise direction from x-axis when viewed from the

positive z-direction. Hence, an angle measured anticlockwise

is positive and an angle measured clockwise is negative. A
right hand rule gives the positive sense for 8 (figure-3.18(b)). If

you imagine grasping the z axis with your right hand so that
your thumb points in the + z direction, your fingers curl in the

positive 0 sense. Ifwe consider this 0 as angular displacement
than your thumb (i.e. + z direction) gives the direction of angular

displacement vector.

Figure 3.17
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ofrevolution ofthe object, the direction in which your thumb
points will be the direction of angular displacement and also
the direction ofangular velocity. See figure-3.18(b).

AngularAcceleration

It isthe rate ofchange ofangular velocity ofan object. Let us
discuss an example. Ifyou revolve abob tied with astring over
your head, it moves in ahorizontal circle. Ifyou stop putting
your efforts in revolution and make your hand steady. The bob
slows down due toair friction and its circle becomes smaller
and its angular velocity reduces. It covers less angle in large
time interval and finally stops. In above motion the bob was
having an angular acceleration (negative) due to air friction.

(c) •

•Figure 3.18

Amajor difference between the angular coordinate 0and the
linear coordinate x is that 0 is cyclic. That is, the angular
coordinates 0 and 0+ 27i represent the same angular position.
Generally ifnis any positive or negative integer, then 0and 0
+ 2nn represent the same angular position. In general cases
values of0are adjusted so that they fall inthe range from 0to
2jrorfi:om-7rto + 7c.

Angular Velocity

The angular velocity is the rate of change of angular
displacement. It gives the idea about how fast agiven object is
revolving. Analogously to linear motion, where average velocity
is defined to be displacement divided by time, itis given as

angle turned
Average angular velocity = taken

It is given as

a

d(ii

dt

A

dt^
...(3.15)

As its linear counterpart, acceleration can also be defined in
dv

differentialformof velocityand displacement as a = v—, we

also have

<©>==
At

' ...(3.13) .

The angular velocity is denoted by the Greek letter ffl .Units
for angular velocity are radians per second, used generally.

The instantaneous angular velocity can also be defined for a
revolving object, analogous with the linear instantaneous
velocity as

dd
CD =

dt
...(3.14)

i/co

Id
a = co ...(3.16)

Ifwe again consider the example ofopening the door discussed
earlier, during its motion, points A, Band C, all the three are
turned by equal angles in same time interval. Thus the three
points have equal angular velocities or we can say that all
particles ofthe door have equal angular velocities, but different
linear velocities.

Consider the circular motion shown in figure-3.19. Aparticle is
revolving withaspeed vin acircle ofradius r. Let we consider
the particle covers an angular displacement dd in time dt. During
this elemental time duration, particle covers a linear-
displacement dl which can be given as vdt. The linear
displacement can be given in terms ofangular displacement as

The angular velocity is avector quantity whose magnitude is
the angular speed and direction gives the sense ofrevolution.
Our right hand thumb rule gives the direction ofrevolution of
object and itrelates the direction with oo. As explained earlier if
an object is in circularmotion, rotate your fingers in the direction

or

Figure 3.19

dl=rdd

V dt = rdd
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or
dQ

v = r — =rco
at

Similarly if the object has angular acceleration , its linear
acceleration in tangential direction is givenas

a = ra ...(3.17)

3.5.2 Kinematics ofCircular Motion

Infirst chapter we have discussed about kinematics ofa body
in one dimensions and two dimensions. This section relate the

different parameters ofcircular motion with time. Here we will
discuss two cases, one is the motion with constant angular
acceleration and other with variable angular acceleration,
analogous to the linear motion.

Cases of ConstantAngularAcceleration

With reference from the previous section we can say that the
angular displacement, angular velocity and angular
accelerations are the angular counterparts of the analogous
linear displacement, velocityand accelerations.

For linearmotion we use four speed equations for motion of
body when it moves with constant acceleration, given as

V = M± a/

s = ut± — af-

Work, Energy and Power-

a is constant angular acceleration.

0 is angular displacement at time t~t.

0„ is angular displacement in second.
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3.6 Tangential and Normal Acceleration

Acceleration is rate of change of velocity. Velocity is a vector,-
which canbe changed by changing its magnitude or direction
or both. In uniform circular motion, speed is constant but
direction of velocity changes continuously. As direction of
velocity changes, we say velocity is changing, hence body
must have acceleration.

To understand the concept of acceleration in such cases
consider themotion ofa particle moving along a straight line
shown in figure-3.20(a). If a force starts acting on it in its
directionof motion, its speedwill increaseandtheacceleration
is given as

a =
m

± las Nowconsider nextsituation in figure-3.20(b), theforce actsat
an angle 0 to its motion direction. It has two components, F
COS0 acts along the direction of motion, which increases its
speed and F sm0 acts perpendicular to its motion. We know
that aperpendicular force can not do work onamoving object

Analogous to the above equations, we can derive angular work isdone no change inkinetic energy will take
speed equations as

co=(»p±a/'

0 = cOo?± —at^

o:^ = coQ^±2a0

1

2

Where

oJq is initialangularvelocityat r= 0.

0) is final angular velocity att = t.

...(3.18)

...(3.19)

...(3.20)

...(3.21)

place due to this force and hence it is unable to change the
speed of the particle. But as it is acting perpendicular to the
motion, it tends to change the direction ofmotion as shown in
figure-3.20(b) by the dashedpath.

Fcos 0

(a)

Fsin 9

(b)

Figure 3.20



Here acceleration due to the force component aiong the motion
direction is

FcosS

m
...(3.22)

Acceleration due to the force component perpendicular to the
motion direction is

Fsin0

m
...(323)

Here istheacceleration responsible forchange inmagnitude
ofvelocity and is ^e acceleration responsible for change in
direction of velocity. Here always acts in the direction
tangential to themotion ofparticle andis known as tangential
acceleration and which changes the direction of velocity,
actsinthedirection ofnormal to thetrajectory towards concave
side, isknown asnormal acceleration orcentripetal acceleration.

3.6.1 CentripetalAcceleration

Inuniform circular motion thevelocity isconstantly changing,
there must be only the centripetal or normal acceleration. The
tangential acceleration hereiszeroas themagnitude ofvelocity
remains constant. Let we consider an instant a particle is at
positionP shownin figure-3.21 (a), inuniformcircularmotionit
ismoving with velocity v^. Inthe short interval oftime A/, the
particle moves byanangular displacement AG toanother point
Q. During the time interval At, the velocity changes by an
amount Av = Vg - Vp. The average acceleration for this small
duration is ,

Av

At
a - ...(3.24)

To evaluate the acceleration we translate the vectors Vp and Vg
to a common origin shown in figiire-3.21(c). The change in
velocity Av is also shown. As the time interval At is made
smaller, points P and Q are found closer together.

Figure 3.21

"mi

We can see that this angle is also the angle between the two
velocityvectors shown in figure-3.21(d). When becomes so
small that Vp and Vg are almost parallel and their difference Av
is almostperpendicularto both of them. In the limit when At
tendsto zero,Av is perpendicularto v.Hencethe instantaneous
acceleration which is in the same direction as Av, is directed
radially towards the centre of the circular path. Therefore a
particle moving with constant speed around a circle is always
accelerated toward thecentre (figure-3.21(e)).

Fromfigure-3.21(d), theacceleration canbe easilyevaluated.
Themagnitude of change in velocity Av can be givenas

Av = vA0 ...(3.25),

[arc length= radius t angle subtendedby arc]

Here |Vp| = jvg| = v, and from equation-(3.25), centripetal
acceleration is

vAG
a= ~— =vco

A/

or a=— [As v = r(o] ...(3.26)

Whose direction is always towards the centre of the circle.

3.6.2 Normal Acceleration in a General Two Dimension

Motion

Consider themotionofa particlealonga twodimensional curve
shown infigure-3.22. Ifparticle ismoving witha uniform speed,
its tangential acceleration is zero. Buthereas it is moving in a
curve, itsvelocity is changing so itwillhavenormal acceleration,
acting perpendicular to the instantaneous velocity.

Figure 3.22

As sho\/n in figure-3.22, different section ofthe curves can be
considered as arcs of circles of different radii. For example
when particle is moving along the section AB of the curve, it
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behaves like a circle of radius r^. It experiences a normal
acceleration towards its instantaneous centre of the circle.

During motion between AB, the normal acceleration can be
given as Vj/rj.

When curvature is high (more bending ofcurve), the radius of
the instantaneous circle will be small and acceleration of the

particle will be large like in section EF ofcurve shown in figure-
3.22 and when curvature is small (less bending of curve), the
radius ofthe instantaneous circle will be large and acceleration
of the particle will be small. In flat parts of the curve, like in

section CD of the curve, radius of curvature is infinite thus

normal acceleration is zero. • .

If the equation of trajectory ofthe particle (equation ofcurve)
is given or evaluated, we can find the radius ofcurvature ofthe

instantaneous circle by using the formula

1 + dxJ
...(3.27)

dx'

Above formula can be obtained by solving the equation of
trajectory and the equation ofnormal at the point where radius
of curvature is required. This radius of curvature can be used

to find the instantaneous normal acceleration of the particle,
given as

a„ =
R

...(3.28)

Here v is the instantaneous speed of the particle. If speed is
also varying then particle will also has instantaneous tangential
acceleration, given as

dv dv

dt ^ dx

Tangential and normal, these two accelerations are

perpendicular to each other, thus the net acceleration of the
particle during its motion is

Total acceleration + a N
...(3.29)

In chapter-2, while studying motion in two dimension, we have
resolved the total acceleration of the particle along x and y
directions as and and the total acceleration was given as

...(3.30)

Work,, Energy and Power;

We can use-either of equations-(3.29) and (3.30) to find the
total acceleration ofa particle in two dimensional motion.
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3.6.3 Force Required For Circular Motion

According to Newton's first law, a net force must act on an
object ifthe object is accelerated or to be deflected from straight

line motion. This force which is responsible for circular motion
of an object is known as centripetal force, due to which
centripetal acceleration acts on the object. Without centripetal

force it is impossible for a particle to move in circular path. For
example, a car taking a circular turn on a road will slip from the
track if the track is too slippery to provide the required friction
force at the wheel. In this case friction in inwards direction is

acting as a centripetal force.

Again consider an example of a conical pendulum shown in
figure-3.23. A simple pendulum is revolved in a horizontal circle
as shown. During horizontal circular motion it is in equilibrium
along vertical direction as its weight is balanced by the vertical
component of the tension in the thread. The horizontal
component of the tension in string is acting along radially
inward direction which is acting as centripetal force in this
case and due to which the direction of velocity changes
continuously.

•/////////

r.cos 0

Figure 3.23

Ifr is the radius ofa circle and v is the tangential speed ofthe
object on the circular path. Any force in the direction toward
the centre of the circle, will pull on the object to furnish this
acceleration. If this force is F, we have F= ma, thus the required
force is

F=
mv

...(3.31)
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Allobjects thattravel ina circle(oranarcof a circle) require a
centripetal force. The earth is pulled toward the sun by
gravitational attraction. This pull behaves like the required
centripetal force and is responsible for earth to circle the sun.
Similarly moon and other satellites circle the earth because of

earth'sgravitationalattraction.In furthersectionsand examples,
we will get more clarification ofcentripetal forces.

One importantpoint is to be noticed that centripetal force does
no work. To do a non zero work, a force should have a
component in the direction of motion or a component of
displacement of particle should be in the direction ofapplied
force, whereas the motion exist only in the tangential direction
to the circle. Thereforeno work is done by it. It only changes
the direction ofmotion.

3.6.4 Concept ofCentrifugal Force

In doing problems involving uniform circular motion, we should
have a tendency to include an extra outward force ofmagnitude
m^P•|R to "make the body in radial equilibrium". Thisoutward
force is usually called centrifugal force. Actually this concept
is wrong. Most important about this is the body is not in

equilibrium, it is in motion around its circular path. Its velocity
is constantly changing in direction, so it accelerates and not in
equilibriunj. Other thing is that if there were an additional
outward force to balance the inward force, there would then be

no net inward force to cause the circular motion and the body
would move in a straight line, not in a circle.

Forexample, we consider acar with passenger
passengers going around a
circular path on a level road tends
to slide to the outside of the turn,
it appears to be due to centrifugal

force. But such a passenger is in
an accelerating non-inertial frame

of reference in which Newton's

first and second laws don't apply.

Withrespectto car the explanation
is true as with respect to

passenger car is at rest but it is
accelerating inward with thus
passengers experience a pseudo
force in outward direction mvVR,

with respect to car, due to which
they tend to collide with the

outward wall ofthe car. But what

really happens is shown in figure-3.24, when seen from an
inertial frame ofreference (earth) is that the passenger tends to
keep moving in a straight line and the outer side of the car

moving in circular path turns into the passenger as car turns.

Figure 3.24

165

Thusinan inertialframe of reference thereis nosuchthinglike
centrifiigal force.

In problems of circular motion, we can use centrifugal force
but only with reference to the body in circular motion only.
Considerthe circularmotionof a stone revolvingin a circular
path tied with a string.Tension in string is acting toward center
ofthe circle. Ifwe consider the situation with reference to the

body, its speed is zero and it is pulled towards the centre. As it
is not movingtowardsthe centre, or it is in radial equilibrium,
we can say that a force must be acting on the body in outward
direction which is balancing the tension in string or the
centripetal force. This is the centrifugal force, of which
magnitude must be equal to This is applied in radially
outward direction as shown in figure-3.25.

I

t !

Centrifugal force

Figure 3.25

mv

. R
...(3.32)

Now we take few examples to discuss the above concept of
circular motion and forces involved.

# Illustrative Example 3.14

A stone with a mass of.0.9 kg is attached to one end ofa string

0.8 ni long. The string will break if its tension exceeds 500 N.

The stone is whirled in a horizontal circle on a frictionless table

top. The other end ofthe string Is kept fixed. Find the maximum

speed of the stone, it can attain without breaking the string.

Solution

It is given that tensile strength of string is = 500 N

When the stone of0.9 kg is whirled in a circle ofradius 0.8 m, it

experiences a centrifugal force given as

mv^ 0.9v^

0.8



The stringwill break,whenthis force becomeequal to 500 N,
thus we have

or

0.9v^

0.8
=500

500x8
v= J—I— =21.081

# Illustrative Example 3.15

A person stands on a spring balance at the equator, (a) How
much is the reduction in weight as measured by the balance,
(b) If the speed of earth's rotation is changed such that the
balance reading ishalfof itstrueweight, whatwillbe thelength
ofthedayin this case ? (g= 10m/s^, = 6400 km)

Solution

(a) When a person is standing on earth's equator, it
experiences a centrifugal forceradiallyoutward, due to which
theeffective weight of themanis reduced. Theeffective weight
measured by the balance is given as the force with which he
pushes the balance platform.

W^^=mg-m(i?R^

The reduction in weight is

W-W ^=^m(s?R
net ejj e

(b) If the balancereading becomesmg/2,we have

mg
-mg-m(i?-R

or (0 =

2R.
= 8.83 X 10-4 rad/s

Thus the length of the day is now

2?!
7=

2 X 3.14

(0 8.83x10"^

# Illustrative Example 3.16

= 7112.12s=lhr58min

Whatis the radius of curvature of the parabola tracedout by
theprojectile in which a particleis projected witha speedu at
anangle 0 withthehorizontal, at a pointwhere thevelocity of
particle makes an angle 0/2 with the horizontal.

Solution

At the point on particle's trajectory where particle's velocity
makes an angle 0/2withthehorizontal, wecanusetheslopeof

Work, Energy and Power

trajectory as

f
From equation of trajectory we have

or

or

or

y = xtanO - . .
2u cos 0,

^ =tanO ^
dx cos^0

d'y g

dx^ cos^ 0

Wehavefor radius of curvature at a pointon trajectory

R =

r 2' y2

1 +
\dxJ

d^y
dx'

2 flA3/2(1 +tan %)
' /

g

s.u^cos^0

sec^^cos^

# Illustrative Example 3.17

A wheel rotates around a stationary axis so that the rotation
angle 0 varies with times as (p = where k = 0.2 rad/s^.Find
the total acceleration of the point at the rim at the moment
t = 2.5 sec, if the linear velocity of the point at the rim at this
moment is0.65m/s.

Solution

Therotationangle (p of thewheel is givena fimction of timeas
tp = kfi-

d^
Thus the angular velocity of the wheel is co = — = 2kt

dt'

And the angular acceleration ofwheel is a = —^ =2k
dt^

Allpointson thewheelwillhavethesameangularacceleration
a and angular velocity co but linear acceleration and velocities
are different.

Linearacceleration (tangential) of apointonthe rimofwheelis

a = Ra-2kR



l'̂ _ |̂£gnergy[at^i;Po^

Normal acceleration (centripetal) ofthat point is

IfVis the speed of a point on the rim then

V = RGi

or ' =2ktR

V . -
or •

2kt

Using this value ofRintangential and normal acceleration, we
have

V

~ 3hd a^ = 2h>t

Total acceleration ofthis point is

or

or

t

(0065) +4(0.2)2(0.65)^(2.5)2
(2.5)

or =0.7m/s2

# Illustrative Example 3.18

A stone is thrown horizontally with a velocity of 10 m/s. Find
the radius ofcurvature ofits trajectory at the end of3 seconds
after motionbegan, (g = 10 m/s^)

Solution

Theradius ofcurvature ofa trajectory canbegiven directly by
the expression given in equation-(3.27)

Asstone isthrown horizontally, wehave equation oftrajectory
as-

Which gives

Sx

(fy gx
— = — and
dx

d'̂ y ^ g_
dx^ u"

After 3 sec ofprojection horizontally, stone's x-coordinate isx
= 10x3 = 30m/s

dy 30g
andatx = 30m, — =—^

dx
and

d^y 1
dx^ ~ 10

Radius ofcurvature at ;c= 30 m is

i2 =

1 +

i' Yi

\dx)

d^.y 1

dx} 10

or .=100Vi0m

167^
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Practise Exercise 3.4

(1) A particleisrevolving in a circularpath ofradius500m at a
speed 30 m/s. It is increasing its speed at the rate of 2 m/s^.
What is its acceleration ?

[2.69 m/s2.]

(ii) A solid body starts rotating about,a stationary axis with
anangular acceleration p = at. How soonafter,the beginning
ofrotation will the total acceleration vector ofa general point
on the bodyform an angle a with its velocity vector?

4tana X'

(iii) A solid body rotates with angular retardation about a
stationary axis with an angular retardation p=yt V© ,where ©
isitsangular velocity ofthe body ataninstant. Find the average
angularspeed of body averaged over the whole time of rotation
ifat theinitial moment oftime itsangular velocity was equal to

®o- •

[Mo/3]

(iv) A sdlid'bodystarts from test rotating abouta stationary
axis with an angular acceleration a = cos0, where Oq is a
constant vector and 0 is an angle of rotation from the initial
position. Find the angular velocity of the body ^ a function of
the angle 0.

[^2a(, sinQ ] , " , •
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3.7 Vertical Circular Motion ofa Pendulum Bob

Consider a bob attached to a string tied at a pivot shown in
figure-3.26. If thebobis given a horizontal velocity itmoves in
a vertical circle. This situation forms the basis of a wide

category of problems. Different type of cases can be made
depending on the projectionspeed of thebob. Wewill discuss
this situation in detail for different speeds ofprojections.

/ (1 - cos 0)

Figure 3.26

If the bob is given an initial speed u as shown in figure-3.26, it
starts following the circular path shown by dashed line. As it
moves lip, due to gravity, its speed decreases. When it is at an
angular displacement 0 from the initial position, we can find its
speed by energy conservation as

At points A and B, we have

— mu^ - — m\r + mgh

or v=yli^-2gh

Where /j = /(l-cose) ...{3.33)

Thus v= -yju^ -2g/(l-cos0) ...(3.34)

Equation-(3.34) givesthe velocityof bob duringcircularmotion,
at an angular displacement 0 from the initial position.

If initial velocity u, imparted to the bob is very small than after
traversing a small angular amplitude it will return back as
velocity is not sufficient to make the complete revolution and
it will start oscillations. Let the angular amplitude be 0 = a, at

which its velocity becomes zero. Angle a can be obtained from
equation-(3.34) by substituting v = 0 in it as

0= -Iglil-cosa)

Work. Energy and Rower j

or - 2gl + 2gl cosa = 0

or

2g/
cosa = ...(3.35)

During circular motion tension in the string is also varying.
Seefigure-3.27, whenthebobis at anangular position 0, there
are two forces acting on it. Tension T toward centre of circle
andmgindownward direction. The net forcetowardthe center
of circle is {T- mgcos0), which is acting as the required
centripetal force. Thus when the bob is at an angular
displacement 0, we have

mv

r-wgcos0 =

or T= wgcos0 +
mv

I

Substituting the value of v from equation-(3.34), we get

.2

T=
mu

I
~2mg + 3mg cos0 ...(3.36)

Figure 3.27 .;

Equation-(3.36) gives the tension in thread when it makes an

angle 0 with the downward normal. Sometimes it is possible
that tension in thread becomes zero"during revolution. It can
not occur in lower halfofthe circle but it can be possible when
particle is making revolution in upper half of the circle. If it
happens at an angle 0 = (p then it can be evaluated from equation-
(3.36) as

or

or

0 =
mu

I
- 2 mg + 3 mg costp

- 2 g/ + 3 g/ costp = 0

2gl-u'

-igl
cos(p - • ...(3.37)



Equations-(3.35) and (3.37) are very useful in describing the
circular motion of the bob, on the basis of initial projection
velocity of it Let us discuss some cases of projection of it
which may be helpful in solving different type of problems
related to vertical circular motion.

3.7.1 Projection Cases

Cas^I: Ifprojection velocity is w= yjlgl

Fromequation-(3.35), cosa = 0 or ct= —

Fromequation-(3.37), cos(p = 0 or (p =

It shows that the velocity ofbob and tension in thread becomes

zero simultaneously at an angular displacement y, or when
thread becomes horizontal. Thus particle will oscillate in lower
half ofthe circle, as shown in figure-3.28.

o

' •/////'

!/

•u = ^2 gl

Figure 3.28

r=o
lv=0

Ifprojection velocity is less than ^2gl , from equation-(3.35)

and (3.37) it is clear that cp will be more than a, thus tension in
string will never become zero and velocity of the bob will be

71zero at an angle 9<y and particle will.oscillate in lower halfof
the circle with angular amplitude a.

Case-II: Ifprojection velocity is u= yj4gl

Fromequation-(3.35), cosa=-l or a = K

Fromequation-(3.37), cos(p=-— or 9=^131.8"
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soon as thread will slack, particle becomes free to move and it
will follow the projectile path as shown in figure-3.29(a). If
instead of threadwe use a light rod for our purpose as shown
in figure-3.29(b), it cannot slackduring revolution andparticle
isnowabletomove to thetopmost pointof thecircle (asa = n).
When it reaches the topmost point its velocity becomeszero
but due to its inertia, it will fall in forward direction and

completes the circle.

71 — (0

7=0 \

«=^/4^

(a)

v = 0

0
. 212

Which shows that initial velocity of bob is sufficient to carry
the bob to highest point but tension in thread becomes zero at

131.8°andaflerwarditwillno longer be in circularmotion. As Thus in cases when particle is restricted to move along the

A "

« =

(b)

Figure 3.29
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•circular path, is thesufficient velocity fortheparticle at
the bottommostpoint to completethe circle. Ifparticle is not
restrictedto its path, it will leave the path at an angle 131.8°.

Case-Ill: Ifprojection velocity is

«=

3Fromequation-(3.35), cosa=--^ or adoes not exist.

Fromequation-(3.37), cos(p = -l or <p = ;c

Thus tension in thread becomes zero at the topmost point of
the circle and velocity in it never becomes zero as shown in
figure-3.30. At the topmost point velocity in bob is given by
equation-{3.34), as

or

v=^u^-2gKl-i-l))

v= 4^

v=vir B

T=0

O

[As H=4^ ]

...(3.38)

—» I a = V5g/
~A

Figure 3.30

At the topmost point bob has velocity 44^ and zero tension in
thread. Due to zero tension bob tend to move freely but as it
moves forward to follow up the projectile motion, it will be
restricted by the thread which become, taut and the bob will
now follow the circular path and complete the circle.

Thus to complete the circle in such cases when particle is not

restricted at their path, is the minimumvelocity required
to complete the circle. Another example of such a case is the
bike riding in a game show named as "we// ofdeath", in which
a motorcyclist rides the bike in a vertical circle at a speed more

than •^SgR at the bottommost point. At the top for contact not
to be broken the velocity must be more than 4^ •

" r'

3.7.2 Motion of a Body Outside a Spherical Surface

Consider the small box shown in figure-3.31, placed at the top
of a spherical surface of radiusR. If it is.projected withinitial
velocity u, itmoves incircular pathalong thespherical surface
for some distance and at some point it breaks off the surface
below it and followthe projectile trajectory.

First we find the velocityof the box, whenit movesanangle 0
from the vertical position. This can be done by using energy
conservation in figure-3.31(a) at points Aand B as

— mtP' + mgR (1 - cos9)= :r
^ . J

(a)

Figure 3.31

or v= +2g/?(l-cos0) ...(3.39)

During its circular motion the normal reaction acts on body in
outward direction so the net force on body toward centre is
(mg COS0 - N) which provides the necessary centripetal force
for circular motion. Thus we have
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mg cosQ-N=
mv

R
...(3.40)

Letwe' takeanangle p when normal reaction becomes zero,as
the contactbetween body and sphericalsurface breaks off as
shown in figure-3.31 (b).Fromequation-(3.40), wehave

mg cosp =
mv

~R

Substituting the value of v fromequation-(3.39), we have

Rgcosp = u^ + 2gR (I - cosp)

2gR +u^
or cosP =

3gR
...(3.41)

If projection velocity of the body is given, above equation
gives the angle at which body leaves the spherical surface and
starts projectile motion in gravity as shown in figure-3.29(a).

Wenow take some examples for explaining above concepts.

# Illustrative Example 3.19

A 40 kg mass,hangingat theendof a ropeof length/,oscillates
in a vertical plane with an angular amplitude 0q. What is the
tension in the rope when it makes an angle 0 with the vertical ?
If the breaking strength of the rope is 80 kgf, what is the
maximumangularamplitude with which the mass can oscillate
without the rope breaking ?

Solution

From figure-3.32, we have

h = l (cosO - cosOq)

The velocity at the angular displacenient 0 is given as

Figure 3.32

or =.y/2jr(cos0^^^cos0^

Tension at this instant in the string is givenby .

.2

T-mg COS0 =
mv

~1
Substituting the value of v

T-mg cosO = 2mg (cos0 - cos0q)

T= mg(3cos0 - 2cos0q)

or

or

This tension is maximum at mean position where 0 = 0. Thus
we have T =80 k^f

max ^

80=40 (3-2cos0o)

or 00500=-

or 00=60°

# Illustrative Example 3.20

Figure-3.33 showsa loop track of radius r. Abox startssliding
from a platform at a distance h above the top of the loop and
goes around the loop without falling off the track. Find the
minimum value of h for a successful looping. Friction is
negligible at all surfaces.

Figure 3.33

Solution

As the surfaces are frictionless, velocity of box at the bottom
of the track can be given as

v= •yj2g{h +2r)

To complete the loop the box must have its speed at

least ^j5gr at the bottom, otherwise it will loose contact and
start following the projectile parabolic trajectory. Thus we have

•^2g{h +2r) =7^



1172^

or

or

h + 2r = —r

r

h=-

if Illustrative Example 3.21

Figure-3.34 shows a smooth track, a part ofwhich is a circle of

radius r. A block ofmass m is pushed against a spring ofspring
constant k fixed at the left end and is then released. Find the

initial compression of the spring so that the block presses the

track with a force mg when it reaches the point P, where the

radius of the'track is horizontal.

Figure 3.34

Solution

Let the initial compression of the spring is x and when the
spring is released, the stored compressional energy in the spring
is given to the block and it shoots on the track, which ends in
a vertical circle ofradius r. When mass reaches the point P, the
weight ofblock at this point is in vertical downward direction
and the block pushes the track with the only force mv^/r.

At P the force on track should be equal to the weight of the
block, thus

mv

or

= mg

•=^Fs

Now we apply work-energy theorem from starting point ofthe
spring to the point P for the block.

As initial kinetic energy of the block is zero and at P it is

—mv^, thus we have

1 , 1 ,
0 + ~ Ior —mgr= ~ rn^r

2^ 2

or

or

or

- kx^-mgr= —m{rg)

kx^= 3 mgr

x =

3mgr

Work,,Energy ^nd po^er^^

# Illustrative Example 3.22

A small box of mass m is kept on a fixed, smooth sphere of
radius,/? at a position where the radius through the box makes
an angle of30° with the vertical. The box is released from this
position, (a) What is the force exerted by the sphere on the box
just after the release ? (b) Find the distance travelled by the
box before it leaves contact with the sphere.

Solution ;

(a) At the time ofrelease speed ofbox is zero. It will push the
sphere only with the normal component of its weight. Alon^
radial direction, we have

wg^cos30°

or

V3
^ wg

(b) The situation is shown in figure-3.35.

Let the box loose contact with the sphere at an angle 0 from the
vertical. At this instant its normal reaction becomes zero, thus

we have at this point

or

mv

R
= /MgCOS0

v= yjRg cos 0 ...(3.42)

Figure 3.35

Velocity of particle at this point can be given by energy
conservation as it has fallen a,distance h, we have

h = R (cos30° - COS0)

and v=^l^ =jlgh COS0
2

...(3.43)
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Equating equations-(3.42)and (3.43), we have

cos0= VJ~2cos0

cos0= -]=
s

0=54.73^

It is given as

or

sin^
h =

2^

29.4 X(47 5)'

2x9.8
= 0.96 m

Angular displacement ofthe box before leaving the sphere is #Illustrative Example 3.24
54.73°-30 =24.73® ' • _ • !—

Distance travelled by the box is

-• 24.73
180.

# Illustrative Example 3.23

x3.14x^ = 0.431/?

Aparticleis suspended from a fixed pointbya stringoflength
5 m. It is projected from the equilibrium position with such a
velocity that the string slackens after the particle has reached
a height 8 m above the lowestpoint. Find the velocity of the
particle, just before the string slackens. Find also, to what
height the particle can rise further.

Solution

As shown in figure-3.36 at point 5, 7= 0

Thus we have

or

or

r=o N

/=5 m

u = V2^ ,

Figure 3.36

mv
= mg cos6

v= |̂glcosQ = V29.4

= 5.42m/s

Afterpoint5, particle willmove in a projectiletrajectorywith
this initialvelocity. Let h be the maximumheightit furtherrises.

A heavy particle hanging from a fixed.point by a light
inextensible string of length / is projected horizontally with

speed . Find the speed of the particle and the inclination
of the string to the vertical at the instant of the motion when

the tension in the stringequalto the weightof the particle. .

Solution - ^ ,

. -'U- . . • ' j

Giventhat initialvelocityof projectionof particleis u
The tensionin the stringat an angle0'fromtheverticalis given
by equation-(3.36), as

or

T=
mu

-Img + 'img COS0

T=3mgcosQ-mg [As

T+mg ,
or COS0 =

3mg [As T=mgy

At this angle the velocity is given by equation-(3.34), as

V= -2g/(l-cos0)

= Jg^-2gix~

or
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Practice Exercise 3.5

(i) A ball is attached to a horizontal cord of length L whose
other end is fixed, (a) If the ball is released, what will be its
speed at the lowest point of its path ? (b) A peg is located a



distance h directly below the point of attachment of the cord.

IfA= 0.75 L, what will be the speed ofthe ball when it reaches

the top of its circular path about the peg ?

[Vigi ]

(II) An automatic tumble dryer has a 0.65 m diameter basket
that rotates about a horizontal axis. As the basket turns, the

clothes fall away from the basket's edge and tumble over. If the
clothes fall away from the basket at a point 60° from the vertical
whatis therateof rotationof dryerdrum ? Take g = 10m/s^.

[3.92 rad/s]

(III) A smooth circular tube is held in a vertical position. A

small ball which is free to slide inside the tube is held stationary
at the highest position in the tube. Iftlie ball is slightly displaced
from its position ofrest, show that the force exerted by the ball

on the wall of the tube is given as mg (3cos0 —2), where m is
the mass of the ball, and .0 is the angular displacement from
highest position. Upto what value of 0, this result will remain
vahd.

[cos-'(2/3)]

(iv) A particle is suspended from a fixed point by a string of
length 5 m. It is projected from the equilibrium position with
such a velocity that the string slackens after the particle has

reached a height 8 m above the lowest point. Find the velocity
of the particle, just before the string slackens. Find also, to
whatheight the particle can rise further. Takeg = 10m/s^.

[5.42 m/s, 0.96 m]

(v) A Stuntpilot in an airplane diving vertically downward at a
speed of 220 kph turns vertically upward by following an
approximately semicircular path with a radius of 180 m. (a) How

many g's does the pilot experience due to his motion alone ?
(b) By what factor does the pilot's weight appear to increase at
the bottom of the dive ?

[(a) Ig (b) 3 times]

(vi) A smooth surface hemisphere is fixed on a ground as shown
in figure-3.37. From the topmost point of it, a small ball starts
sliding with no initial velocity. Find the distance s between the
center ofbase circle ofhemisphere and the point where particle
strikes the ground.

[—[47^+5^/5]]

777777777777777777777?:

Figure 3.37

Work, Energy and Power

Horizontal Circular Motion

When you revolve a stone tied with a string over your head is
the most common example of horizontal circular motion. In
such cases gravity acts perpendicular to the circular path, hence
it can not affect the speed ofthe path but for vertical equilibrium
there must be a balancing force against gravity. Figure-3.38
shows the case we were discussing. In this case the balancing
force is the vertical component of tension in string T cosG..

Here horizontal component of tension T sin0 is acting toward
centre ofthe circle. It is the required centripetal force for circular

motion.

T frcose

T sm0

Figure 3.38 •

Along radial and vertical directions, we have

FcosG= mg

and
mv^

T sin0 =

Dividing equations-(3.44) and (3.45), we get

tan0 = —
fg

...(3.44)

...(3.45)

...(3.46)

Above relation shows that 0can never be y ;It can be ifand

only ifV X,

Squaring and adding the above equations, we get

Tension in string ...(3.47)

3.8.1 Banking ofTVacks

A popular example ofhorizontal circular motion is the effect on
a two wheeler or four wheeler, while takirig a tum on a circular
road. Several different cases ofturning can be considered. Let
us discuss few of them
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Case-I: TwoWheeler on a Flat Road and Banked Road

Figure-3.39 shows a two wheeler taking a turn on a curved
road with radius ofcurvature R. During turning itexperiences
(with respect tohimselforbike) an outward extemal force, the
centrifugal force, which willtendtopull it inoutward direction.
Here the centripetal force isprovided byfnction between road
and tyre contacts which will actinradially inward direction as
showninfigure. Asweknowthatthemaximum valueof friction
force possible is \lN, and here N^mg

'.1751

Ifangle oftilt 0, is increased beyond this value, torque ofmg
will become^more than that ofm\^/R, and bike will topple inward
and because ofshort angle oftilt, itwill topple outward.

Forseveral situation forsafe turning, roadconstructors make
the road banked atasuitable angle for ageneral speed and put
a speed limit board before turn. If rider takes the turn at this
speed it caifbe taken without tilting himself as the road is
bankedas shownin figure-3.40 whichshowsthe cross section
of a bike taking turn at a banked road. In this case normal
reaction on bike is in the direction perpendicular to road,
horizontal component ofwhich balances the centrifugal force
andvertical component balances its weight.

Figure 3.39

Thus for safe turning without skidding, we must have

.2

or

OTV

R
mg

v<'̂ [iRg ...(3.48)

Also during a safe turn, the motorcyclist tilthimselfatan angle
0, otherwise the vehicle will topple on outer side, due to the
clockwise torqueof mv^/R, whichcanbe evaluated as

mv.

= —r— X hcosQ
R

...(3.49)

Where h is the height of center of mass of the bike and the
rider.

This torque isbalanced bythe anticlockwise torque provided
by mg, which can be given as

^ack^mgxhsinQ ...(3.50)

For safe turning above two torques will balance each other.
Thus

or

mv

R
XAcos0= mg X/2sin0

tan0 = T—
Rg

0 = tan"' —
Rg

...(3.51)

Figure 3.40

Case-n: Four Wheeler on Flat Road and Banked Road

Let us consider a four wheeler taking a turn on a flat road
shown in figure-3.41(a). During turn, it experiences the
centrifugal force on its centre, ofmass which is at a height h
above the ground. With respect to the outer wheels contact,
thereis a torqueof centrifugal forceonit inclockwise direction
given as

mv

T
xh

The weight ofautomobile will also exert an anticlockwise torque
on it, about the samecontact, which will tend the automobile's
inner wheels ongroimd contact. Ifclockwise torque will exceed
the anticlockwise torque, innerwheels will loosecontactwith
groimdand the automobile wnll tend to overtum, as shownin
figure-3.41 (b). Ifnowvelocityis not decreasedthenalso it will
overturn.

Similar to the case of two wheeler, here also we can make the

roadbanked forsafeturning. Buthere anadditional possibility
of skidding is alsopresent. Nowlookat the figure-3.42, which
shows the crosssectional viewof the turning automobile on a
banked road. The centrifugal force on it is in horizontally
outward direction. We resolve this force and weight of
automobile in the direction along the banked road and
perpendicular to it.



176

3^37

mg

(a)

mv2

Axis ofRotation

mg ' Axis of Rotation

(b)'

Figure 3.41

Figure 3.42

Thetendency ofskidding of automobile, depends onits speed.
If its speed is high such that on the automobile

mv^

Work, Energy and Pov^r]

tendency of skidding may become downward and in this
situation, friction will act in upward direction. It is possible

7
H tHV

when mg sin0 > cos0. If speed decreases beyond a
R

minimum value, automobile willskiddownward. Thisminimum
speedcan be obtained by the relation

2 ^^2
mgsin0 = ^7- COS0 + p(wgcos0 + —sin0)

R R

Above relation gives thevalue ofminimum velocity uwhich is
required for safe turning. Thus for turning without skidding
the automobile velocitymust be betweenv and u.

Let us take_few examples, for the concepts circulation of
horizontal circular motion.

# Illustrative Example 3,25

Aparticle ofmass misattached to one end ofaweightless and
inextensible string of length L. The particle is on a smooth
horizontal table. The string passes through a hole in the table
and to its other end is attached a small particle ofequal mass m.
The system is set inmotion with thefirst particle describing a
circle on the table with constant angular velocity cOj and the
second particle moving in the horizontal circle as a conical
pendulum with constant angular velocity cOj. Show that the
lengthof the portions of the string on either side of the hole
are inthe ratio : cOj^. ,

Solution

Situation is shown in figure-3.43.

R

upward direction and fnction on vehicle acts in downward
direction and if the vehicle is moving at such a speed so that

mv^

COS0 > mg sin0, it will have a tendency of skidding in

R
COS0 exceeds mg sin0 + friction on it in downward

direction, automobile will skid upward. Thus maximumspeed
can be obtained by the relation.

Figure 3.43

COS0 = mg sm0 + p {mgcos0 +
R R

sin0)

Here tension in string remains same as there is no friction
In above equation v used is the maximum speed up to which' betweenthe thread and the edge of the hole in the table. For
safeturningis possible.Ifspeed of automobile exceedthisv, it the two circularmotionsof upper mass and the lower mass m
willskid inupward direction. Similar to this ifspeed decreases, we have
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and

and

7= WCOj^^j

TsinG =mcsi^r^

7cos0 = mg

...(3.52)

...(3.53)

...(3.54)

If lengthof the thread is taken as L, as shownin figure, radius
^2 can be givenas

r2= (L-rj)sm0 ...(3.55)

Fromequations-(3.52), (3.53) and (3.55) we have'

wcOjVj =wco2^(L-rj)

CO-

or

(i-r,) CO,

# Illustrative Example 3.26

A particle describes a horizontal circle on the smooth inner
surfaceofa conical funnelas shownin figure-3.44. If the height
of the plane of the circle above the vertex is 9.8 cm, find the

speed of the particle.

9.8 cm

Substituting the value of r we get

yf^ =0.9Sm/sor

# Illustrative Example 3.27

A car starts from rest in a circular flat road ofradius R with an

acceleration a. The ft"iction coefficient between the road and

the tyres is p. Find the distance car will travel before it start

skidding.

Solution

During circular motion car will skid whennet force acting on it
exceeds limiting friction. Here it is given that the tangential
acceleration ofcar is a. Thus the speed ofcar after travelling a

distances is given as v= V2a.?

When speed of car is v, centripetal acceleration on it is

.2

a^,=

Total acceleration ofcar is

R

las

~T

"r=A/«'+4 =

Net force acting on car is

Fn,r""'T="> .M

Car will skid when m

or

v4a y

# Illustrative Example 3.28

Figure 3.44

Solution

Let the speed of particle be v, with which it is revolving in a
circle ofradius r, where r is given as

r=h tan0

Due to its circular motion we have

2

A particle is attached by means of two equal strings to two

points A and B in the same vertical line and describes a horizontal

circle with a uniform angular speed. Ifthe angular speed ofthe

...(3.56) particle is 2.yjlg Ih with AB = h, show that the ratio of the
tensions of the strings is 5 : 3.

...(3.57)'

Solution

The situation is shown in figure-3.45 and the forces acting'ori

the particle are also shown.

NCOS0 =

or •• N sin0 = mg

Dividing above equations, we have

tan0 = ~2
V



he:
---T-

mh-

T-, mg

Figure 3.45

According to the vertical and radial equilibriumofthe particle,
we have

or

or

Tj COS0 = cos6 + mg

(T^ - T2) COS0 = mg

mg
T - T =

1 2 COS0

and Tj sin0 + sin0 =ma^r

or

/wco^r
T, + T^= —TT

' 2 sin0

Solvingequations-(3.58) and (3.59), we get

1 f mco r mg

and T = —
2 2

sin0 cos0^

men r mg

sin0 COS0

h j2g
We have r = —tan0 and ®= 2i —,wehave

2 V n

or

j, _ 5mg
' 2cos0

and

5

• 3

# Illustrative Example 3.29

^ ^ 3mg
2 2cos0

...(3.58)

...(3.59)

A hemispherical bowl of radius R is set rotating about its axis
of symmetry which is kept vertical. A small block kept in the
bowl rotates with the bowl without slipping on its surface. If
the surface of the bowl is smooth and the angle made by the
radius through the block with the vertical is 0, find the angular

Work, Energy and Powef-i

speed at which the bowl is rotating.

Solution

Let we take the bowl is rotating with an angular velocity co. The
block will be in a circular motion with radius R sin0, as shown

in figure-3.46. As the block is in equilibrium, we have along
horizontal and vertical directions

Wcos0 = mg

N COS0

Figure 3.46

and , N sin0 = wco2 R sin0

or N=maf-R

From above equations we get

mg

COS0
-m(s?R

or co= ^jgR sec 0
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Practice Exercise 3.6

(1) A space station 960 m in diameter rotates fast enough that
the artificial gravity at the outer edge is 1.5 g. (a) What is the
frequency of rotation ? (b) What is its period ? (c) At what

distance from the center will the artificial gravity be 0.75 g ?
Takeg= 10m/s2.

[0.0281 sec-', 35.52 sec, 240 m]

(ii) Calculate the angleofbankingrequiredforacurveof200 m
radius so that a car rounding the curve at 80 kph would have
no tendency to skid outward or inward. Assume the surface is
frictionless. Takeg= 10 m/s2.

[tan-' (0.247)= 13.87']
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(iii) A liquid is kept in a cylindrical vessel which is rotating
along its axis. The liquid rises at the sides. If the radius of the
vessel is 0.05 m andthe speedofrotationis 2 rev. per sebond,
find thedifference in theheightof the liquidat thecenterof the
vessel and its sides (g = 10 m/s^).

[2 cm]

(iv) A sleeve A can slide fi-eely along the
smooth rod bent in the shape of a half circle
of radius R as shown in figure-3.47. The
system is set in rotation with a constant
angular velocity co about the vertical axis 00\
Findthe angle0 corresponding to thesteady
position of the sleeve.

[0, = 0 and 02 = cos"' (g/ai^ i?)]
Figure 3.47

(v) A hemispherical bowlof radius/?= 0.1 m isrotatingabout
its own axis (which is vertical) with an angularvelocity co. A
particle of mass 0.0J kg on the ffiction less inner surface ofthe
bowl is also rotating with same co. The particle is at a heighth
fi-om the bottom ofthe bowl, (a) Obtain the relation between h
and CO. What is the minimum value ofconceded in order to have

a non zero value of /? ? (b) It is desired to measure g using this
set up, by measuring h accurately. Assuming that r and co are
known precisely, and that the least count in the measurement

of is 10"^ m. What is the minimum possible error Ag in the
measured valueofg ? g = 9.8 m/s^.

[h =R-Ar , 7-Jl rad/s, 9.8 x lO'̂ m/s^]

(vi) A smooth light horizontal rodABcan rotate about a vertical
axis passing through its ends A. The rod is fitted with a small
sleeve of mass m attached to the end by a weightless spring
of length Iq andforce constant k.Whatworkmustbeperformed
to slowly get this system going and reaching the angular
velocity co ?

|. 1l^may^kik +mai^),
2

3.9 Potential Energy & Conservative Force Fields

Force fields are regions in which at any point a body experiences
a force under one or more conditions. The force applied by the

field on body may impart or extract energy to or fi"om the body
by doing work when body is displaced in the field. If the work
done against the field force is stored in system this is called
interaction or potential energy of system and such a force field
is called conservative force field and the forces are called

conservative forces. Gravitational forces and electric forces

are commonly used conservative forces.

179

Ifworkdoneagainst thefield force isdissipated tosurrounding^
then such fields are called non-conservative force fields, and

the forces are called non conservative forces. Friction is the

most common non-conservative force we use in general cases

ofdynamics.

3.9.1 Relation in Force and Potential Energy

Potential energy is the stored form of energy and it is a
characteristic property of conservative force fields or in a

system we define potential energy only when one or more

conservative forces are present. For each type ofconservative
force potential energy is separately defined.

In a conservative force field at every point we can define or
consider potential energy of a body placed in the field and at a
position far away (infinity) distance fi^om field we assume no

interaction ofbody with the field and this state we consider as

reference zero potential energy state.

w

/

Conservative

force field

Figure 3.48

P

co-^P
=-\F(r)-dr ...(3.60)

Here -F(r) is the external force required to bring the body

slowly firom infinity to P so body does not gain any kinetic

energy. This work done given by equation-(3.60) will be the
energy gained by the force field as the force of system would
be doing negative work in this process and this energy will be

called as potential energy ofbody in the force field at point P

and can be expressed as

Up=-lFir)-dr ...(3.61)

Thus potential energy of a body in a system of conservative
forces can also be defined as

"It is the work done in bringing the bodyfrom the state ofzero

potential energy to any point in space"
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Using the above understanding of potential energy we can
relate force acting on a body and it potential energy in
conservative force fields. If on displacing a body in

conservative field at a position f by a displacement dr, the
change in potential energy of body is given as

dU=- F{r) dr =-F{r)drcos^

Where F{r) cos 0 is the force component along displacement.
So in this situationalongthe positionvector the componentof
force is given as-

F{r) cos 0 =

or

dU

dr

— dU .
nrh =

If there is a unidirectional force field in which force is varying
with x-coordinate of a system and potential energy of system
is given as f/(x) then the force on a body in this system at a
position is given by-

Fix) = -
dx

...(3.62)

3.9.2 Conservative Force in a three dimensional force field

If in a region of space potential energy of a body varies in three
dimensions then force on body is represented as-

F = -VU ...(3.63)

Where V is the symbol used for 'gradient' and it is called
gradient operator which shows maximum variation rate with
position. This is also written as

F =-VI7--gradient(U)

This expression indicates that direction of force is in the
direction of maximum decrease in potential energy in space
and its magnitude is given by the rate of charge of potential
energy with position. For a three dimensional system gradient
operator is expressed as

d •: d d '
Vs 1 H /H k

dx dy dz

vVhere d ispartial derivative operator system bob. Thus relation
in force and potential energy of a body in three dimensional
space is given as. '

- (dU dU dU -
F=-VU= - —I

or dy dz
...(3.64)
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3.9.3 Work done in conservative and non-conservative force

fields

As already discussed that in conservative fields at every
position potential energy of a body can be defined. In
figure-3.49 a conservative forcefieldis shown andfor a body
atpoints Aand Bpotential energy is given as

Ua= -]F{r)-dr

and • u^^-\F{r)-dr

Now if the body is displaced from Ato B slowly, work done
against the field force is given as-

B

W= -\F{r)-dr
A

This work increases the potential energy ofsystemas no leases
take place in conservative force fields so we use

B

w= -jF(r)-dr

f B ^
=U,-uA-\nrydr

V «>

-^F{r)-dr
\ «

Thus work done does not depend on path weather body is
displaced along path I or II this work remain same. That is
another importantpoint about work in conservative fields we
can keep always.

Figure 3.49

"In conservativeforce fields work done in displacing a body
byfieldforces only depend upon the initial andfinalposition
of body and not on the path followedfor displacement"
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Also remember that the above statement is for field forces not

forexternal forces. Thiswillbevalidforexternal forces if body
is displaced slowly and no kinetic energy is imparted to the
body.

3.9.4 State ofEquilibrium andPotentiai Energy

In a conservative force field as discussed. The force and

potential energy at a position are related as

- dU ^
F = ——f [Alongpositionvector r]

In this expression at the state of equilibrium of body we use

dU

dr

Equation-(3.64) explains the condition ofequilibrium of body
under conservative forces which can exist in three cases when

U is constant or Uis maximum or Uis minimum at a position
with respects to the neighbouring positions.

if we see and analyse figure-3.50 which shows variation of
potential energy of a body with position in a conservative
force field. The positions A, B and C are three points at which
we can say that body is in equilibrium. We can also classify
different states ofequilibrium based on potential energy state
of body. Lets discuss these states one by one.

F=0 = 0

• u
A

\ c

I ^2 3

...(3.64)

Figure 3.50

3.9.5 Unstable Equilibrium

At point ..4 in figure-3.50 potential energy ofbody is maximum

compared to its neghbouring points and as slope of curve at
point A is zero at this point no force is acting on body so this is
the state ofequilibrium. Ifwe slightly displaced the body away
from A in any direction, we can see that the direction of force
on body is away fi"om..4 as force direction is always toward low
energy states.

So in this state is body is slightly is displaced from equilibrium
position, field force will push the body away from this position.
Such an equilibrium state is called unstable equilibrium.

Figure-3.51 shows the position of curve in neighborhood of
point A and direction of force if body is displaced to ^4 + and
A - neghbouring positions.
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Figure 3.51

, -= dU . dU
As t =—,at/4+position(slope ofcurve) isnegative

hence force on bodyis inpositive direction andatA-position
dU

(slope of curve) is positive hence force on body is in

negative direction.

3.9.6 Stable Equilibrium

At points in figure-3.50 potentialenergyof body is minimum
compared to its neghbouring points and as slope ofcurve at B
is zero at this point no force is acting on body so it is the state
of equilibrium. If fromthispointwe slightlydisplacethe body
away from B in any direction, from figure-3.52 which is the
portion ofcurve shown in figure-3.50, we can see that force on
body will act toward point B which has a tendencyto restore
the equilibriumpositionofbody at point5. Suchan equilibrium
position is called stable equilibrium position.

Figure 3.52

dV
At 5 + position (slope of curve) is positive hence force

on body is in negative direction

dU
At 5 - position (slope of curve) is negative hence force

on body is in positive direction.

The position ofcurve shown in figure-3.52 is called "potential
well" in which when a particle is located at equilibrium position
and slightly displaced then due to restoring force it starts
oscillations about the stable equilibrium position.

3.9.7 Neutral Equilibrium:

At the points in neighborhood of point C, in figure-3.50
potential energy of body in force field is constant so slope of
curve is zero and hence no force is acting on body in this
region and body will remain in equilibrium ifit is displaced any
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where in this region. Suchan equilibriumstate ofbody is called
neutral equilibrium.

# Illustrative Example 3.30

The potential energy function for the force between two atoms
in a. diatomic molecule is approximately given by

a b

t/W = ~ir—6 5wherea and b are constantandx is thedistance

between the atoms. Find the dissociation energy ofthe molecule
which isgiven as D= [(/(x = oo) - equilibrium]-

Solution

We are given with potential energy of diatomic molecule as

U = ~--
x'^ x^

At equilibriumstate ofmolecule we have = 0
dx

=> \2ax-^'^ = 6bx-'̂

2a ,
=> ^ =x^

x =

b J

Dissociation Energy of the molecule is given as

-a b
D= r +

f2a)' ^
b J b

b' b' 9
D=-:r^ir=-r

2a 4fl 4a

# Illustrative Example 3.31

Find the expression of potential energy U{x, y, z) for a
conservative force in a force field where force is given as

F = yzi+xzj +xyic. Consider the zero ofthe potential energy
chosen at the point (2,2,2).

Solution

As the relation in Force and potential energy in a conservative
force field is givenas

- dU- dUdU ^
F= / j k

dx dy dz

Work, Energy and Power^

By comparing the given expression of force we have

dU

dx

dU

dy

dz

= -yz;

= -xz;

•—xy;

Therefore U''~xyz+ C where C is the constant. As at (2,2,2),
?7=0sowegetC=8

Thus potential energy ofthe given force field is £/= (- xyz+8)7

# Illustrative Example 3.32

The potential energy of a particle of mass 1kg free to move

joule. If total mechanicalalongx-axisisgivenby L''(x)=|

energy ofthe particle is 2J, then find the maximum speed ofthe
particle. (Assuming only conservative force acts on particle)

Solution

The total mechanical energy of the particle at any instant is
sum of kinetic and potential energy hence we use

KE+PE = 2J

1 , x^
=> 2^"^ 2

=> v^ = 2x-x^ + 4

d{9)
For max v; we use —;— =0

dx

=> 2-2x = 0

=> x = l

Thus maximum speed is at x=I, which is given as

9 =2-1+4.
max ^ ^ ^

W^VSms-'.

For general overview ofEnergy, Work and Circular motion, we
take few Illustrativeexamples, which will help you to understand
more concepts of the running topic.

# Illustrative Example 3.33
\

A chain of mass m and radius R placed on a smooth table is
revolving with a speed v about a vertical axis coinciding with
the symmetry axis of the chain. Find the tension in the chain.
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Solution

Situation is shown in figure-3.53. The chainis revolving at an
angular speed co, due to this each small part of the chain
experiences a centrifugal force in outward direction and as co
increases, tension in chain will increase due to increase in

centrifugal force.

Tofindtension we consider a smallelemental lengthdl on the
chain'as shown in figiue, which subtend an angle dQ at the
Center. This element (saymass = dm) experiences thecentrifugal
force along radially outward direction, given as

Pcf=
dmv^

As shown in figure, tension acts at the edges of this dl
tangentially away from the element. If we resolve the two

tensions along and perpendicular to the element, the
(B

components T cos —, will cancel

Figure 3.53

. 9 dmv^
2Tsm —

• 2 R
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As c/0 is very small, we can use sinc/G = dQ, thus

f M ^ M

T=
2nR

Similar to thisproblem infurther chapters of thisbookas well
as infurther volumes you will face different type ofproblems
to findthetension in a string. Forallsuchproblems there is a
shortcutbut illogical method alsoexistto get the finalresult.
Here we explain it.

DirectShort-Cut: To find the tension in a circular chain or a

ring, find the net radial sealer force (sum of the total force)
acting onthe chainin all directions anddivide it by 27C.

In this example we,have the total radial sealer force on chain

R
is F =

Thus the tension in the chain is

Mv'
T=

2n 2nR

Proof: If we consider stringto be elastic. On relating about
itscentral axis, duetocentrifugal force it tends toexpand, say
its radius is extended by a small amounts Ax. Due to it, the
circumference is increased by 2 jtAx. If T is the tension in the
string, workdoneagainsttension canbewritten as (T x 2 nAx)
which maybewritten astheequivalent workdone bycentrifugal
forces, thus we have

or

T X 2 tiAx -
mv

~R

wv

2-rR
T=

X Ax

We take one more example to understand this short-cut.

# Illustrative Example 3.34

each other and the perpendicular components which are in Figure-3.54(a) shows acone ofhalfangle 0on which achain of
^ mass mis resting withsufficient friction so that itwillnotslip

radially inward direction, 27'sin~ acts as centiipetal force on the surface of cone. If cone starts rotating at an angular

and balances the centrifugal force, thus we have velocity co, find the tension developed inthe chain.
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Solution surface is smooth, we can assume that the mass of the hanging
part is at its centre of mass and also that of the resting part is

Figure-3.54(b) shows the force diagram ofthe chain and cone, on the table. When it is pulled up, work is required against
gravity in displacingthe centre of mass of the hangingchain
up by //6. Hence the work required is

m I mffl
= — Xg X - = —^
3^6 18

NOTE : If the surface is not smooth then you must not

concentrate the distributed mass at the centre of mass.

(b)

Figure 3.54

Here net radial sealer force acting on the chain is

.2

F =iVcos0 +
mv

From the condition ofequilibrium ofchain we have

mv

N=mg sin0 cos0

0 . mv^

Thus we have F =m?sin0 COS0-•^^(cos^0-1)
JC f.

Now the tension in the chain can be directly given as

T= = — [gsin0 cos6- — (cos^0- 1)]
2n In ' r

# Illustrative Example 3.35

A uniform chain is held on a frictionless table with one third of

its length hanging over the edge. If the chain has a length / and
a mass m, how much work is required to pull the hanging part
back on the table?

Solution

centre of

j. mass

Figure 3.55

The situation is shown in figure-3.55. Here the mass ofchain is
distributed uniformly along the length of the chain and as the

//3

Figure 3.56

Alternatively the problem can be solved by the usual method
of finding the work as

=\f.W dx

Figure-3.56 shows the intermediate situation when the chain is
being pulled. If its x length is hanging, the force of gravity on
it is

m

F=-j xg

In pulling the chain up by a length dx, work done is

m

dW= — xgdx

Total work done in pulling the chain completely is

0

W--= \~xgdx =-'
1̂9

Here negative sign signifies that the work done by gravity is
negative i.e. work is done against gravity.

# Illustrative Example 3.36

A particle of mass m moves along a circle of radius R with a
normalacceleration varyingwith time as = kt^, wherekisdi
constant. Find the time dependence ofpower developed by all
the forces acting on the particle and the mean value of this
power averaged over the first t- seconds after the beginning of
the motion.

Solution

As given in the problem that normal acceleration ofthe particle
varies with'time, we have
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or

a^= — = kfi
N

v= yfkRt

On differentiating we get the tangential acceleration of the
particle as

dv

^taa yficR

Thus total acceleration of the particle is

O'j- •yjofj +<3

The net force acting on particle is

But the power is delivered to the particle by those forces only
which are acting along the direction ofvelocity ofthe particle.

Here it is only the tangential force. Thus power delivered by
the forces is given as

P = wa. „ XV
tan

or =mV^ ^ V^t =mkRT

Average power over first t seconds of motion can be given as

Kinetic Energy gained in first t seconds
<P> =

t

Velocity of the particle after t seconds of start is

v=4kR^
Kinetic energy ofit is K.E.

Thus average power is

= -r - X mkRt^
2 2

</*>= — mkRt

# Illustrative Example 3.37

A system consists oftwo identical blocks, each
of mass m, linked together by the compressed

weightless spring of stiffness k, as shown in
figure-3.57. The blocks are connected by a
thread which is burned through at a certain
moment. Find

m

k

%lc
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(b) To what height will the centre ofgravity of this system will
rise if the initial compression of the spring is 7 mg/k.

Solution

(a) Let the Initial compression is x

in the spring from its natural length.
When the thread is burned, the

spring shoots, towards its natural

length and moves up further to a
distance h, as shown in figure-3.58.

This h should be at least equal to
that extension in the spring which

is just sufficient to break off the
lower mass from ground. Thus

when the upper mass reaches the
point B, the restoring force on lower block will balance its
weight as

kh = mg

Applying work-energy theorem between points A and B, we
get

0+^ ^kh'̂ =0
As upper block comes to rest atB, we takeK.E. of block zero at
B.

or =0 [Substituting 7^]
k k .Ik

mean position

VP7777777777Z

Figure 3.58

Timg mg
Solving, we get x=or - ^

SinceXispositive, the minimuminitialcompressionrequired is

_

k

Img
(b) If the initial compression is ——, which is greater than

K

Zmg
the above found ^—, the lower mass m will also moves up

. k

and the centre of mass of the system will move up, say by a
maximum distance y from ground and when the lower mass

break off fi-om grouiid, let the upper mass has a speed v,which
can be obtained by using work-energy theorem as

1 • 1 „ 1 „ Img
0 + —kx^-mg(x + h)- —kh^= — [Here x= ]

On solving, we get v =

32w
g

(a) At what values of initial compression, the
initial compression ofthe spring, the lower block '̂8«re 3.57
will bounce up after the thread has been burned through.

W/y/////}//'/ At this instant lower mass starts from rest, hence velocity of
V 8m

centre ofmass is ~ ^ ~ ^



If the centre of mass further rises up by a distance y, we have

y=

4mg

2g k

Before the break off of the displacement of centre of mass

h+x 4mg
upward is = = ——

1 - k

Thus total displacement ofcentre of mass upward is

_ 4mg 4mg _ Zmg

# Illustrative Example 3.38

A horizontal plane supports a plank
with a bar of mass 1 kg placed on it
and attached by a light elastic non
deformed cord of length 40 cm to a

point 0 as shown in figure-3.59. The
coefficient offriction between the bar

and plank is 0.2. The plank is slowly
shifted to the right until the bar starts
sliding over it. It occurs at the moment
when the cord deviates from the vertical by 30®. Find the work
that has been performed by that moment by the fnction force
acting on the bar in the reference frame fixed to the plane.

Solution

The intermediate force diagram ofthe system is shown in figure-
3.60. We have the extension in cord at this instant is

x = /(sec9-l)

•////////

o

T sin 0

0

m

7777777777777777777777.

Figure 3.59

ATcose

Figure 3.60

If the force constant ofthe cord is k, in it the tension developed

is r=foc

The bar will start sliding when

kx sinO= \iN

At the instant the normal reaction is

N=mg-be COS0

Solving we get
1

k— — X -
X (sin0 + pcos0)

|iWg

or

Work, Energy and Powari

1 \^mg

/(sec0-1) . (sin0 + |icos0)

In the process as displacement is slow, the total work done is

on the springas its potential energy increases to —kx^.

Thus

Work done against friction = Increment in potential energy of
the spring

or

or

or

or

or

1

1 ,
ir=-kx2

2 /(sec 0 -1) X(sin 0 + p cos 0)

pwg/(l-cos9)

X/^(secB-1)^

2 cos0(sin 0 + p COS0)

Substituting the numerical data, we get 1F= 0.09 J

# Illustrative Example 3.39

A circular table with smooth horizontal surface is rotating at an

angular speed co about its axis.A groove is made on the surface
along a radius and a small particle is gently placed inside the

groove at a distance / from the centre. Find the speed of the
particle with respect to the table as its distance from the centre
becomes L.

Solution

Here the motion ofthe particle is constrained with in the groove

along radial direction. During rotation ofthe table, when particle

is at a distance x from the centre of the table as shown in

figure-3.61, its acceleration is given as

a = (s?x

Figure 3.61

ax

v'dv = (s?xdx
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V L

Integrating J"^*^ =Jco^;i:££c

2 ~ V

r 21
V X

= (£?
2 2

0

or v =

# Illustrative Example 3.40

A car starts from rest, on a horizontal circular road ofradius R,
the tangential acceleration ofthe car is a. The friction coefficient
between the road and the tyre is |i. Find the speed at which car
will skid and also find the distanceafter travellingit skids.

Solution

When car starts, it has two acceleration,normal and tangential.
It is given that tangential acceleration is a, and the normal
acceleration towards centre is given as

Where v is the instantaneous speed of car given as

v = at

Thus, total acceleration ofthe car is

Net force acting on car is

F = maj.

When this net force will exceed the maximum fnction on car, it
will skid, thus

2 V

Solving, we get v

The distance travelled by the time it skids is

s =
2a 2a

# Illustrative Example 3.41

A small box of mass m is placed on the outer surface of a
smooth fixed sphere of radius at a point where the radius

J Q71

-makes an angle (p with the vertical. The box is released from
this position. Find the distance travelled by the box before it
leaves contact with the sphere.

Solution

The situationis shownin figure-3.62. It starts fallingalongthe
circular path outside the'sphere and breaks offfrom the surface
when its contact reaction becomes zero. It happenswhen

or

mv

R
= mg COS0

h=R (cos (j) - COS 0)
m J

Figure 3.62

v= ^jRg cosQ

Where v is the instantaneous velocity of the box at an angle 0
from the vertical. It can be obtained by

V= •yj2gh [As from rest it falls a distance h\

or = .^2g^(cos(p-cos0)

Using above equations, we get

•yjRgcosQ - yj2gR{cos(p - cos0)

or 3cos0 = 2cos<p

'=cos-M^<^os(por

Thus distance travelled by the box before leaving the contact
with the sphere is

5 =i?(0-(p)

or = R
-,[2cos |yCOS(p|-(p
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# Illustrative Example 3.42

A smooth sphere ofradius Rismoving ina straight linewithan
acceleration a. A particle is released from top of the sphere
fromrest. Findthespeed of theparticlewhenit is at anangular
position 0 from the initialposition relative to the sphere.

Solution

Figure 3.63

The situation is shown in figure-3.63. As the sphere is

accelerating, it becomes a non-inertial frame for the particle
and whenparticle is displaced,pseudo force on it will also do
work in addition to gravity and causes increment in its kinetic
energy.

Using work-energy theorem at points A and B, we have

0 + mgR(1 - COS0) + maR sinB = —

or V=^R{a sin 0+g(l- cos0)

Practice Exercise 3.7

(i) An ideal massless spring S can be compressed 1.0 m by a
force of 100 N. This spring is placed at the bottom of a

frictionless inclined plane which makes an angle of 30® with
the horizontal as shown in figure-3.64. A10 kg mass is released
from rest at the top of the incline and is brought to rest
momentarily after compressing the spring 2.0 m.

(a) Through what distance does the mass slide before coming
-to rest ?

(b) What is the speed of the mass just before it reaches the
spring ?

Work, Energy and .Power

Figure 3.64

[(a) 4m, (b) m/s]

(ii) Aparticle ofmass 0.5 kgtravels inastraight line with velocity
V= ax '̂'̂ where a = 5 m"*'̂ s"'. Whatis theworkdonebytheall
forceduringitsdisplacement fromx = 0 to a: = 2m?

[50 J]

(ill) Ablockrestson an inclined planeas showninfigure-3.65.
A spring to which it is attached via a pulley is being pulled
downward with gradually increasing force. The value of is
known. FindthepotentialenergyUofthe springat themoment
when the block begins to move.

[mg(sin 9+ cos9)]^
2k

Figure 3.65

(iv) Force between the atoms of a diatomic molecule has its
origin in the interactions betweenthe electronsand the nuclei
presentineachatom. Thisforce isconservative andassociated
potential energy U(r) is, to a good approximation, represented
by the Leonard —Jones potential.

n12

Here r is the distancebetweenthe two atomsand Uq and a are
positive constants. Develop expression for the associated force
and find the equilibrium separation between the atoms.

6vn
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(v) A bob tiedtotheendofa string oflength 2 m,other endof
which is fixed at apoint ina vertical wall ata point O. The bob
is imparted a vertical downward velocity of 5 m/s when the
string is horizontal and swings in a vertical plane. Find the
angular displacement ofthebob fi-om itsinitial position, when
thesfiing breaks. Given thatthetensile strength ofthestring
is twice theweight ofthebob. Take g = 10 m/s^.

[sin-' (^1

(vi) In a spring gun having spring constant 100N/m a small
ball ofmass 0.1 kgisputin its barrel bycompressing thespring
throu^ 0.05 m. (a) Findthevelocity oftheball vdien thespring
is released, (b)Where shoulda boxbeplacedonthe groundso
thattheballfalls in it, if theballleaves thegunhorizontally at
aheight of2mabove the ground. Take g = 10 m/s^.

[(a) 1.58 m/s, (b) I m]

(viii) Aparticle ofmass mapproaches aregion offorce starting
fi-om r= + CO. Thepotential enCTgy fimction in terms ofdistance
r fiom theorigin is givenby,

(3a^-r^) for, 0<r<ij

= K/r for,r>a

(a) Derive theforce F{r)anddetermine whether it isrepulsive
or attractive.

(b) With what velocityshould the particle start at r = oo to
cross over to other side of the origin.

i2K(c) Ifthe velocityoftheparticle atr =00 is /—,towardsthe
\ am

origin describe the motion.

fiK1(a) repulsive (b) J— ]

(vii) Achain AB oflength equal to the quarter ofaeircle of "P" >'>'"
radius R is" placed on a smooth hemisphere as shown in work at aconstant rate and changes its
figure-3.66. When it is released, it starts falling. Find the velocity >' "^er a distance x. Find the time of the
of the chain when it falls of the endB fiom the hemisphere. motion.

Figure 3.66

3 (« + v)x

U +V +UV

(x) The potential energy function of a particle in a region of
space is given as C/= (2xy+yz)J
Herex,y andz are inmetre.Findthe force actingcai theparticle
at a general point P(x, y, z).

[ F =-[2y'i +{2x + z)j +yk]

—
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Discussion Question
>

Q3-1 Ifyou take apail ofwater and turn itupside down all the inmy car because 1can feel the force pushing me against the
water will spill out. But if you take the pail of water, attach a side of the car".
rope to the handle, and turn it rapidly in a vertical circle the
water will not spill out when it isupside down atthe top ofthe Q3-12 An elevator descends from the top ofa building and
path why is this ? Explain it is terms ofcentrifugal force and stops atthe ground floor, what becomes ofthe energy that had
also in terms of inertia. • been potential energy or the work of gravity ?

Q3-2 Suppose you lift a suitcase from the floor to a table.
Does the work you do on the suitcase depend on (a) whether
you lift it straight up or along a more complicated path, (b) the
time it takes, (c) the height of the table, (d) the weight of the
suitcase ? Repeat the parts (a) to (d) for the power needed
rather than the work.

Q3-3 When an object slides along a rough siuface, the force
of friction does negative work on it. Is it ever possible for
friction to do positive work ? Give an example.

Q3'4 Springs A and B are identical except that A is stiffer than
B. In which spring more work is done if (a) both are stretched
by same amount ? (b) both are stretched by the same force ?

Q3-5 If there is a definite force and there is a finite

displacement of the force, does that mean work is definitely
done by the force ? Explain.

Q3-6 A rock thrown with a certain speed from the top ofa cliff
will enter the water below with a speed that is the same whether
the rock is thrown horizontally or at any angle. Discuss.

Q3-7 If you lift a body to a height h with a force that is equal
to the weight of a body, how much work is done and if you lift
it with a force that is greater than the weight ofa body, where
does the extra energy go ?

Q3-8 A spring is kept compressed by tying its ends together
tightly. It is then placed in acid and dissolved. What happened
to its stored potential energy ?

Q3-9 Potential energy is energy that a body possesses by
virtue of its position, while kinetic energy is that a body
possesses by virtue of its speed could there be an energy that
a body possesses by virtue of its acceleration ? Discuss.

Q3-10 In picking up an object from the floor and putting it on
a table, we do work. However, the initial and final values ofthe
object's kinetic energy are zero. Is there a violation ofthe work
energy theorem here ? Explain why or why not.

Q3-11 Reply to the student's statement, "I know there is a
centrifugalforceactingon me whenI movein circularmotion

Q3-13 For a person to loose weight, is it more effective to
exercise or to cut down on the intake of food. Give logical
reason.

Q3-14 Does power needed to raise a box onto a platform
depend on how fast it is raised ?

Q3-15 The displacement ofa body depends on the reference
frame ofthe observer who measures it. It follows that the work

done on a body should also depend on the observer's reference
frame.Supposeyou drag a crate across a rough floor by pulling
onit witha rope. Identify reference frames inwhich thework
done on the crate by the rope would be (a) positive, (b) zero,
and (c) negative.

Q3-16 A car is running on a road. The driver applies the brakes
such that the tyres jam and car skids to stop. Its kinetic energy
decreasing to zero. What type of energy increases as a result
of the action ? Ifdriver operates the brakes in such a way that
there is no skidding or sliding. In this case, what type ofenergy
increases as a result of the action ?

Q3-17 Why is it tiring to hold a heavy weight even though no
work is done ?

Q3-18 If positive work is done putting a body into motion, is
the work done in bringing a moving body to- rest negative
work ? Explain.

Q3-19 There is a vertical circular glass tube completely filled
with water, except for an air bubble that is temporarily at rest at
the bottom of the tube initially. Explain the motion of this air
bubble. First in absence ofretarding forces than in presence of
them.

Q3-20 Consider the situation - A laborer carrying bricks on
his head on a level road from one place to another. Find the
work done in the process (a) by gravity, (b) by man (c) by
frictional force between man and ground.

Q3-21 Does the work done by a force depend on the frame of
reference ?

Q3-22 A lorry and a car moving with the same kinetic energy
are brought to rest by the application ofbrakes which provide



equal retarding forces. Which of them will come to rest in a and initially they are separated by 5m. Is their attraction purely
shorter distance ?

Q3-23 Acar accelerates from an initial speed to agreater fmal
speed while the engine delivers constant power. Is the
accele

end ?

Willie uic cugluc uciivers consian

acceleration greater at the beginning of this process or at the

Q3-24 Two protons arebrought towards eachother. Will the
potential energy ofthe system decrease orincrease ?Ifaproton
and an electron be broughtnearer, then ?

_ _ Af"
Q3-2o For a conservative system, what is ? (E is the

At
kineticenergy of the system)

Q3-26 .An automobilejack is used to lift aheavy carby exerting
aforce that ismuch smaller inmagnitude than the weight ofthe
car. Does this mean that less work is done on the car by the
force exerted bythe jack than ifthe car had been lifted directly ?
Ejqjiain.

Q3-27 Raj meets Jene after several years and is immediately
attracted toher. Raj has amass 50kgand Jene has amass 42kg

physical.

Q3-28 Arowboat moves in west direction upstream at4lq)h
relative to water. If the current-moves east at3kph relative to
the bank, is any work being done ?

Q3-29 If we throw a stone at an angle to the horizontal, it
follows a parabolic path. Another second stone is also thrown
with thesame speed and at thesame angle alongside thefirst.
An insect sitting on the second stone who have some idea of
Mechanics, observesthe path of first stone and decares that it
does nothave any kinetic energy at all. Who is right, you or
the insect ? How does the law ofconservation ofenergy fitinto
this situation (with respect to youandinsect) ?

Q3-30 Work done by external forces is always equal todie gain
in kinetic energy. Is it always true?

Q3-31 In a tugofwar one team is slowly giving way to the
other.What work is being done and by whom ?

Q3-32 Why is iteasier to climb amountain via azigzag trail
rather than to climb straightup ?
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ConceptualMCQs Single Option Correct

3-1 The force acting onabody moving along x axis varies with
the position of the particle as shown in the figiire-3.67. The
bodyis in stableequilibrium at: •

(A) x = x,
(Q BothXj andX2

Figure 3.67

(B) X= X2
P) NeitherXj nor X2

3-2 Aparticle ofmass mis tiedtoa lightstring androtated with
a speedv along a circular pathofradius r.UT- tension in the
string and mg = gravitational force on the particle then the
actual forces acting on the particle are :

(A) mg and T only

(B) mg, Tand anadditional forces ofmv^/r directed inwards
(Q mg, Tandanadditional forces of directed outwards
P) Onlya force wv^/r directed outwards

3-3 A small block is shot into each ofthe four tracks as shown

below. Each of the tracks risks to the same height. The speed

with which the block enters the track is the same in all cases. At

thehighest pointof thetrack, thenormal reaction is maximum
in;

(A) (B)

(Q

3-4 If the earth stops rotating, the apparent value of g on its
surface will:

(A) Increases everywhere
P) Decrease everywhere

(Q Remain the same everywhere

P) Increaseat someplacesandremainthe sameat someother
places

3-5 A body is moved along a straight line by a machine
delivering constantpower. The distance movedby thebody in
time t is proportional to :

(A) P) ;3/4
(Q P)

3-6 A car moves at a constant speed on a road as shown in
figure-3.68. The normal force bythe road onthe car is and
Ng when it isatthe points Aand Brespectively :

A

B'

Figure 3.68

(B) N^<Ng _
{QN^>Ng
p) Insufficient information to decide the relation of and

Ng.' •

3-7 The tube forms a quarter circle in a
vertical plane. TheballB hasanareaof cross-
section slightly smaller than that of the tube,
and can move without friction through it. B is

placed at^ anddisplaced slightly. It will:
(A) Always be incontact withtheinnerwall

• of the tube

p) Always be in contact with the outer wall of the tube
(Q Initially be incontact with the inner wall andlater with the

outer wall

P) Initially be incontact withtheouterwallandlaterwiththe
inner wall.

3-8 A train A runs from east to west and another train B of the

same mass runs from west to east at the same speed along the

equator. Apresses the track with a force Fj andB presses the
track with a force

(A)F,>F^
P)F,<F2
(QF1-F2
P) Theinformation is insufficient to find therelation between

Fj andFy

3-9 In the figure-3.70, the ball is released
from rest when the spring is at its natural
(unstretched) length.For theblockF, ofmass
Af to leave contact with the ground at some
stage, the minimummass ofA must be:
(A) 2M

P) M

(Q M2

P) A function of Mand the force constant

of the spring.

Figure 3.69

V777777777777.

Figure 3.70
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3-10 The figure-3.71 shows the variation of energy with the
orbit radius of a body in circular planetary motion. Find the
correct statement about the curves A, B and C:

Figure 3.71

(A) A shows the kinetic energy,B the total energy and C the
potential energy of the system.

(B) C shows the total energy, B the kinetic energy and A the
potential energy of the system.

(Q C and/4 are kinetic and potential energies respectively and
B is the total energy of the system.

(D) A and B are kinetic and potential energies and C is the total

energy of the system.

3-11 An aircraft is travelling at constant speed in a horizontal
circle with centre Q. Each diagram below shows a tail view of
the aircraft, the dotted line representing the line of the wings
and the circle representing the centre ofgravity ofthe aircraft.
Which one of the diagram correctly shows the force acting on
the aircraft ?

(A)
Q

(B)

(Q Q
(D)

3-12 A lorry and a car movingwith the same K.E. are brought
to rest by applying the same retarding force. Then
(A) Lorry will come to rest in a shorter distance

(B) Car will come to rest in a shorter distance
(Q Both come to rest in same distance
P) None of above

3-13 A rod oflength L is pivoted at one end and is rotated with
a imiform angular velocity in horizontal plane. Let and T^he
the tensions at the points UA and 3Z,/4away fi-omthe pivoted
ends :

(A)
(B)
(C)
P) The relation between and Tj depends on whether the

rod rotates clockwise or anticlockwise.

T,>T^
T,>T,

193:

3-14 A block ofmass m slides down a smooth vertical circular

trackl During the motion, the block is in:
(A) Vertical equilibrium P) Horizontalequilibrium
(Q Radial equilibrium p) None of these.

3-15 Thepotentialenergyof a particlevarieswithx according
to therelation t/(x)=x^- Ax. Thepointx = 2 is a pointof:
(A) Stable equilibrium p) Unstable equilibrium
(Q Neutral equilibrium p) None of above

3-16 A motor drives abody along a straight line with a constant

force. The power P developed by the motor must vary with time
/as :

(A) (B)

(Q (D) '

3-17 A motorcycle is going on an overbridge ofradius R. The

driver maintains a constant speed. As the motorcycle is

ascending on the overbridge, the normal forces on it is :

(A) Increasing p) Decreases

(Q Remains the same p) Fluctuates.

3-18 A particle ofmass 2kg starts moving in a straight line with
an initialvelocity of 2m/s at a constantacceleration of 2m/s^.
Then rate of change ofkinetic energy:
(A) Is four times the velocity at any moment

p) Is two times the displacement at any moment

(Q Is four times the rate ofchange ofvelocity at any moment
P) Is constant throughout

3-19 A ball is released from the top of a tower. The ratio of
work done by force ofgravity in first, second and third second

ofthe motion ofball is :

(A) 1:2:3 P) 1:4:16

(Q 1:3:5 P) 1:9:25

3-20 The ratio of momentum and kinetic energy of particle is
inversely proportional to the time. Then this is the case ofa:

(A) Uniformly accelerated motion

P) Uniform motion

(Q Uniformly retarded motion

P) Simple harmonic motion
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3-21 Aparticle fallsfromrestundergravity. Itspotentialenergy
with respect to ground {PE) and its kinetic energy {KE) are
plotted against time (?). Choose the correct graph:

(B)

P)

3-22 A wind-powered generator converts wind energy into

electrical energy. Assume that the generator converts a fixed

fractions of the wind energy intercepted by its blades into
electrical energy. For wind speed v, the electrical power output
will be proportional to :

(A) V (B) .

(Q ' P)

3-23 A particle, which is constrained to move along the x-axis,

is subjected to a force in the same direction which varies with

thedistance xfiom the originasF{x) = - fcc + ax^. Herek anda
are positive constants. For x > 0, the functional form of the
potential energy U (x) ofthe particle is :

m

(B)

3-24 Acceleration versus time graph of a particle moving in a
straight line is as shown in adjoining figure-3.72. If initially

particle was at rest. Then corresponding kinetic energy versus
time graph will be:

h '2

Figure 3.72

?(5)

Work, Energy andiPovver

KE

(Q

3-25 The potential energy for a force field F is given by

U{x,y) = sin (x + y). The magnitude of force acting on the

particleof massw at 0,—
x. • V 4,

(A) 1

IS:

(B) ^/2

P) 0

3-26 In an horizontal plane a force field F =-(40N/m)

(yi + xj) is present where x and y are the coordinates of any
point on the plane. A smooth rod AB is fixed in the plane as

shown in the figure. A particle of mass 5 kg is to be released

with a velocity in this force field such that it reaches to points.

Find the minimum velocity that must be imparted along the rod
at A such that it reaches to B.

(A) 1m/s
(Q 3 m/s

Y{m)

X{m)

Figure 3.73

p) 2 m/s
P) 4 m/s

3-27 Aball ofmass m is thrown upward with a velocity v. Ifair
exerts an average resisting force F, the velocity with which the
ball returns to the thrower is:

(A) V.

(Q

mg

mg+F

mg-F

mg + F

P) ^

P) V

F

mg + F

mg + F

mg-F



3-28 Arailway track is banked for aspeed v, by making the
height of theouterrail'/?' higher thanthatof theinnerrail.The
horizontal separation between the rails is d. The radius of
curvature ofthe track isV: then which ofthe following relation
is true?

p) isminimum atthepointofprojection
(Q is sameat all points

P) varies from to
gcosG

cos^ 9

g

1951

h
(A) - = -

d • rg (B) tan sin — = —

d) rg

h v"
P) -=7-

r dg

3-29 The kinetic energy acquired by amass min travelling a
certaindistance d, startingfromrest, undertheactionof a force
F = kt\s:

(A) directly proportional to f
(B) independent of t

(Q directly proportional to
p) directly proportional to t

3-30 Ablock ofmass misattached with a spring inits natural
length, ofspring constant k. The other endAofspring ismoved
witha constant acceleration'd away from theblockas shown
in the figure-3.74. Find the maximum extension in the spring.
Assume that initially block and spring is at rest w.r.t ground
frame:

'̂ ^7777777^777777777777777777777777777777777777/?

Figure 3.74

(A,™ _ 1 ma
P)^ ' 1 k

(Q
2ma ^ 1 4ma

P)^ ^ 2 k

3-31 Ablock of 1kgiskeptonarough surface ofanelevator
moving up withconstant velocity of 5 m/s. In 10second work
done by normal reaction (no sliding onincline surface)
(0 from ground frame is 320 J
(ii) is equal toworkdone byfriction force inelevator frame
(iii) is equal to work done by friction in ground frame

(A) (i) P) (ii),(iii)
(Q (i),(ii) (D) only (iii).

3-32 Aparticle isprojected from ground with speed uatangle
0 with thehorizontal. Radius of curvature of the trajectory of
the particle:

(A) is not minimum at highestpoint

3-33 Asmall coin isplaced on astationary horizontal disc ata
distance r from its centre. The disc starts rotating about afixed
vertical axis through its centrre with a constant angular
acceleration a. Determine the number of revolutions N,
.accomplishes bythe disc before the coin starts slipping onthe
disc.The coefficients of staticfrictionbetweenthecoinandthe
disc is p .

Vertical

Figure 3.75

l^sg
-a

(A)
47:a

P)
47ua

(Q
27ta

P)
27ca

3-34 Aforce F =b—^^-^~N {b is a constant) acts on a
X +y

particle as it undergoes counterclockwise circular motion in a
circle : + y = 16. The work done by the force when the
particle undergoes onecomplete revolution is {x,yart in m)
(A) Zero p) 271 bJ
(Q 2bJ p) None of these

3-35 Aparticle moves withaspeedvina circleofradius R.The
x-component of the average velocity of the particle in a half-
revolution, as^sfrown in figure-3.76, is:
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(A)--
n

(Q
4n

y

—initial

position
/ \

y \

\
\ /
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V /
\ ✓
\ /
\ ✓
\ /

final^^
position

Figure 3.76

(B) -Y
. 2n.

(D)
Tt

3-36 An agent applies force of constant magnitude Fqalways
in the tangential direction as shown in the figure-3.77. Find
the speed ofthebobwhen string becomes horizontal, assuming
that it is at rest at its lowest point:

V///////

Figure-3.77

(A) J—W-2mg)
Vm

(Q J—(TtFJ-4mg
m

Work, Energy and Power]

(B) Vfe

3-37 Ablock Qofmass 2m isplaced onahorizontal frictionless
plane. Asecondblock ofmass mis placed on itand isconnected
to a spring ofspring constant K, the two block are pulled by
dist^ce.4.-Block Qoscillates without slipping. The work done
by the friction force onblock Q when the spring regains its
natural length is:

(A) -KA^

(Q

Q

y/77777777777tW77^-

Figure 3.78

(B) -K£-

P)
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NumericalMCQs Single Option Correct
3-1 A manpullsa bucketofwaterfroma depth oih froma well.
Ifthe mass ofthe rope and that ofbucket full ofwater are m and
Mrespectively, the work done by the man is :

(A) {M+m)gh

( M + m
(Q

I 2

m

(B)

(D)
M

+ m\gh

3-2 Under the action of a force, a 2 kg body moves such that
its position as a function of timeis givenby a: = i^/3 wherex
is in metre and t in second. The work done by the force in the

first two second is :

(A) 1600joule 160joule •

(Q Ibjoule (D) 1.6jaule

3-3 A smooth ring of mass Mis threaded on a string whose

ends are then threaded over two smooth fixed pulleys with
masses m and m' tied on to them respectively. The various
portions of strings are vertical. The system is free to move.
What is the condition ifM alone is to remain at rest ?

M m'

(Q 47 =- +-^
M m m

V/////// V///////

massless

Figure 3.79

3-4 Aparticle is kept fixed on a turntable rotating uniformly.As
seen from the ground, the particle goes in a circle, its speed is
20cm/s andacceleration is20 cm/s^. Theparticle isnowshifted
to a new position to make the radius half ofthe original value.
The new values of the speed and acceleration will be :

(A) lOcm/s, lOcm/s^ (B) 10cm/s,80 cm/s^
(C) 40cm/s, lOcm/s^ p) 40 cm/s,40 cm/s^. .

3-5 AcubeofmassMstartsatrestfrom point 1 at a height 4i?,

where R is the radius ofthe circular track. The cube slides down

the fiictionless track and around the loop. The force which the
track exerts on the cube at point 2 is :

W

2

4'R

iW
Figure 3.80

(A) 3Mg . (B) Mg

(Q 2Mg
(D) Cube will not reach the point 2

3-6' A block is attached to a spring of stiffness k. The other
end ofthe spring is attached to a fixed wall. The entire system
lie on a horizontal surface and the spring is in natural state. The

natural length of thespring is /q. If theblockis slowly liftedup

vertically to a height ™ /q from its initial position:

5 ,
(A) The work done by the lifting force = + —mgiQ

zoo Iz

(B) The work done by the spring force
Ml
288

(C) The work done by the gravity = — mglQ

5 kf"(D) The work done by lifting force =- -pr 7^
Iz 288

3-7 A heavy body of mass 25 kg is to be dragged along a

horizontal plane (ii= l/Vs). The least force required is:
(A)25kgf (B) 2.5kgf

(Q 12.5kgf P) 50kgf

3-8 A block ofmass m is placed at the top ofa smooth wedge
ABC. The wedge is rotated about an axis passing through C as
shown in the figure-3.81. The minimum value ofangular speed

CO such that the block does not slip on the wedge is:

Figure 3.81

secO (B) COS0

(Q
g

/cos0
COS0 P)

gsinO
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3-9 The work done in moving a particle from a point (1, l)to
(2,3) ina planeandin a forcefieldwithpotentialU=X{xiji') is :
(A) 0 (B) X '
(Q ^ P) -3;.

3-10 A particle ofmassmisfixedto oneendof a lightspringof
force constant k and unstretched length /. The system is rotated
about the other end of the spring with an angular velocity co, in
gravity free space. The increase in length of the spring will be:

(A)

(B)

(Q

wco I

k-ma^

m(s^l

k + m(xP'

Figure 3.82

P) None of these

3-11, Asimplependulumhavinga bobofmassmis suspended
from the ceiling of a car used in a stunt film shooting. The car
movesup alongan inclinedcliffat a speedvand makes ajump
to leave the cliff and lands at some distance. Let R be the

maximumheight of the car from the top of the cliff.The tension
in the string when the car is in air is :

(A) mg P) mg-
R

(Q mg +
mv

R
P) Zero.

3-12 A spring, whichis initiallyin its unstretched condition, is
first stretched bya lengthx andthenagain bya further length x.
The work done in the first case is and in the second case is

r,:
(A) W^=W^ P) W^ =1W^
(Q P) ^2=41^, •

3-13 A particle ofmass m moves from rest under the action of
a constant force F which acts for two seconds. The maximum

power attained is:

(A) 2Fm

2F
(Q —

m

P)

P)

z_
m

2F'

m

3-14 Aboywhose mass is30kgclimbs, with a constant speed,
a verticalropeof 6 m long in 10s. Thepowerof theboy during
theclimbis: (Take g = 10ms~^)
(A) 60W - P) 3000W
(Q 180W P) 5W

Work, Energy and Power i

3-15 A body with mass 2 kg moves in one .direction in the
presence of a force which is described by the potential

energy graph. Ifthe body is released from rest atx = 2 m, then its

speed when it crosses x = 5 m is :

10

\

\
I ,

(A) Zero
(Q 2 ms"^

^6
o

2

0
2 ,3 3.5 4 4.5 5
-•v(meter)

Figure 3.83

P) lms-1
p) 3 ms"'

3-16 A particle of mass 0.1 kg is subjected to a force which
varies with distance as shown in figure-3.84. If it starts its
journey from rest at x = 0, its velocity atx = 12 m is:
(A) Om/s " Fk

p) 20V2m/s

{Q 20V3 m/s
P) 40 m/s

0 4~

Figure 3.84

3-17 A motoris tobe usedto liftwaterfroma depthof 10m &
discharging it ongroundlevelat a speed10m/s.If2 kg ofwater
is lifted per second & the efficiency of motor is 40%. The,
minimum power ofthe motor should be nearly:
(A) 1.5HP P) IHP
(Q 0.67HP P) 2HP

3-18 A smallblockslideswithvelocity0.5 onthe horizontal

frictionless surface as shown in the figure-3.85. The block leaves
the surfaceat point C. The angle 9 in the figure is :

(A) cos ^(4/9)
(C) cos-'(1/2)

Figure 3.85

P) COS-'(3/4)
P) None of the above

3-19 A stoneofmass 1kg tiedto a lightinextensible stringof
length Z, = 10/3 m is whirling in a circular path of radiusZ in a
verticalplane. If the ratioof themaximum tensionin the string
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to the minimum tension in the string is4and ifg is taken to be
10 m/sec\ the speed ofthe stone at the. highest point ofthe
circle is:

(A) 20m/sec (B) loVSm/s
(Q 5V2m/sec • (D) lOm/sec

3-20 Aparticle ofmass mis attached to one end ofastring of
length / while the other end is fixed to a point h above the
horizontaltable. The particle is made to.revolve in a circleon
the table so astomakep revolutions persecond. The maximum
valueof;?if theparticleis tobe incontactwiththetablewillbe:

(A) (B)

(Q 2n^ (D)

3-21 Two particles, each of mass m are attached to the two
ends ofa light string oflength / which passes through a hole at
the centreofa table. One particle describes a circle on the table
with angular velocity co, and the other describes a circle as a
conical pendulum with angular velocity cOj below the table as
showninfigure-3.86. If/j and/jare the lengths ofthe portion of
the string above and below the table, then :

(A) ^ =
'2 COf

(B)
'2 CO,

(Q =I
COj G32 g

(D) A'+A
cof CO, g Figure 3.86

3-22 Two springs Aand B{k^ =2k^ are stretched by applying
forces ofequal magnitudes atthe four ends. If the energy stored
in^is£',that in5is:

(A) EH (B) 2E
(C) E P) £/4

' _ A991

the work done by the cord on the block is:
iA)mgd/4 ' (B)3Mgd/4
(Q -3Mgd/4 ^ (P) Mgd

3-25 Two blocks eachof mass Mare connected to theendsof
a lightframe asshown infigure-3.87. Theframe isrotated about
theverticalline of symmetry. The rod breaksif the tensionin it
exceeds The maximum frequency with which the frame may
be rotatedwithoutbreakingthe rod will be :

1/2

(A)

(D)

1/2

To
2n Ml

J_ 'mi'
2n [to\

1 \mt.
27C I

J_ I

27C _MT,

1/2

1/2

CP CO

M

1

1

t

H

Figure 3.87

3-26 Auniform flexible chain ofmass mand length 2/hangs in
equilibrium overasmooth horizontal pinofnegligible diameter.
One endof thechain is given,a small vertical displacement so
that the chain slips over pin. The speed of the chain when it
leaves pin is :

(A) ^

(C)

(B)

(D)

3-27 Ablock ofmass 4kgisresting onahorizontal table anda
force of 10 N is applied on it in the horizontal direction. The
coefficient ofkinetic friction between the block and the table is

0.1. The work done in^|w s :
(A) By the applied force is 150J
p) By the fractional force is 60 J

(Q By the applied force and the net force are 150 J and 90 J
respectively

P) All are correct

3-23 Aman who isrunning has halfthe kinetic energy ofaboy block in the shown arrangement is acted upon by a
ofhalfhismass. Theman speeds upby1ins"' ahd then hasthe constant force Ffort> 0,itsmaximum speed will be:
same kinetic energyas the boy. The original speed of the boy
was

(A) V2ms"~'

(Q 2 ms-'

P) 2(V2+l)ms

P) V2 + 1ms"'

3-24 A chord is used to lower vertically a blockof mass Ma
distance d at a constant downward acceleration ofg/4. Then

(A)

P)

(C)

F

-Jmk

IF

sjmk

F

yjlmk
(D)

k

m
F ^

V2F
^fmk

Figure 3.88



3-29 Acarofmass 500 kgis driven with acceleration 1m/s^
along straight level roadagainst constant external resistance of
1000N. Whenthe velocityis 5 m/s the rate at whichtheengine
is working is:
(A)5kW (B) 7.5kW
(Q 2.5kW (D) 10kW

3-30 Aparticle of mass m describes a circle of radius r. The
centripetal acceleration ofthe particle is4/r^. What will bethe
momentum ofthe particle ?

(A) 2mir 2m/

(Q 4m/Vr (D) 4m/r

3-31 A large mass Mand a small mass tnhang at two ends of a
string that passes through a smooth tube as shown in
figure-3.89. The massmmovesarounda circularpathwhichlies
in the horizontal plane. The length ofthe string from the mass m

• to the top of the tube / and 8 is the angle this length makeswith
the vertical. The frequency of rotation of mass m so that mass
Mbe stationary will be :

(^) 2ji:

(Q

Tube

—

A
\string

/ \ /

/ urn /

/
Horizontal

Plane

ml

Figure 3.89

(B)

P)

2n

J_
271

ml

Mg

mM

3-32 The maximum tension an inextensible rope ofmass density

0.1 kgm"' canbear is40 N. Lengthof rope is2m.The maximum
angular velocity with which it can be rotated horizontally in .a

circular path on a frictionless table is :

(A) 10-s/2rad/s (B) 18rad/s
(Q 16 rad/s p) 15 rad/s

(A) + Mgd

(Q -Mgd

Work, Energy and Power

V777777777777777777,

Figure 3.90

'//////////////////A '

(B) -{M-^rn)gd
(D) Zero

3-34 A uniform chain of length \ and mass m is placed on a

smooth table with one-fourth of its length hanging over the
edge.Theworkthathas to be donetopull thewholechainback
onto the table is :

(A) \^mgl

(Q ^rngl

(B) ^mgl

(D) ^rngl

3-35 An object of mass m is tied to string of length L and a
variablehorizontal force is appliedon it whichstarts at zero and
gradually increases (it is pulled extremely slowly so that
equilibrium exists at all times) until the stringmakes anangle
0 with the vertical. Work done by the force F is :

y////////A

(A) wgZ/(l-cos0)

'(Q mgL :

Figure 3.91

(B) Flsin0
(D) FI(l+tane)

3-36 Work done in time r on a body of mass m which is

accelerated fromrest to a speedvin time as a function of time
/ is given by : ,

(A)

(Q

2 h

iffI'

(B)

P)
1 v' .

3-33 Inthefigure-3.90shown,thenetworkdonebythetension ... , , fzr . . , rrr
,, I. u • j- 3-37 AflexiblechamoflengthL=20V2 mandweightlf= 10kg

when the bigger block of mass M touches the ground is :
is initially placed at rest on a smooth frictionless wedge surface



ABC. It is given a slight jerk on one-side so that it will start
sliding on the side. Find the speed of the chain when its one
endwill leave thevertex of thewedge: (Take = 10m/s^)

(A> 10V2m/s

(Q 4m/s

Figure 3.92

(B) lOm/s

(D) (10V2)»'2

3-38 A simple pendulum has a string of length / and bob of
mass m. When the bob is at its lowest position, it is given the
minimum horizontal speed necessary for it to move in a circular
path about the point of suspension. The tension in the string at
the lowest position of the bob is :

(A) 3mg (B) 4mg

(Q 5mg ' (D) 6mg

3-39 A block ofmass 1 kg slides down a curved track from rest
that is one quadrant of a circle of radius 1 m. Its speed at the
bottom is 2 m/s. The work done by frictional force is :

(A) 8J

(Q 4J

Figure 3.93

.. (B) -8J
(D) -4 J

3-40 A uniform chain of lengthL and mass M is lying on a
smooth table and one third of its length is hangingvertically
down over the edge of the table. If g is acceleration due to
gravity, the work required to pull the hanging part on to the
table is:

(A) mgL

(Q.
mgL

(B)

(D)

mgL

mgL
- 18

3-41 Inthetrackshown infigure-3.94, sectionAS isa quadrant
ofa circle of 1 metre radius in vertical plane. Ablock is released
at A and slides without friction until it reaches at B. After B it

moves on a rough horizontal floor and comes to rest at D,

3 metres from B. The coefficient of friction between floor and

the body will be:

(A) 1/3

(Q 1/4

Figure 3.94

(B) 2/3

(D) 3/8

3-42 A block of mass m is attached to the two

springs in vertical plane as shown in the figure-
3.95. Ifinitially both the springs are at their natural
lengths. Then velocity ofthe block is maximum at
displacement x given as :

(A)x =
mg

Ik

(0 - f (P)
3/wg

2k

TIP

V////////.

V77777777,

Figure 3.95

Xis the displacement of theblock formits initialposition.

3-43 A heavyparticleis suspended bya stringof length1.5m.

Itis given ahorizontal velocity Vs? ra/s. Find the speed ofthe
particlewhenthe stringbecomesslack: (Take g = 10m/s^)
(A) 3 m/s (B) 1.5m/s •
(Q 2 m/s (D) 2.5 m/s

3-44 In a simplependulum, thebreakingstrength of the string
is double the weight of the bob. The bob is released from rest
when the string is horizontal. The string breaks when'it makes
an angle 0 with the vertical:

(A) 0 = cos-'(1/3) (B) 0= 60°
(Q, 0 = cos-'(2/3) P) 0= 0

3-45 A particle ofmassm is fixedto oneend of a lightrigid rod
of length I and rotated in a vertical circular path about its other
end. The minimum speed of the particle at its highest point
must be: •

(A) Zero

(Q Vlli/

(B) ^/^

(D) ^

3-46 A particle of mass 0.01 kg travels along a space curve

with velocity given by 4/ -1-16^ m/s. After some time, itsvelocity
becomes 8i + 20y m/s due to the action ofa conservative force.

The work done on the particle during this interval oftime is :
(A) 0.32J (B) 6.9J ,

(Q 9.6 J p) 0.96J

3-47 A10 kg ball attached to the end ofa rigid massless rod of
length 1 m rotates at constant speed in a horizontal circle of
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radius 0.5 m and period 1.57 s as in figure-3.96 The force string are always in the same straight line and describes
exertedby rod on the ball is: Takeg = 10m/s^. horizontal circles.Find the ratio of tensionsin the twoparts of

the string :
10 kg

(A) 1.28N

(Q ION

y/ZT/TTT/ZTTTTT/T/TZ.

Figure 3.96

(B) 128

P) 12.8N

3-48 A particle ofmassm ismoving in a circularpath ofconstant
radius r such that its centripetal acceleration is varying with,
timeas = ]^r^, where A: isa constant. Thepowerdelivered to
the particle by the forces acting on it is :

(A) (B) wAVr

(C) I (D) 0

3-49 A ball ofmass 1 kg moves inside a smooth fixed spherical
shell of radius 1 m with an initial velocity v = 5 m/s from the

bottom. What is the total force acting
on the particle at point B :
(A) ION

(B) 25 N

(C) 5V5N
P) 5N

Figure 3.97

3-50 Two equal masses are attached to the two ends ofa spring
constant k. The masses are pulled out symmetrically to stretch
the spring by a length x over its natural length. The work done

by the spring on each mass is :

(A) (B) -\kx\

(Q (D) --k^

3-51 A smallblockof massm iskepton aroughinclinedsurface
of inclination 0 fixed in a elevator. The elevator goes up with a
uniform velocity v and the block does not slide on the wedge.
The work done by the force offriction on the block in time rwill

be:

(A) Zero P) mgvt cos^0
(C) mgvt sin^0 ^ p) mgvtsin 20

3-52 A particle of mass m^ is fastened to oneendof a string
and one of m^ to the middlepoint, the other end of the string
being fastened to a fixed point on a smooth horizontal table.

The particles are then projected, so that the two portions ofthe

(A)
w,

m^ +m2

(C)
2/«] + >«2

2m,

Figure 3.98

(B)

P)

m^ +^2

mi

2m,

mi +m2

3-53 A particle is released from the top oftwo inclined rough

surfaces ofheight 'A' each. The angle ofinclination of the two
planes are 30® and 60® respectively. All other factors (e.g.

coefficient of friction, mass ofblock etc.) are same in both the
cases. Let andK2 be thekinetic energies of theparticle at the
bottom of the plane in two cases. Then :

iA)K^=K2 (B)K^>K2
(Q AT, < K2 p) Data insufficient

3-54 A 15 gm ball is shot from a spring gun whose spring has
a force constant of600 N/m. The spring is compressed by 5 cm.
The greatest possible horizontal range of the ball for this

compression is: (Take g = 10m/s^)
(A) 6.0m p) 12.0m

(Q 10.0m P) .8.0m

3-55 Water is pumped from a depth of 10 m and delivered
through a pipeofcrosssection 10"^m^upto aheightof 10m.If
it is needed to deliver a volume 0.2 m^ per second the power
required will be:

(A) 19.6 kW P) 9.8 kW
(C) 39.2 kW p) 4.9 kW

3-56 System shown in figure-3.99 is released
from rest. Pulley and spring is massless and
friction is absent everywhere. The speed of
5 kg block when 2 kg block leaves the contact

with ground is: (Take force constant of spring
A'=40N/mandg= lOm/s^)

(A) V2 m/s P) 2^f2m/s

(Q 2m/s p) 4-v/2 m/s

V////////

n2kg

Figure 3.99
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3-57 Aparticle ofmass mis projected with velocity uatan
angle a with horizontal. During the period when the particle
descends from highest point to the position where its velocity

vector makes an angle —with horizontal. Work done by gravity
force is:

203.

friction in time Thencoefficient offriction betweendie particle
and the ground is ;

(A)

(Q
3vo

(B)

(A) Ymu^ tan^ a

(Q mu^ cos^ a tan^ y (D) —mu^ cos

'(B) y tan^ -y

,2 ^
2

(D)
Sk

sima

3-58 Force acting on aparticle is (2/ +3y)N. Work done by
this force is zero, when aparticle is moved on the line 3y+yb:=5.
Here value of^ is :

(A) 2 , (B) 4
(Q 6 (D) 8

3-59 A particle is given an initial speed u inside a smooth
spherical shell ofradius /? = 1mthat it isjust able to complete
the circle.Acceleration ofthe particle when its velocity isvertical
is: •

3-63 Two particles 1 and 2 are allowed to descend on two
frictionless chords OPand The ratio ofthe speeds ofthe
particles 1 and 2 respectively when they reach on the
circumference is:

(A) gVio

(Q g/V2

Figure 3.100

(B) g

(D) gVb

3-60 Power supplied toaparticle ofmass 2kgvaries with time

3/^
asP — watt. Here t is in second. If velocity ofparticle at

i= 0 is V= 0.Thevelocity ofparticleattime/ = 2 swillbe :
(A) Im/s (B) 4m/s
(Q 2m/s P)2V2ni/s

3-61 An ice cube ofsize ij= 10 cm isfloating ina tank (base
areav4 = 50cm >; 50cm)partially filledwithwater. Thechange in
gravitational potential energy, when ice melts completely is :
(densityof ice is 900kg/m^)
(A) -d.072J (B) -0.24J
(Q -0.016J P) -0.045J

3-62 Aparticle moves onarough horizontal ground with some
initial velocity say Vq. If 3/4^ of its kinetic energy is lost in

Figure 3.101

(A) (B) ^

(Q 1 P)
2V2

3-64 An object ofmass mslides down a hill ofheight h of
arbitrary shape and after travelling a certain horizontal path
stops because of friction.The frictioncoefficientis different for
different segments for the entire path butis independent ofthe
velocity and direction of motion. The work that a force must
perform toreturn the object toits initial position along the same
path is:

(A) mgh (B) 2mgh '
(C) Amgh (p) -mgh

3-65 Ablock ofmass mslides down arough inclined plane of
inclination 6 with horizontal with zero initial velocity. The
coefficient offiiction between the block and the plane isp with
0> tan"^ (p). Magnitude ofrate ofwork done by the force of
friction at time t is :

(A) pmg2/sin0 (B) mg2^(sm0- pcos 0)
(C) pmg2 t cos 0 (sin 0- p cos 0) p) pmg^ / cos 0

3-66 Aparticle isdisplaced fromx=-6mtox = + 6m.A force
F acting ontheparticle during itsmotion isshown infigure-3.102.
Graph between work done bythis force (fV) anddisplacement
(x) should be:
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F{N)

-x(m)

+ o7
i

1
1

1

/+3
+

6

-10

Figure 3.102

W(J) W(J)

I ' I x(m) (B)
+321

-601 +6 x(m)

-75

(Q
-6

W(J)

+30

-60

+6 . x(m) (D)
-6

F(N)

X+S +6 5^)
-60

3-67 A forceF actingon a body depends on its displacement
S SiS F cc S The power delivered by F will depend on
displacement as :

2/3 (B)(A) 5
(Q 5 1/2 P)

3-88 Aparticle isreleased fromaheight//.Atcertain height its
kineticenergyistwotimesitspotentialenergywithreference at
bottom point.. Height andspeedof particle at thatinstant are :

(A)
3 '

2H

3 •

2gH
(B)

(Q
2gH (D) f,V2^

3-69 Velocity-time graph of a particle
of mass2 kgmovingin a straightline is
as shown in figure-3.l03. Work done
by all the forceson the particle is :
(A) 400J

(B) -400 J

(Q-200J

P) 200 J

V(m/s)

Figure 3.103

Work, Energy and

3-71 Apendulum ofmass 1kg and length /= 1misreleased
from rest atangle 0= 60°. The power delivered byallthe forces
acting on the bob at angle 0=30° will be:(Takeg= lOm/s^)
(A) 13.5 watt p) 20.4 watt
(Q 24.6 watt , P) Zero

3-72 AbeadofmassSkgisfree
to.slide on the horizontal rodAS.

They are connected to two
identical springs of natural
lengthms. asshown. If initially
bead was at O & Mis vertically

below L then, velocity of bead
at point//will be:

(A) 5 h m/s-
p) 40/1/3, m/s
(C) 8 // m/s
P) None of these

X ^ = 1000 N/m

h

N ^0 B
h

37°^^^= 1000 N/m

Figure 3.104

3-73 Thedisplacement ofabody ofmass 2kgvaries with time
/ as5=+2r,where S is inmetersandt is inseconds. Thework
done byalltheforces acting onthe body during thetime interval
/ = 2 sto r=4sis:

(A) 36J P) 64J
(Q lOOJ P) 120J

3-74 Theworkdonebya force F ={- i) N in displacing a
particlefromx = 4mto;c=-2mis:
(A) -240J
P) 360J
(Q 420J .
p) Will depend upon the path

3-75 A block is released from the top of a smooth inclined
plane of inclination 0 as shown in figure-3.105. Let v be the
speed ofthe particle after travelling adistance 5down the plane.
Then which of the

following will remain
constant :

(A) v^ + 2g5sin0
P) - 2gs sin 0

sin 0

P) v+yj2gs sin0 vW////////////////////////.

Figure 3.105

3-70 A man throws the bricks to a height of 12 m where they
reach with a speed of 12 m/s. Ifhe throws the bricks such that
theyjust reach that height, what percentageof energywill be
saved: (Take g = 9.8m/s^)
(A) 29% P) 46%
(Q 38% P) 50%

3-76 Raindrops fallfrom acertainheight witha terminal velocity
Von the ground. The viscous force is F = 6nr[rv. Here r| is
coefficient of viscosity, r the radiusof rain drop and vis speed.
Then work doneby all the forcesactingon the ball till it reaches
the ground is proportional to :

(A) r' (B) r'
(Q • CD) ,



lWorl> Energy. aHd ^ower^

3-77 AconstantpowerP isappliedto aparticle ofmassm.The
distance travelled by the particle when its velocity increases
from V, to Vj is (neglect friction)

(A) ^(vf-vf) (B) ^(V2-Vj)
m

m

(D)
m

3P
(v|-vf)

3-78 A 1.5kg block is initiallyat rest on a horizontal fiictionless
surface when a horizontal force in die positive direction ofx-axis

is applied to the block. The force is given by P = (4 i N,

where x is in metre and the initial position ofthe block is a: = 0.
The maximum kinetic energy of the block between x = 0 and

x=2.0mis:

(A) 2.33 J (B) 8.67J

(Q 5.33 J (Q 6.67 J

3-79 The tangentialaccelerationofa particle in a circularmotion
of radius2 m is m/s^ (wherea is a constant) Initiallythe
particle as rest. Total acceleration ofthe particle makes 45° with
the radial acceleration after 2 sec. The value of constant a is :

(A) ^ m/s^
(Q 2m/s3

(B) Im/s^

P) Data are insufficient

3-80 Ablockofmass 1 kg is attached to one end ofa spring of
forceconstant/:= 20N/m.The otherendof thespringis attached
to a fixed rigid support. This spring block system is made to
oscillate on a rough horizontal surface (p = 0.04). The initial

displacement ofthe block from the equilibrium position is o = 30
cm. How many times the block passes from the mean position

beforecoming to rest? (Take g-= lOm/s^)
(A) 11 (B) 7
(Q 6 P) 15 .

3-81 With what minimum speed v must a small ball should be
pushed inside a smooth vertical tube from a height h so that it
may reach the top of the tube ? Radius ofthe tube is R :

(A) pg(,h +2R)

(C).^g(5R-2h)

Figure 3.106

CB)

(D) ^2g(2R-h)

205

on a rough horizontal plane. The friction coefficient between

the block and the surface is p. Maximumvelocity ofthe block
will be:

mg(A) (B)

(C) ^mgP P)

[img

P

P

img

3-83 Two blocks ofmasses Wj = 1kgandwij^ 2kg are connected
by non-deformed Tight spring. They are lying on a rough
horizontal surface. The coefficient offriction between the blocks

and the surface is 0.4. What minimum constant force F has to

be applied in horizontal direction to the block of mass Wj in
order to shift the other block? (Take g = 10m/s^)

(A) 8N
(Q ION

777777777777777777777777777777777>

Figure 3.107

P) 15N
P) 25N

3-84 Force acting on a particle moving in a straight line varies

with the velocity ofthe particle asF= —. Here .^is a constant.

The work done by this force in time t is :

P) '2 Kt

2Kt

(A) 4-'
V •

(C) Kt P)

3-85 A ball ofmass m and density p is immersed in a liquid of
density 3 p at a depth h and released. To what height will the
ball jump up above the surface ofliquid (neglect the resistance
ofwater and air):

(A) k P) h/2

(C) 2h P) 3h

3-86 A block of mass m is attached with a massless spring of

force constant k. The block is placed over a rough inclined
3

surface for which the coefficient of friction is p = —. The
^ 4

minimum value ofMrequired to move the block up the plane is
(Neglect mass ofstring and pulley and fnction in pulley);

(A) -J m

p) jm

(Q 2m

3-82 Ablockofmass/nispulledbyaconstantpowerFplaced 2
V77777777777777777777777777..

Figure 3.10S
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3-87 A cannon of mass Im located at the base of an inclined

plane shoots a shell of mass m in horizontal direction with

velocity The angle of inclination of plane is 45® and the

coefficient of friction between the cannon and the plane is 0.5.

The height to which cannon ascends the plane as a result of

recoil is:

(A)
2g

(B)
12g

(Q
Z0_

P)

3-88 A smooth sphere of radius R is made to translate in a

straight line with a constant acceleration a = g.A particle kept

on the top of the sphere is released from there at zero velocity

with respect to the sphere.'The speed ofparticle with respect to

the sphere as a function ofangle 0 as it slides down is :

(A)
Ji?F(sin0+cos0) I
— ^ (B) 'jRgil+cos 0- sin 0)

(Q ^ARgsinQ (D) pRg(l +sin 0-COS 6)

3-89 A bob is suspended from a crane by a cable of length
/ = 5 m. The crane andload aremoving at a constant speed Vq.
The crane is stopped by a bumper and the bob on the cable

swings out an angle of 60®. The initial speed Vq is :
(Takeg-=9.8m/s^)

(A) lOm/s

(Q 4m/s

Figure 3.109

(B) 7m/s

P) 2m/s

3-90 A car is moving in a circular horizontal track of radius
10 m with a constant speed of 10 m/s. Aplumb bob is suspended

from the roofofthe car by a light rigid rod oflength 1.00m. The
angle made by the rod with the track is :

(A) Zero (B) 30^
(C) 45® P) 60®

3-91 Velocity-time graph of a particle movingin a straight line
is as shown in figure-3.110. Mass ofthe particle is 2 kg. Work
done by all the forces acting on the particle in time interval
between r= 0 to r= 10 s is;

(A) 300 J-

(Q 400J

V(m/s)

10

-20

Work, Energy and Power

10

Figure 3.110

p) -300J

P) -400 J

-t(s)

3-92 Twoblocks .4 and5 of mass m and 2 mare connected by
a massless spring of force constant k. They are placed on a

smooth horizontal plane. Spring is stretched by an amount x

and then released. The relative velocity ofthe blocks when the

spring comes to its natural length is :

(A)

(Q
2kx

m

4 -mmh ^
-777777Z777777777777Z777777ZV)

Figure 3.111

(B)

P)
Zkm

2x-

.3-93 The potential energy of a particle of mass m is given by

U= h?-forx<0 andU=0forx> 0.Iftotal mechanical energy

of the particle is E. Then its speed at x = is :

(A) Zero P)

(Q V m P)

3-94 A particle F is sliding down a fnctionless hemispherical
bowl. It passes the point 4 at /= 0. At this instant of time, the

horizontal component ofits velocity is v.Ahead Q ofthe same
mass as P is ejected from 4 at / = 0 along the horizontal string
AB, with the speed v. Friction between the bead and the string

may be neglected. Let tp and tgbe the respective times taken by
P and Q to reach the point B dien :
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(A) tp<tQ

(Q tp>tQ

Figure 3.112

(B) tp Iq

p) are^fiC
tg length of chord AB

3-95 Asmall block ofmass mslides along asmooth fiictionless
track asshown inthe figure-3.113 (i) Ifit starts from rest atP,
what isthe resultant force acting on itatg ? (ii) At what height
above the bottom of the loop should the block be released so
that the force it exerts against the track at the top ofthe loop
equals its weight;

(A)

(Q V75mg,2i?

At rest

Figure 3.113

(B) 4^mg,2R

P) 4^mg, 3^

3-96 Astone istied toa string oflength / iswhirled inavertical
circle withthe otherendof the stringat thecentre. At a certain
instant of time, the stone is at its lowest position and has a
speedu.Themagnitude ofthechange in itsvelocity at itreaches
a position where the string is horizontal is :

(A) V(«'-2g/)

(Q

(B)

•(D) V(2«'-g/)

3-97 Along horizontal rod has abead which can slide along its
length, and initiallyplaced at a distanceL from one end of^ of
the rod. The rod is set in angularmotionaboutAwithconstant
angular acceleration a. Ifthe coefficient offriction between the
rod and the bead is p and gravity is neglected, then the time
after whichthe bead starts slippingis :

(B) +
/a

(Q P) Infinitesimal

3-98 An insect crawls up ahemispherical surface very slowly
(seethe figure-3.114). The coefficient of fiiction between the
insect and the surface is1/3. Ifthe line joining the centre ofthe
hemispherical surface to the insect makes an angle a with the
vertical, the maximum possible value ofa isgiven by:

(A) cota = 3

(Q sec a = 3

Figure 3.114

p) tana = 3

P) cosec a = 3

3-99 An ideal spring with spring-constant k ishung from the
ceiling and a block of mass Afis attached to its lower end. The
mass is released withthespringinitially unstretched. Thenthe
maximum extension inthespringis:
(A) 4 Mglk p) 2 Mglk
(Q Mg/k p) Mgllk

3-100 A10kg block isreleased from rest atthe top ofa incline
and brought to rest momentarily after compressing the spring
by2 metres. What is the speed of mass just before it reaches
the spring:

(A) V^ni/s

P) 4^m/s

(Q Vio m/s

P) V40 m/s

30

•//////////////

Figure 3.115

3-101 The following figure-3.116 illustrates the relation
between thepositionof a particleandforce. Theworkdonein
displacing the particle fromx = 1 to 5 m is :

20

10

-10

-20

(A) 20joules
(Q 70joules

1 2 4 5 ^in.

Figure 3.116

P) 60joules
P) 100 joules



1208
Work, Energy and Power

AdvanceMCQswith Oneor More: OptionsCorrect
3-1 A ball of mass m is attached to the lower end of a light
vertical spring of force constant k.Theupperendof the spring
is fixed. The ball is released from rest with the spring at its
normal length, andcomes torestagain afterdescending through
a distance x:

(A) x = mg/k
(B) X^ 2 mg/k
(Q The ballwill have noacceleration attheposition where it

has descended through x/2.
(D) Theballwillhaveanupward acceleration equaltog at its

lowermost position.

3-2 A heavyparticle is suspended by a string of length60 cm
from a fixed point O. It is projected horizontally with speed
4.2 m/s from its lowest position: (Take g=9.8 m/s^)
(A) Theparticle willrisetoamaximum height of30cmabove O.
(B) Themaximum height above Oreached by theparticle will

be less than 30 cm.

(Q Whentheparticlereachesthemaximum heightit willhave
' kinetic energy.

P) Theparticlewill leavethe circularpathwhilegoingup.

3-3 Work done by the conservative forces in a system of
particles is equal to :
(A) The change in kinetic energy of the system

The change in potential energy of the system
(Q The changein total mechanical energyof the system
(D) None of these

3-4 Select the correct altemative(s):

(A) Workdoneby static frictionis always zero.
(B) Workdone by kineticfrictioncan be positive.
(Q Kinetic energy of a system can not be increased without

applying any external force on the system.
(D) Workenergytheoremis valid in non-inertial frames if we

accountpseudoforceactingonthebodyin thenon-inertial
fr^ame.

3-5 Work done by a force on an object is zero, if:
(A) Theforce is always perpendicular to its acceleration.
(B) The object is stationary but the point of application of the

force moves on the object.

(Q The force is always perpendicular to its velocity.
(D) The object moves in such a way that the point ofapplication

ofthe force remains fixed.

3-6 A particlemovesina straightlinewithconstantacceleration
under a constant force F. Select the correct altemative(s) :

(A) Power developed by this force varies linearlywith time.
(B) Power developed by this force varies parabolically with

time.

(Q Power developed by this force varies linearly with
displacement.

(P) Power developed by this force varies parabolically with
displacement.

3-7 Kinetic energy of a particle moving in a straight line is
proportional tothe time t.The magnitude ofthe force acting on
the particle is:
(A) Directly proportional to the speedof theparticle.

(B) Inversely proportional to Vr .
(Q Inversely proportional to the speedof the particle.

P) Directly proportional to 4t .

3-8 Inprojectilemotionpowerofthegravitationalforce:
(A) Is constant throughout.
(B) Isnegative forfirsthalf, zeroat topmost pointandpositive

for rest half.

(Q Varies linearlywith time,
p) Is positive for complete path.

3-9 Aperson applies a constant force F onaparticle ofmass m
and finds that the particle moves in a circle of radius r with a
uniform speed vasseen(intheplane ofmotion) from aninertial
frame ofreference. Select the correct statement.

(A) This is not possible
P) There are other forces on the particle
(Q The resultant ofthe other forces ismv^lr towards thecentre
P) The resultant of the other forces varies in magnitude as

well as in direction

3-10 Oneend of a light springof forceconstantk is fixed to a
wall and the other end is tied to a block placed on a smooth
horizontal surface. In a displacement, the work done by the

spring is ^hP-. The possible case(s) may be :
(A) The springwasinitially stretchedbya distance x andfinally

was in its natural length.

P) The spring was initially in its natural length and finally it
was compressed by a distance x.

(Q The spring was initially compressed by a distance x and
finally was in its natural length,

p) The spring was initially in its natural length and finally
stretched by a distance x.

3-11 Ablock ofmass 2 kg is hanging over a smooth and light
pulley through a light string. The other end"of the string is
pulled by a constantforceF = 40 N. The kinetic energyof the
particle increases 40 J in a given interval of time. Then :
(Takeg= lOm/s^)
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(A) Tension in the string is 40 N.
(B) Displacement of the block in the given interval of time is

2ni

(Q Power developed by this force varies linearly with
displacement.

(D) Power developed by this force varies parabolically with
displacement.

3-12 The spring is compressed by a distancea and released..
The blockagain comesto rest whenthe spring is elongatedby
a distance b. During this :

/Z'TT/TTTTTTTTPTTTTTTTTT^^

.Figure 3.117

(A) Work done by the spring on the block = h)

(B) Work done by the spring on the block = ^ ~

k{a - b)
(Q Coefficient offriction =

(D) Coefficient offriction =

2mg

k(a + b)

Img

3-13 The potential energy in joules ofa particle ofmass 1 kg
moving in a plane is given by f/ = 3x + 4y, the position

coordinates of the point being x and y, measured in metres. If
the particle is at rest at (6,4), then
(A) Itsacceleration isofmagnitude 5 m/s^
(B) Its velocity when it crosses the y-axis is 10 m/s
(Q It crosses the y-axis (x= 0) at>' =-4
p) It moves in a straight line passing through the origin (0,0)

3t1 4 A block is suspended by an ideal spring offorce constant
k. If the block is pulled down by applying constant force F and
ifmaximum displacement ofblock from its initial position ofrest

is Xq then:
(A) Increase in energy storedin spring is Xq

(^) Xo=^

IF

p) Work done by applied force isFxq

3-15 For a curved track ofradius R, banked at angle 0 :

(A) Avehicle moving with a speed = -^Rg tan 0 isable to

,.209j

negotiate the curve without calling friction into play at all
(B) A vehiclemovingwith anyspeed v> is able to negotiate

the curve with calling friction into play.
(C) A vehicle ismoving with any speed v< Vq must also have

the force of friction into play
(D) The minimumvalue of the angle of banking for a vehicle

parked on the banked road can stay there without slipping,
isgiven by 0=tan"^ (p^ = coefficient ofstatic friction),

3-16 A single conservative force F(x) acts on a particle that
moves along the x-axis. The graph of the potential energy with
Xis given. At x = 5m, the particle has a kinetic energy of50J and
itspotential energy is related toposition 'x'as t/= 15 + (x- 3)^
Joule, where Xis in meter. Then:

U (Joule)

.v(m)

Figure 3.118

(A) The mechanical energy of system is 69 J
P) The mechanical energy of system is 19J

(Q At X= 3, the kinetic energy ofparticle is minimum

p) The maximum value ofkinetic energy is 54 J

3-17 The potential energy of a particle of mass 1 kg in a
conservative field isgiven as C/= {3xy + 6x) J, where x andy
are measured in meter. Initially particle is at (1,1) & at rest then;

(A) Initial acceleration ofparticle is bVsms^
p) Work done to slowly bring the particle to origin is 9 J

(Q Work done to slowly bring the particle to origin is - 9 J
P) Ifparticle is left free it moves in straight line

3-18 In the adjacent figure a uniform rod oflength L and mass
m is kept at rest in horizontal position on an elevated edge. The

value ofx (consider the figure-3.119) is such that the rod will
have maximum angular acceleration a as soon as it set free.

K i ,£

77777.

Figure 3.119
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(A) Xis equal to

(Q a is equal to

L
—1= (B) a is equal to -—
2'v3 1L

gyj3 L—j— P) ;c IS equal to ^

3-19 Displacementtimegraphofa
particle moving in a straight line is
as shown in figure-3.120. Select the
correct altemative(s) :

(A) Work done by all the forces in
region OAand BC is positive.

(B) Work done by all the forces in
regionis zero.

(Q Work done by all the forces in
region BC is negative,

p) Work done by all the forces in region OA is negative.

Figure 3.120

Wofki Energy and Power

3-20 A Block 'y4' is placed on a smooth
horizontal surface and a particle C is
suspended with the help oflight rod from
point B of the block as shown. Now both
the block A and the particle C are given
velocity Vq towards left. The block^4 strikes
a fixed wall and suddenly stops. Then,
(The rod BC is free to rotate about E)
(A) Thesmallest velocity Vq forwhich theparticle Cwillswing

in afull circle about the point Bis ^J4gl.
(B) The smallest velocity for which the particle C will swing

in afull circle about the point Bis ^.
(Q Velocity ofpoint C at the highest point ofthe circle (for the

smallest value ofv^) iszero.
P) Velocity ofpoint C at the highest point ofthe circle (for the

smallest value of Vq) is .

/777777777777777vW,

Figure 3.121
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3-1 Anastronaut withspace suithasamass of110 kg.Climbing
up a hill7.3m highin 7.2 secrequires theastronautto expenda
power of 200 W. Is the astronaut on the earth ?

Ans. [No]

3-2 In an amusement park passengers riding in aAir racer are
revolvingarounda tall steeltower. At topspeedallof itsplanes
fly at 60° bank, and about50mfromthe tower. In this position
the support chains make an angle of 60° with the vertical.
Calculate the speed of the planes.

Ans. [29.42 m/s]

3-3 A man is drawing water from a well with a bucket which
leaks uniformly. The bucket when full weighs'20 kg and when it
arrives the top only half the water remains. The depth of the
water is 20 m. What is the work done ?

Ans. [3000 J]

3-4 Atrainofmass 100metric tons is drawnupaninclineofl
in 49 at the rate of36 kph by an engine. If the resistance due to
frictionbe 10N per metricton, calculatethepower ofthe engine.
If the steam is shut off, how far will the train move before it

comes to rest ? .

Ans. [248.75 m]

3-5 An elevatorhas a massof600 kg,not includingpassengers.
The elevator is designed to ascend at constant speed a vertical
distance of 20 m in 15 sec. It is driven by a motor that can
provide up to 30 hp to the elevator, what is the maximum number
of passengers that can ride in the elevator ? Assume that an
average passenger has a mass of 65 kg.

Ans. [17]

3-6 Consider a spring that does not obey Hooks's law. One
end of the spring is held fixed. When it is stretched or
compressed by an amount x, the force it exert is
F = ax -bx + cx^. Where a = 50 N/m, b = 150 nW and
c = 5000 N/m^. How much work must be done to stretch this
spring by Im from its unstretched length ?

Ans. [1616.67 J]

3-7 An object of mass 5 kg falls from rest through a vertical
distance of 20 m and reaches a velocity of 10 m/s. How much

work is done by the push of the air on the object ?

Ans. [- 750 J]

3-8 The engine ofa car ofmass m supplies a constant power P
to the wheel to accelerate the car. Rolling friction and air

resistance can be neglected. The car is initially at rest
(a) Show that the speed of the car is given as a function of

time by V= I
V m

(b) Show that the acceleration of the car is not constant but is

f
given as a function of time by a = *

(c) Show that the displacement as a function of time is given

by jc - Xjj =
9m

Yi
^ti

3-9 A highway curvewitha radiusof750 m isbankedproperly
for a car traveling 120 kph. Ifa 1590 kg car takes the turn ata
speed of23 0 Iqih, how much sideways force must the tires exert
against the road if the car does not skid ?

Ans. [6230 N]

3-10 A cyclist rides along the circumference of a circular
horizontal plane of radius 7?, the factional coefficient being
dependent only on distance r from the centre O of the plane as

)i= Pq (1 - ^), where is a constant. Find theradius of the
circle with the centre at the point along which the cyclist can

ride with the maximum velocity. What is this velocity ?

Ans. \RI2, - ]

3-11 The disk in a CD player does not rotate at a constant
angular speed, but spins at a rate which is decided by a control
unit so that the linear speed ofthe track being read is constant.
The laser beam used to read the data on the disk starts at an

inner radius of 5cm and continues to read until reaching an
outer radius of 10 cm. If the disk rotates at 600 rev/min at the

start, what will be its rotation rate at the end ?

Ans. [300 rev/min]

3-12 A small ball is suspended from a point O by a thread of
length /. A nail is driven into the wall at a distance of //2 below

O, aXA. The ball is drawn aside so that the thread takes up a
horizontal position. At what point to the ball trajectory, will be
the highest point to which it will rise ?

Ans. [5//6 , 50/754]

3-13 An amusement park ride consists ofa broad short cylinder
arranged so that it rotates around its vertical axis. People stand

inside the cylinder with their backs to the outer wall and feel an

outward push when the cylinder rotates. When the cylinder is
rotating fast enough, it is tipped so that its axis of rotation is
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almosthorizontal. If the radius of the cylinder is 4.5m, howfast
must it rotate so that the riders do not fall away from the walls at
the topmost position ?

Ans. [0.23 rev/sec]

3-14 A designer of race track is appointed on moon for a car
race. He has to design a 1.5 km diameter circular race track
assuming a speed of 240 km/hr for the type of cars used. If
everything else is to stay the same in the design, by howmany
degrees and in which direction with respect to the horizontal
designers will have to change the angle at which the track is
banked on the moon as compared to the banking angle on
earth ?The acceleration ofgravity onthe moon is 1.62 m/s^.

Ans. [Increase by 44.5°]

3-15 The kinetic energy ofa particle moving along a circle of
radius r depends on distance covered s2ls.K=As^, where isa
constant. Find the force acting on the particle as a function ofs.

Ans. [2As [1 + {slrYT]

y
3-16 Two bars of masses Wj and m2 connected by a non
deformed light spring rest on a horizontal plane. The coefficient
of friction between the bars and the surface is equal to p. What
minimum constant force has to be applied in the horizontal

direction to the bar of mass m, in order to shift the other bar ?

Ans. Jig]

3-17 Show that the height h to which a man of mass m can
jump is given approximately by

2

1 ( AsP'] 3

where P is the maximum power, the man can use and s is the
height of centre ofmass of man from ground.

3-18 A string of length Im is fixed at one end and carries a
mass of 100 gm at the other end. This string makes 2/n revolution
per second around a vertical axis passing through its second
end. Calculate (i) the angle of inclination of a string with the
vertical, (ii) the tension in the string and (iii) the linear velocity
of the mass.

Ans. [52°14', 1.6 N, 3.162 m/s]

3-19 Light airplanes are designed so that their wings can safely
provide a lift force of3.8 times the weight ofthe airplane. What

is the maximum bank angle that a pilot can safely maintain in a"

constant altitude turn without threatening the safety of the

airplane ?

Ans. [75°]

Work, Erjefgy and Power •

3-20 A stone with a mass of 0.9 kg is attached to one end of
string 0.8 m along. The string willbreakif its tension exceeds
500 N. The stone is whirled in a horizontal circle on a frictionless

table top.. The other end of the string is kept fixed. Find the
maximum speedof thestonewhichitc^attainwithout breaking
the string.

Ans. [21.08 m/sec]

3-21 The block on the loop the loop as shown infigure-3.122
slides without friction. At what height from A it starts so that it
presses againstthe track at B with a net upward force equal,to
its own weight ? The radius of loop is R.

Figure 3.122

Ans. [3 R]

3-22 A body ofmass mwas slowly hauled up the hill by a force
F which at each point was directed along a tangent to the
trajectory as shown in figure-3.123. Find the work performed by
this force, if the height of the hill is h, the length of its base /,
and the coefficient offriction p.

Figure 3.123

Ans. {mg{h + n/)]

3-23 An object is attracted toward the origin with a force given

hy F=- . Calculate the work done by the force F when the

object moves in the x-direction from x^ to Xj. If Xj> x^, is the
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work done by F positive or negative ? You now exert a force
with your hand to move the object slowly from Xj to X2 again
while it isbeing acted onbytheforce F. Howmuch workdoyou
do ? If ^2> X,, is the workyou do positiveor negative?

Ans. [--Ik
1 1

, negative, 2k
1 1

3 3 3 3
_xi

, positive]

3-24 A hemispherical bowl of radius R is rotated about its
vertical axis.A small particle is kept on its inner surface where
the radiusmakesanangle0 withthe vertical. Theparticlerotates
with the bowl without any slipping. The friction coefficient
between the block and the bowl surface is p. Find the range of
the angular speed for which the block will not slip.

Ans. [
g(sin9-pcos0)

i?sin0(cos0 + nsm6)

K
to

g(sin0 + ncos0)

iJsin0(cos9-psin0) ]

3-25 A system consists of two springs connected in series
andhaving thestiffiiess coefficients and^2- Findtheminimum
work to be performed in order to stretch this system by x.

Ans. [
2[k,^k2)

3-26 Aircraft experience a lift force (due to air) that is
perpendicular to the plane of the wings. A small airplane is
flying at a constant speed of 280 kph. At what angle from the
horizontal must the wings of the airplane be tilted for the plane
to execute a horizontal turn from east to north with a turning
radius of1200 m ?

Ans. [36°]

3-27 Two identical twins, Tui arid Kui are playing on a large
merry go round in an amusement park. The surface ofmerry go
round is frictionless and is turning at a constant rate of

revolution as the twins ride on it. Tui, sitting 2 m from the center
of the merry go round, must hold onto one of the metal posts
attached to the merry go round with a horizontal force of90 N to

keep from sliding off. Kui is sitting at the edge, 4 m from the
center. With what horizontal force must she hold on to keep
from falling off?

Ans. [180. N]

3-28 A small block with mass m is placed inside an inverted

cone that is rotating about a vertical axis such that the time for
one revolution of the cone is T. The walls of the cone make an

anlge p with the vertical. The coefficient of static friction
between the block and the cone is p.. If the block is to remain at
a constant height h above the apex of the cone, what are the
maximum and minimum values ofT?

Ans. [2nfA!HPl'̂ fsin|-n=o^^X
( g j • (cosp+psinpj

fsinp+pcosp^-^
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g j [cosp-jisinpJ ^

3-29 An object is attracted toward the origin witha force of
magnitude 7^= kx , where k=5 N/m . How much work is done

by the force F when the object moves from Im to 2 m ? Is the
work positive or negative.

Ans. [18.8 J]

3-30 A designer proposes a design for an automobile crash
barrier in which a 1200 kg car moving at 20 m/s crashes into a
spring ofnegligible mass that slows the car to a stop. To avoid
injuring the passengers, the acceleration of the car as it slow
can be no more than 5 g. Find the required spring constant and
find the distance the spring will compress slowing the car to a
stop.

Ans. [7200 N/m, 8.16]

3-31 What power is required for a grinding machine, whose
wheel has a radius of20 cm and runs at 2.5 rev/s,when the tool
to besharpened isheld against thewheelwitha force of 180N ?
The coefficient ofkinetic friction between the tool and the wheel

is 0.32.

Ans. [180 W]

3-32 A particle movingalong the x-axis is subjectedto a force
given byF=FQ{e^°-1),where Fq and are constants. Determine
an expression for the work done by this force as the particle
moves from the origin to the point x = r.'

Ans. [Py-.a-r)]

3-33 During 0.19 sec, a wheel rotates through an angle of
2.36 rad as a point on the periphery of the wheel moves with a
constant speed of 2.87 m/s. What is the radius of the wheel ?

Ans. [0.23 m]

3-34 Oneend of a lightstringis slippedarounda peg fixedin
a horizontal table top, while the other end is tied to a 0.5 kg
small disc. The disc is given an initial velocity of magnitude
3.4 m/s so that it moves in a horizontal circle ofradius 0.75 m.

The object comes to rest after 2.5 revolutions, (a) For the entire
motion, what work is done by the frictional force ? (b) Assume
that the magnitude of the frictional force is constant and

determine the coefficient ofkinetic friction at the interface, (c)
Determine the tension in the string at the instant that the disc
completes the first revolution, (d) How much work is done by
the tension in the string ?

Ans. [-2.9 J, 0.05, 4.6 N, 0]



3-35 A ball of mass m is'attached to a light string of length!,

and suspended vertically. A constant horizontal force, whose
magnitude F equals the weight ofthe ball, is applied. Determine
the speed ofthe ball as it reaches the 90° level.

Ans. [0]

3-36 A smooth table is placed horizontally and a spring
ofunstretched length and force constant k has one end fixed

to its center. To the other end ofthe spring is attached a mass m
which is making n revolutions per second around the
center. Show that the radius r ofthis uniform circular motion

is Mq / {k - 4 Tc^mn^) and the tension T in the spring is
4 / (!-4 Tc^mn^).

3-37 Suppose that a man (60 kg) is standing in an elevator. The
elevator accelerates upward from rest at I m/s^ for 2 sec, then
for further 10 sec, it moves with the constant velocity and then

decelerates at the same rate for 2 sec. (a) For the whole motion,
how much work is done by the normal force on the man by the
elevator floor ? (b) By man's weight (c) What average power is
delivered by the normal force for the whole motion, (d) What
instantaneous power is delivered by the normal force at 7 sec ?

(e)at 13 sec?

Ans. [14 kJ, -14 kJ, Ik/W, 1.2 kW, 0.5 kW)

3-38 In an industry a 300 kg crate is dropped vertically froma
packing machine onto a conveyor belt moving at 1.2 m/s. The
coefficient ofkinetic friction between belt and crate is 0.4. After

a short time, slipping between the belt and the crate ceases and

the crate then moves along with the belt. For the period oftime
during which the crate is being brought to rest relative to the
belt, calculate, for a reference frame, (a) the kinetic energy
supplied to the crate, (b) the magnitude ofthe kinetic fiictional

force acting on the crate, the magnitude of energy supplied by
the motion, (c) Why are the answers to (a) and (c) different.

Ans. [216 J, 1180 N, 432 J]

3-39 Abicyclist ofmass 80 kg (including the bicycle) can coast
down a 3.4° hill at a steady speed of6 kph. Pumping hard, the
cyclist can descendthe hill at a speed of 30 kph;Using the same
power, at what speed can the cyclist climb the same hill ?Assume
the force of friction is directly proportional to the speed v.

Ans. [24 kph]

3-40 An engineer is designing a spring to be placed at the
bottom ofan elevator shaft, ifthe elevator cable should break at

a height h above the top of the spring, calculate the required
value of the spring constant k, so that passengers undergo an
acceleration of no more than 10 g when brought to rest, Let M
be the total mass of the elevator and passengers.

Ans. [99Mgl2h]

Work, Energy ani Powei^

3-41 A man finds that, on level ground, his 800 kg car
accelerates from rest to 15 m/s in 10 sec and then coasts to rest

from 15m/s in 500 m. Computethe averagehorsepowerdelivered
by the car.

Ans. [7650 W]

3-42 A child's 200 gm toy car is driven by an electric motor that
has a constant output power. The car can climb a 20° incline at

20 cm/s and can travel on a horizontal table at 40 cm/s. The

friction force retarding it is kv, where ^ is a constant and v is

its speed. How steep in incline can it climb with a speed of
30 cm/s ?

Ans. [7.64°]

3-43 A solid body rotates about a stationary axis so that its
angularvelocitydepends onthe rotationangletp as co=cOq - kf^,
where cOp andk are positiveconstants. At the moment t = 0, the
angle (p = 0. Find the time dependence of(a) angular velocity (b)
rotation angle.

Ans. [cone-^ "^(1 - e"*')]
K

3-44 (a) The bob ofa simple pendulum oflength/is released
from apoint in the same horizontal line as the point ofsuspension
and at a distance / from it. Calculate the tension in the string at
the lowest point of its swing.

(b) If the. string of the pendulum is catched by a nail located
verticallybelowthepoint of suspensionand thebob just swings
around a complete circle around the nail, find the distance of
the nail from the point of suspension.

(c) If the string of the pendulum is made ofrubber then show

that it will be stretched by 3 mg/k on reaching the bob at the
lowest point. Here k is the force constant of the string.

Ans. [3 mg, 31/5]

3-45 The resistance to motion of an automobile depends on
road friction, which is almost independent of speed, and on air
drag, which is proportional to speed squared. For a car with a

weight of 12000 N, the total resistance force F is given by
F = 300+ 1.8 v^, where is in newtons andvis in meters per
second. Calculate the power required to accelerate the car at
0.92 m/s^ when the speed is80 kph.
Ans. [51 kW]

3-46 One end of a light stringis attachedto a 1.2kg disc which
can slide with negligible friction of a 37° incline as shown in
figure-3.124. The other end of the string is fixed to a point on
the incline, and the disc moves in a circularpath ofradius 0.75 m.
At the lowest position, the tension in the string is 110 N.
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Determine (a) the speed ofthe disc at this lowest point (b) the
speed ofthedisc at the highestpoint in the circle, (c) the tension
in the string for this highest position.

Figure 3.124

Ans. [8.015 m/s,. 6.8 m/s, 66.8 N]

3-47 A particle of mass 9 kg is moving under the action of a

central force whose potential energy is given by C/= 10/r. For
what energy it will orbit a circle ofradius 10 m? Calculate the

time period ofthis motion.

Ans. [- 0.5 J, 60 n sec] v

3-48 A device consists of a smooth Z,-shaped rod-located in a
horizontal plane and a sleeve A of mass m attached by a

weightless spring to a points as shown in figure-3.125. The
spring length is / and stiffiiess is equal to k the whole system

rotates with a constant angular velocity co about a vertical axis
passing throu^ the point O. Find the elongation ofthe spring.
How is the result affected by the rotation direction ?

Figure 3.125

Ans. [A/ =
-1

3-49 A particle A moves along a circle of radius = 50 cm so
that its radius vector v relative to the point O rotates with
constant angular velocity co = 0.4 rad/s. Find its total
acceleration.

Ans. [0.32 m/s^]

3-50 A particle moves in the XYplane with velocity given as

v = ai + bxj

At the initial moment of time, the particle was located at the
point (0,0), find

(a) The equation of trajectory ofparticle.

(b) The radius ofcurvature of its trajectory as a function ofx.

Ans. r ,
2a ha"

3-51 A shellacquiresthe initialvelocity320m/s,havingturned
complete tworevolutions insidethebarrelwhoselengthis equal
to 2 m. Assuming that the shell moves inside the barrel with
uniform acceleration,find the angularvelocity ofits axial rotation
at the moment when the shell escapes the barrel.

Ans. [2 X10^ m/s]

3-52 A small objects slides without friction from the
height 50 cm shown in figure-3.126 and then loops the vertical
loop ofradius 20 cm fi-om which a symmetrical section ofangle
2a has been removed. Find the angle a such diat after losing
constant at A and flying through the air, the object will reach at

points.

Ans. [60°]

77777777777777777777777^^77^^77777.

Figure 3.126

3-53 A point moves along a circle with a velocity v= kt where
k = 0.5 m/s^. Find the total acceleration of the point at the
moment when it covered the n'^ fraction of the circle after the
beginning ofmotion n being 0.1.

Ans. [0.8 m/s^]

3-54 In figure-3.127(a) and 3.127(b), y4C, DG and GF are

fixed inclined planes. BC = EF = x and AB = DF = y. A
small block ofmass Mis released from rest form the point A. It
slides down /iC and reaches C with a speed the same block

is released from rest from point D. It slides down DGF and
reaches the point F with speed Vp. The coefficients of kinetic
fiiction between the block and both the surfaces yfC and GDF

are p. Calculate and Vp

At^ D

(a)

Figure 3.127

Ans. [Vc=^2g(_y-iv:), Vp =.J2g{y-iix) ]
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3-55 ABis a quarterofa smoothcircular track ofradius4 m as wall as showninfigure-3.129. Amass m = 0.5 kg attachedat the
shown in figure-3.128.A particle P ofmass 5 kg moves along
the track from AtoB under the action ofthe following forces :

Figure 3.128

(i) A force direct always towards point B, its magnitude is
content and is equal to 4 N.

(ii) A force F2 that is directed along the instantaneous tangent
to the circular track, its magnitude is (20 - s) N, where s is the
distance travelled in meter.

(iii) A horizontal forceF^of magnitude 25N.

If the particle starts with a "speed of 10 m/s, what is its speed at
B.

Ans. [12.85 m/s]

3-56 A 20 gm bullet pirces through a plate ofmass = 1 kg
and then comes to rest inside a second plate ofmass ^ 2.98 kg
as shown in figure. It is found that the two plates, initially at
rest, now move with equal velocities. Find the percentage loss
intheinitial velocity of thebullet when it isbetweenMjandM2.
Neglect any loss of material of the plates, due to action of
bullet.

Ans. [25%]

3-57 A 100 ton engine is moving up a slope ofgradient 5° at a
speed of 1OOm/hr. The coefficient offriction between the engine
and tails is 0.1. If the engine has an efficiency of 4% for
converting heat into work, find the amount of coal the engine
has to bum up in one hour (Burning of 1 kg of coal yields
50,000 Joule)

Ans. [9.15 X 10^ kg]

3-58 A particle is projected with a speed u at an anlge 0 with
the horizontal. Consider a small part ofits path near the highest

position and take it approximately to be a circular arc. What is
the radius of this circle ?

u COS 9 ^
Ans. [ ]

3-59 A stringwithoneendfixedon a rigidwall,passingovera
fixed frictionless pulley at a distance of2 m from the wall, has a
point mass M= 2.kg attached to it at a distance of Im from the

free end is held at rest so that the string is horizontal between

the wall and the pulley and vertical beyond the pulley. What
will be the speed with which the mass Mwill hit the wall when
the mass m is released ?

Figure 3.129

Ans. [3.36 m/s]

3-80 A particleslidesdownthesurfaceofa smoothfixedsphere
ofradius r starting from rest at the highest point. Find where it

will leavethe sphere.Showthat it will strike thehorizontalplane
through the lowest point of the sphere at a distance equal

to 5[VJ + from the vertical diameter.

3-61 A heavy particle is suspended by a light thread, the other
end of the thread being fixed to a point O. The particle is
projected from its lower position in the horizontal direction in

the vertical plane through 0, with such a velocity that it leaves

the circular path after an angular displacement 0. Show that

when the string again becomes taut it makes an angle 30 - 360°
with the downward drawn vertical.

3-62 A block ofmass m is held at rest on a smooth horizontal

floor.A light fiictionless, small pulley is flxed at a height of6m
from the floor. A light inextensible string of length 16 m,
connected with A passes over the pulley and another identical

block 5 is hung from the string. Initial height ofB is 5 mfrom
the floor as shown in figure-3.130.Whenthe systemis released
from rest, B starts to move vertically downwards and.4 slides on
the floor towards right, (a) Ifat an instant string makes an angle

0 withhorizontal,calculaterelationbetweenvelocityuofA and
VofB. (b) Calculate v when B strikes the floor.

Ans. [40/v/4Tm/s]

777777777777777777777777777.

Figure 3.130
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3-63 A smooth rubber cord of length I whose coefficients of
elasticity is k is suspended by one end from the end O as
shown in figure-3.131. The other end is fitted with a catch B. A
small sleeveof massm starts fi-om thepoint O.Neglectingthe
masses of the thread and the catch, find the maximum elongation
ofthe cord.

Figure 3.131

Ans. [-^|ujl+̂ |]

3-64 The basket in a front loading automatic clothes dryer
rotates about a horizontal axis. The basket rotates so that the

force exerted by the basket on clothes located at the basket's

edge is zero at the top ofthe path. If the radius of the basket is
0.65 m, how fast must the basket turn to accomplish this ?

Ans. [0.62 rev/sec]

3-65 A small ring ofmass m can slide on a smooth circular ire

ofradius r and center O, which is fixed in a vertical plane. From
a point on the wire at a vertical distance r/2 above O, the ring is

given a\Q\oc\ty .y[^ along the downward tangent to the wire.
Show that it will just reach the highest point of the wire. Find
the reaction between the ring and the wire when the ring is at a
vertical distance r/2 below.

Ans. [3.5 mg\

3-66 A space station 960 m in diameter rotates fast enough
that the artificial gravity at the outer edge is 1.5 g. (a) What is

the frequency of rotation ? (b) What is its period ? (c) At what

distance from the center will the artificial gravity be 0.75 g ?

Ans. [35.52 s, 960 m]

3-67 A chain AB of length / is loaded in a smooth horizontal

tube so that its fraction of length h hangs freely and touches
the surface ofthe table with its end B. At a certain moment, the

end A ofthe chain is set free, with what velocity will this end of

the chain slip out of the tube ?

Ans. [^2gh In(j^) ]

3-68 An electron with mass 9.1 x 10 kg moves with a speed
of2 X10^m/s in a circle of2.85 cm radius under the influence of

217'

magnetic field. Aproton ofmass 1.67 x 10" '̂kg, moving inthe
sameplanewiththesamespeed,experiences thesamecentripetal
force. What is the radius of the proton's orbit ?

Ans. [52.2 m]

3-69 A particle is suspended verticallyfroma point O by an
inextensible masslessstringof lengths as shownin figure-3.132.
A vertical line AB is at a distance L/8 from O as is given a
horizontal velocity u. At some point, its motion ceases to be
circular and eventually the object passes through line AB. At
the instant of crossing AB, its velocity is horizontal. Find u.

Ans. [̂ l(4+3V3)gL ]

o
222

1/8

Figure 3.132

3-70 A cyclist intends to cycle up a 12° hill 100m high.
Assuming the mass of bicycle plus person is 78.0 kg, (a)
Calculate how much work must be done against gravity, (b) If

each complete revolution of the pedals moves the bike 5.10 m

along its path, calculate the average force that must be exerted

on the pedals tangent to their circular path. Neglect friction and
other losses. The pedals turn in a circle ofdiameter 36cm.

Ans. [76400 J, 717 N]

3-71 A rod oflength Im and mass 0.5 kg is fixed at one end is
initially hanging vertical. The other end is now raised imtil it

makes an angle 60° with the vertical. Howmuch work is required ?

Ans. [1.225 J]

3-72 In a vertical circle, AB is the horizontal diameter. Let^D

and AE are two cords ofthe circle which subtend the angles 6
and 2 0 at the centre ofthe circle respectively. Ifaparticle slides
along the two cords from^ to D and A to E and the ratio ofthe
time durations it take to travel the distances AD and AE is 1 : w

then prove that:

(n^— 1)cos6 = 1

3-73 A penny with a mass m sits on a horizontal turntable at a
distance r from the axis ofrotation. The turn table accelerates at

arate ofa rad/s^ from ?=0. The penny starts slipping at/= ?j.
The friction coefficient on the siuface of turn table and the

penny is [i. Find :
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(0 The direction in which it starts sliding. •

(ii) The magnitude of frictional forceat time t = (ti < ^i)-

3-74 A block of mass 5 kg is suspended from the end of a
verticalspringwhichis stretched by 10cmunderthe loadof the
block. The block is given a sharp impulse from below so that it
acquiresan upwards speed of 2 m/s. Howhighwill it rise ?

Ans. [20 cm]

3-75 A 20 kg block is originally at rest on a horizontal surface
for which the coefficient offiiction is 0.6. Ifa horizontal force F

is applied such that it varies with time as shown in figure-3.133.

(i) Determine the speed ofthe block in 10 s.

F{Nt)

200

Figure 3.133

10 /(5)

(ii) Determine the work done by this force in this duration.

(iii) Determinethe workdoneby frictional forcein thisduration.

Ans. [24 m/s, 14480.4 J, 8720.4 J] ' • '

3-76 A has a mass 15 kg and B has a mass of45 kg. They are on

a rotating surface and are connected by a cord passing around
the fiictionless'pulley as shown in the figure-3.134. If the
coefficient of fiiction between the masses and the surface if

p = 0.25.

(i) Determinethe value of co at whichradial slidingwill occur.

(ii) Determine how much work is done by an agent to get this
angular velocity, when sliding just starts.

•e a.
300 mm

450 mm

Figure 3.134

Ans. [3.1 rad/s, 50.3 J]

Work, Energy and Power:

3-77 At a mine the end of side track is to be provided with a
spring bumper. Thespring must becapable ofstopping a4000 kg
ore car whichhas a velocityof2 m/s downthe incline at a point
40 m up the incline from the point where incline starts and
then coasts from there to the bumper as indicated in the
figure-3.135. The track resistance remains constantat 30 kg.
What should be the spring constant the level after rebounding
from the point ofmaximumcompression?

sina = 1/50

>777777777777777777777777777^7^7^,
65 m

Figure 3.135

Ans. [66800 N/m, 27.34 m]

3-78 A heavy particle of mass m is in motion on a smooth
surface ofa hemisphere ofradius R and there is no fiiction. At
the initial instant the particle is at the topmost point A and has
an initial velocity Vq. At whatpointwill the particle leave the
surfaceof the hemisphere ? Also determine the value of Vq for
which the particle will leave the sphere at the initial instant.

Ans. [0 = cos —+
3 3gi?

3-79 Figure-3.136 shows a rod of length 20 cm pivoted near
and end and which is made to rotate in a horizontal plane with a
constant angular speed. A ball of mass m is suspended by a

string also of length 20 cm from the other end of the rod. If the
angle 0 made by the string with the vertical is 30®, find the
angular speed ofrotation. Take g= lOm/s .

Figure 3.136

Ans. [4.4 rad/s]
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FEW WORDS FOR STUDENTS

We first introduced the concept ofmomentum in our discussion of
Newton's second laws. Now we take a closer look at the concept of
momentum. Thelaws ofconservation ofenergyand momentum are
the most important concepts used in analyzing the motion. This
chapter shows you how to use them in combination and extend their
rangeofusefulness. There aresome cases when these laws areapplied
individually butsome application require its use simultaneously, to.
solve some specific type ofcomplexproblems. This is the cause, that
you should be careful to study and capture alt the relations and
judgments in each step ofthis chapter.

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Centre ofMass and Centre ofGravity

Localization ofCentre, ofMass

Centre ofMass ofa Two BodySystem

Centre ofMass ofMultiple ObjectSystem

Continuous Object System

Centre ofMass and Conservation ofMomentum

Impulse andMomentum Conservation

Cases ofMass Variation

Collisions

4
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The lawof conservation of energy, which,we discussedin the
previous chapter, is one ofmost important conservation laws
inphysics. Among the other quantities found tobe conserved
are linearmomentum, angularmomentum, andelectriccharge.
In this chapter we will discuss linear momentum and its
conservation. We will also make use ofthe laws ofconservation

of linear momentum and of energy to analyze collisions.
Basically thelawofconservation ofmomentum isuseful when
dealing with two or more bodies thatinteract with each other.

Until nowwe have been mainlyconcernedwith the motionof
single particles. When we have dealt with an extended body
(that is abody thathassize). We assumed thatit approximated
apoint particle orthat itunderwent only translational motion.
Real "extended" bodies, however, can undergorotationaland
othertypes ofmotion aswell. Forexample, thediverin figure-
4.1 (a) undergoes only translational motion (all parts of the
body follow thesame path), where asthediver infigure-4.1 (b)
undergoes both translational and rotational motion. We will
refer to motionthat is not pure translationas general motion.

(a)

(b)
Figure 4.1

Observations of the motion of bodies indicate that even if a

body rotates or there are several bodies that move relative to

Linear Momentum and Its Conservati^~l

one another, there is one poiiit that moves in the same path
that a particle would if subjected to the same net force. This
point iscalled die centre ofmass orcentre ofinertia. The general
motion of an extendedbody can be considered as the sum of
the translational motion of its centre of mass plus rotational,
vibrationalor other type of motionabout its centre of mass.

Foran example, consider themotion of the centre of mass of
the diver infigure-4.1(a), the centre ofmass follows aparabolic
path even when the diver rotates as shown in figure-4.1(b).
Thisis thesame parabolic paththataprojected particle follows
when acted on only by the force of gravity (that is projectile
motion). Otherpoints in the rotatingdiver'sbody followmore
complicated paths.

Here we begin out study from the analyzation of centre of
massof differenttype of objectsand it will lead to developthe
relation between the Newton's second law with the concept of
conservation of momentum.

4.1 Centre of Mass and Centre of Gravity

A concept similarto centre of mass is centre of gravity. The"
centre of gravity of a body is that point at which the force of
gravity canbeconsidered toact. Ofcourse theforce ofgravity
actually actsonallthedifferent partsorparticles of a body, but
forpurpose of determining themotion ofa bodyas a whole we
can assume that the entire weight of the body (which is the
sumof theweightsof all its parts) acts at the centre of gravity.
Strictly speaking, thereis a conceptual difference between the
centre of gravity and the centre of mass, but for practical
purposes they are generally the same point.

NOTE; There would be a difference between the two only ifa

body is large enough so that the acceleration due to gravity
would be different at different parts of the body.

It is often easier to determine the centre of mass or centre of

gravity of an extended body experimentally rather than
analytically. To doso,wemake useof thefact thatif abody is
suspended fi:om anypoint, it will swing unless its centre of
mass lies on a vertical line directly below the point from which
it is suspended. If the object is two dimensional or has a plane
of symmetry, it needs only be hung from two differentpivot
points and the respectivevertical lines drawn, then the centre
ofmass will be at the intersection ofthe two lines. If the obj ect

doesn't have a plane of symmetry, the centre of mass with
respect to the third dimension is found by suspending the
object fi-om at least three points that are not in a plane. For
symmetrically shaped bodies such as uniform cylinders
(wheels), spheres andrectangular solids, the centre of mass is
located at the geometric centre of the body.



fLmear.Momentuffi and |tS:Conservation"

ImportantAbout Centre of Gravity

When the centre ofgravity ofa body is fixed so that the body's
can freely turn about it, the body is in an equilibrium state for
all possible positions it can occupy.This implies that the sum
ofthe moments oftheforces ofgravity ofall the particles of
the body about any horizontal axispassing through the centre
ofgravity is equal to zero.

The notion of the centre of gravityunderstood as the point of
application of the resultant of the forces of gravitymakes sense
only for the bodies whose dimensions are not very large or,
more precisely, are small relative to the Earth's radius. Only in
this case it allowable to regard the gravity forces acting on the
particles of the body as parallel to each other. When the
indicated condition is not fulfilled there is no poiiit in variable
connected with the body through which the resultant of the

gravitational forces always pass. In order to illustrate what has
been said we shall discuss the following example.

(a) (b)

Figure 4.2

Consider a body consisting oftwo identical material points A
and B placed at the ends ofan imaginable rigid weightless rod
AB oflength 2R where R is the radius ofthe Earth (figure-4.2).
Let us determine the positions of the lines of action of the
resultant ofthe gravity forces for the two different cases shown

in figure-4.2(a) and 4.2(b). In the former case this line passes
through a point C of the rod lying near the point A. Since the

distance from the point Btothe centre ofthe Earth isV? times
the distance fi"om the point .<4 to the centre of the Earth and as
is known from Newton's law of gravitation, the force of

gravitational attraction is inversely proportional to the square
of the distance, we have CB = SAC, which determines the

position ofthe point C on the axis ofthe rod. In the latter case

it is evident that the line ofaction ofthe resultant gravity force
passes through the midpoint C ofthe rod. It is clear that varying
the position ofthe rod in all possible ways we obtain different

points on the axis ofthe rod through which the line ofaction of
the resultant gravity force passes. . :

4,2 Localization of Centre ofMass

There are two types of system of which centre of mass can be

located, (i) discrete objects system are (ii) continuous object

:22i^

system. As shown in figure-4.3(a) there are tow bodies ofsame

masses m and m are separated by a distance / fi^om each other.
We can at once say by observation that the centre of mass of
this system is located at the centre of the line joining the two
particles. Ifthe two masses are and >m^,then centre
of mass of this system will be located at a point on the line
joining and nearer to Wj shown in figure-4.3(b). If there are
three or more masses (point masses) then also the centre of
massof theall thesebodieswillbe in the surrounding space of
these bodies, shown in figure-4.3(c). Such a system is known
as discrete object system, in.whicNall the components of the
system are point masses and we are required to determine the
location of the centre of mass of the system.

cm

-X-

(a)

m m.

cm

-X-

(b)

Figure 4.3

'if-

(c)

Now consider few imiform bodies shown in figure-4.4. Centre

of mass of all these bodies must lie at the geometric centre of
the respective bodies, as discussed earlier, but the egg shaped
body shown in figure-4.4 will obviously has its centre ofmass
located to the left ofits geometric centre. Such system in which
there is only a single nonuniform body are known as continuous

object systems.

To locate the centre of mass different system, we define a
vector property associated with all the components ofgeneral
system that is Mass Moment of a particle.

0
Figure 4.4

Mass Moment: It is defined as the product of mass of the
particle and distance ofthe particle fi'omthe point about which
mass moment is taken. It is a vector quantity and its direction
is directed from the point about which it is taken to the particle,
as shown in figure-4.5, the mass moment ofparticle .(4(mass = ni)
about the point P is given by z.

Figure 4.5



There is an important property of centre of mass associated
with the mass moments ofthe components ofthe system which
forms the.basis of analytical determination ofcentre ofmass of
a system. The property is -"The summation ofmass moments
ofall the components ofa system about its centre ofmass is
always equal to zero". This statement is an experimentally
verified property which does not require any analytical proof.
It can be used as a universal property in all type of systems.

4,3 Centre ofmass of a Two Body System

We've discussed that the centre ofmass of two identical bodies

separated by a finite distance apart lies exactly midway between
them and if the two bodies are of unequal masses then it is
displaced towards the heavier one. Consider the situation
shown infigure-4.6. Two masses m^ andm^ areseparated bya
distance /, let C be the centre of mass of the system at a
distance xfrom Wj and (/-x) from m^. According tothe property
of mass moments about centre of mass, we have

Figure 4.6

w, + Wj r2 =0

mfx) - mfj-x) =0

X-

W2/
Wj + W2

...(4.1)

Equation-(4.1) can be captured as a standard result and it can
be recalled as the centre ofmass of a two body system is at a
distancex from one ofthe masses and it is equal to the product
of other mass and the distance of separation over the sum of
the two masses.

4.4 Centre ofMass ofMultiple Object System

Consider the situation shown in figure-4.7. There are three
masses in a coordinate system with respective coordinates
(Xj, yj Zj), (X3, ^3, Z3) and (X2, yj? ^2)- position vectors of
these masses with respect to origin can be given as

Figure 4.7

Linear Momentum and Its Conseiyatioh|J

fi=x,i +y^] +z^k

fi=x^i +y2j+zfi

h=xj+rj+z^k

In this system, we will now locate the position of centre of

mass.Let the coordinates ofcentreofmassbe z^ and so
the position vector of it will be

+3'J +2/

The mass moments ofthemass m,,m^ andW3 about thecentre
of mass can be given as

According to the property of mass moments about centre of

mass, we have

Zl+ 22+^3=0

'"i •(^1 - h) + ^2 •ih~ ^c) + •ih - = 0-

On solving we get

Wj + ^2 + W3
...(4.2)

This relation can also be generalized for n mass system also.

Now by substituting the vector in terms of unit vector i, j

and k and comparing the coefficients of /, y and k, we get

W^Xj +/«2^2 +^^3X3

+ /W2 + »J3

miyi+m2>'2+ffl3>'3

Wi + W2 + W3

WjZj +^2^2 +^"323
2
^ W] + W2 + W3

...(4.3)

...(4.4)

...(4.5)

Equation-(4.3), (4.4) and (4.5) can also be extended to w-object
system.

Equation-(4.2) gives the position vector of the centre of mass
of the system with respect to the origin. The velocity of the
centre of mass of the system can be given by differentiating
the equation-(4.2) as

- miVi+W2V2+W3V3 •v.= ...(4.6)
»7| + m2 + W3
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Now by differentiating equation-(4.2), the acceleration ofthe Q, midpoint ofthe left halfofthe beam, due to this the balance
centre ofthe centre ofthe system as ofbeam is disturbed. To balance it again what is the mass m

requiredto be put at thepoint P on the right halfof the beam.WjAj +W2a2 +W3a3

Wj + W2 4-/«3
a„ = ...(4.7)

Equations-(4.6) and (4.7) will beused innext section indefining
the lawof conservation of momentum for a system of bodies.

We now take some examples for determining the location of
centre of mass of a discrete body system.

4.4.1 Displacementof Center ofMassof a SystemofParticles

Ifinasystem ofparticles Ar^, Ar^, Ar3...arethedisplacement
vectors ofthe particles ofsystem having masses Wj, /Wj, ...
then the displacement vector of center of mass of this system
ofparticles canbedirectly given bythevector difference using
equation(4.2) as

— • W] An + ^2 Ar, + m, Ar,
Ar =

mj + W2 + W3

# Illustrative Example 4.1

...(4.8)

Figure-4.8 shows a rod of mass 10 kg of length ICQ cm with
some point masses tied to it at different positions. Find the
point on therod at whichif the rod ispicked overa knifeedge,
it will be in equilibrium about that knife edge.

25 kg 8.5kg 5 kg 5 kg

30cm ^ 50cm '̂ IQcmj^
too cm

Figure 4.8

Solution

Centre of mass of the system shown in figure-4.8, will be the
point, at which if we place a knife edge, system will remain in
equilibrium.

To locate the centre of mass of the system, we consider an
originat the left end of the rod. Withrespect to this origin the
position of centre of mass of the system is

25x0 + 8.5x30-1-10x50x80 + 5x90
rrr = 30 cm
53.5

# Illustrative Example 4.2

Two childrenA and B of same mass A/sitting on a sea-saw as
shown in figure-4.9. Initially the beam is horizontal. At once
childB throw awayhis cap (massM25) which falls at die point

Figure 4.9

Solution

Initially the beam was,horizontal because the centre ofmass of

the systemwas at the centre (pivot of sea-saw) of the system.
When childB threw hiscaptopointQ,centre ofmass ofsystem
shifts to theleftof thepivotthatwhythebalance gotdisturbed
and beam starts rotating in anticlockwise sense. To balance it
again, wemustputsomemass to therightof it so asto displace
the centre of mass of the system again at the system centre.

If a mass m is put at point P, to bring centre of mass of the
system at the centre, we have

or

. i ML 2AM L L
M. 1 . — = . —Vm . —

2 25 4 25 2 4

w = 0.I2M

# Illustrative Example 4.3

Figure-4.10 shows a fixed wedge on which two blocks ofmasses
2 kg and 3 kg are placed on its smooth inclined surfaces. When

the two blocks are released fi-om rest, find the acceleration of
centre of mass of the two blocks.

Figure 4.10

Solution

As shownin figure-4.10, blocksA slideswith acceleration gl2
and block B slides with acceleration •j2g/2 . Now the
acceleration ofcentre ofmass of the system ofblocks A and B
can be given both in X and in Ydirection as

_ 3x V3g/2 .cos60° -2xg/2 .cos30°
5

a =

20

and
_ 3xV3^/2 .sin60°-2x^/2 .sin30° llg

20
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Thus acceleration ofcentre ofmass"of the system isgiven as Now applying the concept of centre of mass of a.two body
system wegetthedistance Xat which thecentre ofmass ofthe

^+al •

1 20 I 20 J- 10

# Illustrative Example 4.4

Figure-4.11 shows a circulardiscofradius Rfromwhicha small
disc is cut such that the periphery of the small disc touch the
large disc and whose radius is RH. Find the centre of mass of
the remaining part of the disc.

Figure 4.11

Solution

If the disc shown in figure-4.11 were complete, its centre of
mass lie at its geometric centre and the centre ofmass of the
smaller disc, which is removed, also lie at its centre. Iffrom the
biggerdisc, smallerone is removed then the centreof rnass of
the remaining portion will be somewhere on the left of the)
centre of the bigger disc. Let it be at a distance x from the
centre. The analysis is shown in figure-4.12.Now the centre of
mass ofthe remaining portion and the removed disc must be at
C.

Figure 4.12 .

Ifmasses ofthe removed disc and the remaining portion are
and Wj, we have

M R^ M
m. — T ^ —

^ nR} 4 4

M 3M
w, = M- — = ——

^ - 4 4

remaining portion ofthe disc lie, as

X=
mj + ^2

Mc= —
4

R
Ax = x-\

2

R

"=6

# Illustrative Example 4.5

Consider a rectangular plate ofdimensions axb. Ifthis plate is
considered to be made up of four rectangles of dimensions

YXYand we now remove one out offour rectangles. Find the
positionwherethe centreof massof the remainingsystemwill
be.

Solution

The rectangular plate is shown in figure-4.13, of which one
part is removed. We can find the x and y- coordinate of the
centre of mass of this system, taking origin at centre of the
plate.The coordinate of the threeremaining rectangles are (a/4,
6/4), (-a/4, +6/4) and (-a/4, -6/4). By geometry, masses of
these rectangles can be taken as M4.

•

M-

Figure 4.13

Now x-coordinate of the centre ofmass:

•iM/ 12

and y-coordinate of centre ofmass :

/4-/4 /4-/4

3 A// 12 •
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# Illustrative Example 4.6

There are two masses Wj and ^2 are placed at a distance /
apart, let the centre of mass of this systemis at a point named
C. Ifw, isdisplaced by /, towards Cand /«2 isdisplaced byI2
away from C. Find the distance, from C where new centre of

mass will be located.

Solution

If TWj and are placed at a distance I apart, there centre of
mass will be located ata distance x from Wj, where

w,/
x=

m, +7«2

If is displaced by /j towards C and Wj is displaced by
away from C. The new centre ofmass C now will be located at

a distances'from Wp where . .

W2(/-/i +I2)
x'==

Wj +7K2

Displacement ofcentre of mass is

Ax = x + /j -X

_m2il-h+l2)

m|/i +m2l2

Wj +7«2

# Illustrative Example 4.7

W2/
Wj +W2

Let there are three equal masses situated at the vertices of an
equilateral triangle, as shown in figure-4.14. Now particle-^

starts with a velocity Vj towards line AB^ particle - B starts
witha velocity V2 towards lineBC andparticle- C startswith
velocity V3 towards lineCA. Findthedisplacement ofthecentre
of mass of the three particlesA, B and C after time t. Whk it
wouldbe if v, = V2 = V3

Figure 4.14

225

Solution

First we write the three velocities in vectorial form, takingright
direction as positive ;c-axis and upwards as positive y-axis.

- I . s
"1 =-2"1"

- •!V. =-J v,, +— V3y
I

I

Thus the velocity of centre of mass of the system is

V1+V2 + V3
= :

If

1 1 "l ; , V3
i (V3-Vi)y

Which can be written as

Thus displacement of the centre of mass in time t is

Ar =vji +Vytj

Vi=V2 = V3 = V

We have ^cm~^

Therefore no displacement of centre of mass of the system.
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Practice Exercise 4.1

(i) Find the centre of mass of the disc shown in figure-4.15. A
square is removed from the disc as shown.

Figure 4.15

iDistance from C is j: =
2(2n-l)



(ii) From a gun whose barrel is inclined at an angle 6 to
horizontal fires 3 small balls ofmass 2 kg, 5 kg and 4 kg which
move in different directions as shown in figure-4.16 It is given

that the centre ofmass ofthe three shells moves in the direction

ofbarrel of gun. Find 0.

3 m/s

Figure 4.16

[9 = tan
16+25^^'

37

(ill) Three laminar objects ofuniform density a square, a disc

and an equilateral triangle are placed as shown in figure-4.17.
Find the coordinates of centre of mass of the three bodies.

Y-

V
0

Figure 4.17

(2ji +43+4)1 (7t +2>/3+5)/'
2(4 +^+^/3)' 2(4 +7c+n/3)

X

(iv) Fourparticles ofmasses wi, = 2kg,Wj 4 kg, = 1kgand
are placed at four comers of a square as shown in figure-

4.18. Can mass of be adjusted in such a way that the centre

of mass of system will be at the centre of the square C.

Figure 4.18

[No]

Linear Momentum, and Its Conservatic^

(v) FindXandy coordinates of the centre of mass of the plate
shownin figure-4.19 fromwhicha squareof side2 mis cutout.

K-2m-»

Figure 4.19

[- 0.25 m, 0]

4.5 Continuous Object System

Consider the nonuniform object shown in figure-4.20

We are required to find the position of the centre of mass of
this object, in the given reference frame. For discrete object
system we use the relation

r„ =
Wjfi + OT2/2 +.

mj -FW2 +.
...(4.8)

'X

Figure 4.20

Where m^, mytn^ arethecomponents of thesystem, but
here in.a single non uniformly shaped object we have infinite
components of masses dm each. Analogous to the equation-

(4.8) we can define the position vector ofthe centre ofmass of
this body as given by equation-(4.8)

summation of mass moments of the

components of the system about origin
r =

summation of masses of

all the components

dm r

dm
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Here dmr isthe mass moment ofone ofthe infinite component
of the system(body) and integration is used to sum all the
mass moments and hence gives us the position vector of
the centre of mass of the body.

Thisrelation canalsobesplitinto separatex,y andzcoordinates
of the centre of mass of the body as •

X =— \dm X and• v =— \dmycm ^ J ycm M ^

and dmz

Now we'll use these relation to find the centre of mass of an

irregularlyshaped object. Some times by observation two of
the three coordinates of the centre of mass can be determined

andonly the thirdone (eitherofx,y or z)will be derivedby the
above relations.

For example we find the centre of mass of some standard
objects, which we'll use in further numerical problems.

4.5.1 Centre of Mass of a Semicircular Ring

Figure-4.21 showstheobject(semicircularring);By observation
we can say that the x-coordinate of the centre of mass of the

ring is zero as the half ring is symmetrical on both sides ofthe
origin. Only we are required to find the y-coordinate of the
centre of mass.

(a)

= R sin9

Figure 4.21

22V

Tofmd:i'̂ ^weuse j-jdmy ...(4.10)

Here fordmweconsideranelemental arcof the ringat anangle
0 fromthex-djrectionofangularwidthdQ. If radiusofring isR
then itsy coordinatewill be R sinB, here dm is givenas

M
dm = —r xRdQ

kR

So from equation-(4.10), we have

1

0

= —fsin 0f/0
TT J

0

2R

yrn,= ...(4.11)

4.5.2 Centre of Mass of a Semicircular Disc

Figure-4.22 shows the halfdisc of mass Mand radius i?.Again
here we are only required to find they-coordinate ofthe centre
ofmass ofthis disc as centre ofmass will be located on its half

vertical diameter. Here tofindy^^, weconsider a small elemental
ring ofmass dm ofradiusx on the disc which willbe integrated
from 0 to R. Here dm is given as

2M
dm = -y Tvc dx

kR^

(a)

Figure 4.22
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2x
Now the v-coordinate of dm is taken as —, as in previous

%

section, we have derived that mass ofa halfring is concentrated

at—distance from Its centre.
TT

Here y is given as,

Mi Tt

M RnR^

4 f 2

nR'

371

X dx

4.5.3 Centre of Mass ofa Solid Hemisphere

71

...(4.12)

Figure-4.23 shows a hemisphere of mass A/and radius R. .To

find its centre of mass (only j-coordinate), we consider.an

elemental disc of width dx, mass dm at a distance x from the

centre ofthe hemisphere. This radius ofthis elemental disc will

be given as

(a)

• R

(b)

Figure 4.23

"X

Linear Momenturn and ItsConse^a||pii

The mass dm of this disc can be given as

2R ,
dm = r X TT r or

ItiR^

• 2R^ /•
y of the hemisphere is given as

=-lM J
dm X

M JM i^2nR
dxx

2tzR'

A

3R
y ~y rnt

4.5.4 Centre ofMass ofa Hollow Hemisphere

.:.(4.13)

Figure-4.24 shows a hollow hemisphere of mass Mand radius
R. Now we consider an elemental circular strip ofangular width

dd at an angular distance dQ from the base of the hemisphere.

This strip will have an area

dS = 2kR COS0 RdQ

(a)

Figure 4.24
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Its mass dm is given as

dm -
M

ItzR'
2tiR COS0 Rd^

Here y-coordinate of this strip of mass dm can be taken as R
sin0. ..Now we can obtain the centre ofmass ofthesystem as

dm R sin 0

0

M=-}M JM J^ZkR^

2nR COS0Rd^R sin0

sin 0 cos 0 dQ= |si

R

4.5.5 Centre ofMassofa Solid Cone

...(4.14)

Figure-4.25 shows a solid cone of mass M, height H and base
radius R. Obviously the centre of mass of this cone will lie
somewhere on its axis, at a height less than HI2. To locate the
centre of mass we consider an elemental disc of width dx and

radius r, at a distance x ofthe apex of the cone. Let the mass of
this disc be dm, which can be given as

dm ~
3M

tzR^H
XTZ^ dx [where r= — ]

H

Here v can be given as

Figure 4.25

M J

H

dm X

1 ? 3M f J
•K — dxx=~ fM JM J^nR^ff • Vff

If

I

~ 4

4.5.6 Centre of Mass of a Hollow Cone

,229

...(4.15)

Figure-4.26 shows a hollow cone of mass M, height H and
base radius R. To locatethe centre of mass of the system, we
consider the elemental strip ofvertical width iic at a distance x
fromthe apexof the cone.Here the lateralwidth(actualwidth)
of the strip is dx sec0. It should be noted that in previous
section we've considered a disc ofactual width dx, as it was a
solid sphere and its mass is distributeduniformlyin its whole
volume but here unlike to that case the mass is distributed

only over its lateral surface area, hence in calculation of the
mass of the strip, we should consider the lateral area (actual
area) of the strip. Here area of the elementalstrip is given as

dS=2Tir'x-dxstc^

[Here sec6 =
4r

H

Figure 4.26

Here r is the radius ofthis elemental discgiven by considering
similar triangles as
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H

1{
r —

Now the mass dm of the strip can be given as

M
dm =

Rx
= X 2k — ^dxsecQ
2 H+ H

IMx

"IF

Here the centre of mass of the cone can be given as

y. r-Vl'dmx

= 1.
M JM i H-

H J
0

2H
...(4.16)

These all resultsfromequations-(4.11) to (4.16)are thestandard
results which we are permitted to use directly in numerical
problems. The most important thing here is the integration
procedure for different type of objects used. Not only in the
caseof finding the centreofmassbut in somanyotherchapters
thisprocedurewill be used.The importantto rememberis the
corresponding elementconsideredforparticularobjectsas for
the caseof ringand thehollowspherewehaveused polar form
integration and for the other cases cartesian system is used,
also the elementindiscwillbe a ringof widthdx of radiusx, in

sphere, it was a disc ofwidth dx of radius -x^ and so in

othercases. The sameelements we will further use in finding
momentof inertiaof different typeof objectsinnextchapter, in
electric field determination due to different type of object in
Electricity.

Now for dissolving all the concepts, which we've read, we take
some numerical examples concerned to these.
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# Illustrative Example 4.8

AB is a uniformly shaped rod of length L and cross sectional
are S, but its density varies with distance from one end A ofthe
rod asp =p:^ + c,where p and c are positive constants. Find
out the distance of the centre of mass of this rod from the end

A.

Solution

To find the centre ofmass ofthe rod from the reference points,
we consider a small elemental mass dm at a distance a: ofwidth

dx from end .d. Here dm is given as

dm = ()x S. dx

dm = (px^-i-c).Sdx

If the distance ofcentre of mass from A is-x , then

dm X

X =

dm

Li

J(/jx^ •vcx)Sdx
0
L

^{px^ +c)Sdx

{pL^ +2c)
{pj} +3c)

# Illustrative Example 4.9

Find out the centre of mass of an isosceles triangle of base
length a andaltitude b.Assume that themass of the triangle is
uniformly distributed over its area.

Solution

To locate the centre of mass of the triangle, we take a strip of
width dxat a distance x from thevertexof the triangle. Length
of this strip can be evaluatedby similar triangles as

/=x. {alb)

Mass of the strip is

dm =
M

x/a!xr
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2M a ^ 2M ,
—j— • -r X ax = —^ X ax
ab b

Distance of centre of mass from thevertexof the triangle is

Figure 4.27

X= — [ dm X
' M J

2

=1*

# Illustrative Example 4.10

Find out the centre of mass of a composite object shown in
figure-4.28. Object consists of a cone with its base joint with
the base of a hemisphere. The dimensions of the object are
shown in figure. Assume uniform density of the system, find
the centre of mass of this system.

Figure 4.28

Solution

The shown object is made up of joining a solid cone and a

hemisphere. We already know the location of the centre of

2313

mass of a cone and that of a hemisphere. The masses of the
two are in proportion oftheir volume. The masses ofcone and

hemisphere are

Mass of cone is

And that of hemisphere is

1 2
m^=p.-TiRh

Now we apply the result oftwo body system to find the centre
of mass of the composite body. Let / be the distance between
the independent centre of the mass of the bodies cone and

hemisphere, then

2R H

8 4

The position of centre ofmass from Wj is

Wj/

Wj + ^2

# Illustrative Example 4.11

'A table has a heavycirculartop of radius 1m and mass20 kg.
It has four light legs of lengths 1 m fixed symmetrically on its
circumference, (a) What is the maximum mass that may be
placed any where on this table without toppling the table ? (b)
What is the area ofthe table top over which any weight may be
placed without toppling it ?

Solution

(a) As shown in figure-4.29, when the mass is placed on the
table top such that it is outside the square, formed by the four
legs (as fixed symmetrically on circumference), the table has a
tendency of toppling. If the centre ofmass ofthe table and the

mass will come out ofthis square, the total weight oftable and
the mass will overturn the table about the bottom points of the
legs.

Figure 4.29
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When the mass is placed at the circumference ofthe table, the

centre ofmass ofthe table and the mass is at a distance x (say)

from the centre of the table, then

m. r m

X =

w+Af w + 20

This distance x ifmore than or equal tb / = 1 x cos45® = 0.707 m,

the table will topple, thus

Solution

m

,0.707 =
w + 20

0.293 m = 14.14

m = 48.25 kg

This is the maximum mass which can be placed anywhereon
the table, without toppling.

(b) The area over which any weight can be placed without
toppling the table is the area of the square formed by the four
legs, as if any weight is placed over it, the centre ofmass will

remainin thesquareand the table will remainin equilibrium.

Side of the square is

= 2 X 1 X sin 45® =m

Thus the area of the square is

=[^/2f =2m"

# Illustrative Example 4.12

Findthecentre ofmass of anannular halfdiscshown in figure-
4.30.

Figure 4.30

Let p be the mass per unit area ofthe object. To find its centre
ofmass we consider a halfringofmass dmas shown in figure-
4.31 ofradius x and width dx and there we have

dm-p .wcdx

Linear Momentum and ^Itis GonserVatibn

Figure 4.31

2x
Centre ofmass ofthis half ring will be at a height — from O.

Ti

Thus we have for centre ofmass of object

M
y = {{^.TZxdx) • —

?p r
pWI-Ri) i 3n(Ri-Rf)

Alternative Solution

Wecanalsofindthecentreofmassof thisobjectby considering
ittobecomplete halfdisc ofradius R2 and asmaller halfdisc of
radius cutfrom it. Ify^^bethecentre ofmass ofthis disc we
have from the mass moments.

P-
%R} • 47?.
—X —-

2 3n
+ p- -

MR2-R1)

# Illustrative Example 4.13

jr7?i 4R2

3n

Froma solid spherea smallpart..4 is cutbya planeat a distance
R12 from the centre as shown in figure-4.32. Find the centre of
mass of object ,.4.

Figure 4.32
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Solution

To find centreofmass of objects, we
consider a small elemental disc of

width dx at a distance x from the

centre C as shown in figure-4.33.
Radius of this elemental disc will be

given as

If p be the density of substance, mass
ofthis elemental disc will be

dm = p\ dx

= ^Tz{F^~:)?)dx
Mass ofobject A can be obtained as

iv

M= jdm
%

R

=j" f>n(R^ -x^)dx

'• pTC R^X~~

%

Figure 4.33

f n3

3 . 2 24
PTT

— p7d?^

1 ^

24
A

Jp7c(i?^ -x^)xdx
Sp-aR i

24

5R^

12

SR^

40
R

4^

. 4 32.
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Practice Exercise 4.2

(1) Find centre of mass

distance from point O of the
uniform circular arc shown in

figure-4.34.

2i?sin| ~

(11) Findlocationdistancefrompoint
O ofmass center ofa sector of a thin

uniform plate ofthe shape ofa sector
ofa circular disc ofradius R as shown

in figure-4.35 enclosing an angle 20
at center.

j- j?sin6
30 -I

(ill) From a square plate of side a, a
quarter circular disc of radius a is

removed as shown in figure-4.36. Find
the coordinates ofcentre ofmass ofthe

remaining part.

2a 2a

3(4-Ji)'3(4-71)

(iv) From a hemisphere ofradius i?
a cone ofbase radius RH and height
R is cut as shown in figure-4.37.Find
the height of centre of mass of the

remaining object.

Hi?

28

(v) Find centre ofmass ofan

object (Paraboloid) which is
formed by rotating a

parabola x - ky^ about x-axis
and height of object is h as

shown in figure-4.38. Assume
the object is of uniform

density.

Figure 4.34

Figure 4.35

Figure 4.36

'm

R

Figure 4.37

= ky^

Figure 4.38
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4.6 Centre ofMass and Conservation ofMomentum

To discuss the Momentum Conservation Law first we recall
few previous derived results, related to centre of mass. The
velocity of the centre of mass of a system of n components is
given as

Linear Momentum^and Its CohseW^

thecentre ofmass of thesystem must be inthe same parabolic
trajectory asshown. Atevery instant the instantaneous centre
ofmass ofthetwo parts ofthebody, will befollowing thesame
path and the other part will land at a distance 3/?/2 from the
projection point at the same instant when the second part
strikes the ground at 3i?/2. (Here Ris the horizontal range of
the projectile)

WjVi + W2V2 W3V3

Wj + W2+ W3
V. = ...(4.17)

Herenumerator oftherighthandsidetermisthetotalmomentum
of the system i.e. summation of momentum of the individual
component (particle) of the system

Wjaj + W2a2

Wj + m2 + W3
a; = ...(4.18)

Herenumerator of therighthandsidetermgives thetotalforce
acting on the system. Actually it is the summation of all the -
forces acting on the individual component (particle) of the
system but action andreaction bothof an internal force must
bewithin thesystem. Vector summation willcancel all internal
forces and hence the numerator gives only sum of all extemal
forces only.

If no extemal force is acting on a system of particles, the
acceleration of centre of mass of the system will be zero, no

matter whether here are accelerations in the components ofthe

system ornotbecause these allcan bedue tointernal forces. If
dc =0, it implies that must be a constant and if is a
constant, it implies that the total momentum of the system
must remainconstant.It leads to the principalof conservation
of momentum in absence of extemal forces as-"Ifno external

force isactingonthesystem, netmomentum ofthesystem must
remain constant".

This also implies if a certain constant external force is acting
on a system ofparticles, theacceleration of centre of mass of
the system is a constant and if during the motion, intemal
forces of the system changes or removed or new forces are
produced, it can not affect the motion of the centre of mass
and it moves under the same laws which were applicable before

changes takes placeinintemal forces. To discuss it,weconsider
an example ofa general projectile motion shown in figure-4.3 8.
Theprojectile blastsat itshighestpoint intwoequalparts,out
of which one falls directlybelow that point.As the blast at its
highest pointintowequalparts,outofwhich onefalls directly
belowthat point. As the blast takesplace onlydue to intemal
forces. It can not affect the motion of centre of mass of the

projectile (asit was moving in the influence of gravity only).
The otherpart of theprojectile moves automatically suchthat

Path of

Centre of Mass

Figure 4.39

The statement of the principal of conservation of momentum
can also be verified by the Newton's Second Law of motion
definedas "Momentum exertedper second on a bodyis equal
totheappliedforce on it". Mathematically it canbewritten as

dp
F=-ydt

...(4.19)

Here if we use momentum of a system of particle is constant
then we getF = 0. There are several examples related to this
identity. The most popular example was recoiling ofagun when
a shot is fired (figure-4.40)

Figure 4.40

Before shot is fired, the net momentum of the systemis zero
and as shot is due to internal forces, the net momentum of the

systemafter the shot must be zero as

MV=mv

Here M, Vand m, v are the masses and velocities of gun and
bulletrespectively. Velocity Vis known as the recoilvelocity
of the gum due to shot.

I

Now wetake some examplesconcernedto it and thenwe further
proceed tothemomentum conservation inpresence ofextemal
forces.
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# Illustration Example 4.14

Aplank of mass Mand lengthL is at rest on a fnctionless floor.
At one end of it a child of mass m is standing as shown in
figure-4.41. If child walks towards the other end, find the
distance, which the plank moves (a) till the child reaches the
centre ofthe plank, (b) till the child reaches the other end ofthe
plank.

Solution

The corresponding situation can be better explainedwith the
help offi^e-4.41.

M

k
A' • •

Figure 4.41

As no external force is acting on the system, the centre ofmass
of the system must remain stationary. The only interaction
force between the child and the plank is the friction as shown
in figure, due to which the child walks along the plank and the
fi-ictionon plank would be in opposite direction, due to which
plank moves towards left, such that the centre of mass of plank
plus child remains at rest. The initial distance of the centre of
mass from the centre ofthe plank is

m.

X =

w+ M

Initially the centre of mass of the system is on line AA' as

shown in figure. During motion of child, this centre of mass

must remain at this line only. As child moves towards right,
plank will move towards left such that centre ofmass remains
on AA\ Thus when child reaches the centre of the plank, the
plank's centre also must reach the same point so that the centre

of mass is at the same position. Up to this instant the plank
moves by a distance x . Similarly when child reaches the other

235

end plank has tomoye towards left further by x^, to maintain,
the position of centre ofmass.

# Illustrative Example 4.15

Figure-4.42 shows a flat car ofmass Mon a frictionless road. A
small massless wedge is fitted on it as shown. A small ball of

mass m is released from the top of the wedge, it slides over it
and fall in the hole at distance / fi-om the initialposition of the
ball.Findthedistancethe flatcarmoves till theballget intothe
hole. •

y///////Zy//////////////y^//////////^////////.

Figure 4.42

Solution

When ball falls into the hole, with respect to the flat car, ball
travels a horizontal distance /. During this motion, to conserve
momentum and to maintain the position ofcentre of mass, car
moves towards left, say by a distance x. Thus, the total distance
traveled by the ball towards right is (/ - x). As centre of mass
remains at rest, the change in mass moments of the two (ball
and car) about any point must be equal to zero. Hence

m.{l-x) = M.x

m. I
m =

# Illustrative Example 4.16

A man of mass M

jumps from an
aeroplane as shown

in figure-4.43. He

sees the hard gromd
below him and a lake

at a distance d from

the point directly

below him. He

immediately put off
his jacket (mass = m)

and throws it in a

direction directly

away from the lake. If he just fail to strike the ground, find
distance he should walk know to pick his jacket. (Neglect air

M+m

Figure 4.43
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resistanceandtakethe velocityof manat the timeofjump with
respect to earth is zero.)

Solution

As showninfigure-4.43,to savehimself,manthrowshisjacket
in opposite direction to the lake. According to momentum
conservationhe himself gets a velocity in the direction of the
lake.Duringthemotionas onlygravityis the externalforceon
the system (man-plus jacket), centre of mass will not be
displaced horizontally. Thuscentre ofmass of thesystem falls
verticallyandwhen man falls in the lakejacket falls at a point
such that the centre of mass ofman and jacket will be directly
below the point, from where man jumps).

As it is given that man falls at a distance d from this point, it
impliesthatjacket will fall at a distancex in oppositedirection
such that

m .x = M.d

M
x= —r d

d

# Illustration Example 4.17

Two men ofsame mass m hold the two ends "ofa rope and start

pulling each other on a friction less plane. Find the position
where they will meet. Is there any difference, if masses ofmen
are not equal.

Solution

As men are standing on frictionless floor no external force is
actingonthem,the onlyforcebetweenthemwillbe the tension
in the rope. Due to tension both starts moving towards each
other and as momentum of the system is conseryed both will
move with samevelocity and accelerationand meet at their mid
point.

Ifmasses are not equal, still momentumwill remain conserved
andthe velocities of menwould be suchthat w,Vj = and
they'll meet at their centre ofmass.

# Illustrative Example 4.18

A flat car ofmass Mis at rest on a frictionless floor with a child

of mass m standing at its edge. If child jumps off from the car
towards right with an initial velocity U, with respect to the car,
find the velocity ofthe car after its jump.

: ' Linear Mome^ui^and lts'Gbn.servatio.n"j|
Solution

Let car attains a velocityv, and the net velocity of the child
with respect to earth will be u - v, as w.is its velocity with
respect to car.

M 1

4^
Figure 4.44

Initially, the system was at rest, thus according to momentum
conservation, momentum after jump must be zero, as

w(m-v) = Mv

mu

V =

m+M

# Illustrative Example 4.19

A flat car of mass Mwith a child of mass m is moving with a
velocity Vj. The child jumps in the direction ofmotion of car
with avelocityu withrespectto car.Findthe finalvelocitiesof
the child and that of car after jump.

Solution

This case is similar to the previous example, except now the car
is moving before jump. Here also no external force is acting on
the system,hence momentum remains conserved. After jump
car attains a velocity V2 in the same direction, which is less
than V|, due to backward push ofthe child for jumping. After
jump child attains avelocity u+ v^m thedirection ofmotion of
car, with respect to ground.

M

"57

(2)

k

"0
Figure 4.45

4-^

According to momentum conservation

(M+ w)Vj ~ Mvj+ m(u + Vj)

Velocity ofcar after jump is

(M + m)vi +mu

^ M+m
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Velocity of childafterjump is

u + v^—
(M + w)vi +{M+2m)u

M+m

# Illustrative Example 4,20

Two trucks of mass M each are moving in opposite direction
onadjacent parallel tracks withsame velocity u.Oneiscarrying
potatoes and other is carrying onions, bag of potatoes has a
massWj andbag of onionshas a mass (includedin the mass
of truck M). When trucks get close to each other while passing,
the drivers exchange a bag with the other one by throwing
towards the other one. Find the final velocities of the trucks

after exchange of the bags.

Solution

Here at the time ofexchange ofbags, momentum in the direction
ofindividual motion remains conserved. The situation is shown

infigure-4.45.

When driver of fu"st truck carrying potatoes, throws a bag of
massWj, in a direction perpendicular to the motion direction,
towards the other truck, as shown in figure-4.46. During throw
the bag has a velocity u in the direction of motion of the first
truck. Similarly, when the second truck driver throws the onion

bag of massm^, towards the first truck, it bringsa momentum
in the direction of the second truck. Now we conserve

momentum for both the trucks independently as

m,u

m-u

Figure 4.46

First truck carrying potatoes

Mu-m^u-m^ = {M-m-^ +m^v^

Onsolving, velocity offirsttruck after exchange is

Mu-m^u-mjU
V. =

M-m^ + W2

Second truck carrying onions

Mu- - m^u = {M-

On solving, velocity of first truck after exchange is

v., =
Mw-WjW-W2M

^ M-mj+nii

# Illustrative Example 4.21

Figure-4.47 shows two blocks ofmasses 5 kg and 2 kg placed
on a ffictionless surfaceandconnectedwitha spring.An external
kick gives a velocity 14 m/s to the heavier block in the.direction

of lighter one. Deduce (a) velocity gained by the centre of
mass and (b) the separate velocities of the two blocks in the
centre of mass coordinates just after the kick.

2kg

Figure 4.47

Solution

(a) Velocity ofcentre ofmass is

5x14 + 2x0
V

5 + 2
= 10 m/s

Wl

(b) Due to kick on 5 kg block, it starts moving with a velocity
14m/s immediately, but due to inertia2 kg block remainsat rest,
at that moment. Thus

Velocity of5 kg block w. r. to centre of mass is

v^ = 14-10 = 4m/s

and the velocity of 2 kg block w. r. to centre of mass is

V2 = 0-10 = -10 m/s

# Illustrative Example 4.22

Two blocks of masses and mj connected by a weightless
spring ofstiffness A: rest on a smooth horizontal plane as shown

in figure-4.48. Block 2 is shifted a small distance x to the left
and then released. Find the velocity of centre of mass of the

system after block 1 breaks off the wall.

Figure 4.48
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Solution

If Wj is shifted bya distance x and released, the mass Wj will
break off from the wall when the spring, restores its natural
length and will start going towards right. At the time of
breaking mj, will begoing towards right, with a velocity v,
which is given as

1 2 1 2
- kx =-mv

4^
v =

m

and the velocity of centre of mass at this instant is

W;xO+7W2Xv _ W2 4k
W, + /«2 ^1 + ^2

# Illustrative Example 4.23

A block ofmass m is connected to another block ofmass A/by

a massless spring of spring constant k. The blocks are kept on
a smooth horizontal plane and the blocks are at rest and the
spring is unstretched when a constant force F starts acting on
the block ofmass A/to pull it. Find the maximum extension of
the spring.

Solution

M
F

m

Figure 4.49

We solve the situation in the reference frame of centre ofmass.

As only F is the external force acting on the system, due to
this force, the acceleration ofthe centre ofmass is FI{M+ m).

Thus with respect to centre of mass there is a Pseudo force on
the two masses in opposite direction, the free body diagram of
m and A/with respect to centre of mass (taking centre of mass
at rest) is shown in figure-4.50.

MF

kx

mF

m+M m+M

km

Figure 4.50

M

Taking centre ofmass at rest, ifw moves maximum by a distance
.Yj andA/moves maximum bya distance Xj, thenthework done
by external forces (including Pseudo force) will be

W=
mF •

m+ M

mF

w+ M

x,+ F-

• (^1+^2)

MF

m+M.
• Xo

Linear Momentum and its Conservation !

This work is stored in the formof potential energy of the spring
as

1 2
f/=-A(Xj+X2) ,

Thusonequating wegetthemaximum extension inthespring,
as after this instant the spring starts contracting.

1 mF

2̂
A(Xj+X2)^ =

m + M
• (X,+X2)

2mF

k{m+'M)

# Illustrative Example 4.24

A shell is fixed from a cannon with a speed of 100 m/s at an
angle 60® with the horizontal (positive x-direction). At the
highestpoint of its trajectory, the shellexplodesinto twoequal
fragments., One of the fragments moves along the negative x-
directionwith a speed of50 m/s. What is the speed of the other
fragment at the time ofexplosion.

Solution

i

As we know in absence of external forces the motion of centre

of mass ofa body remains uneffected. Thus here the centre of
mass of the two fragment will continues to follow the original
projectile path.

The velocity of the shell at the highest point of trajectory is

v,,= MCOS0 = 100 Xcos 60® = 50 m/s

Let Vj be the speed of the fragment which moves along the
negativex-direction andtheotherfragment hasspeedV2, which
must be along + ve x-direction. Now from momentum
conservation, we have.

- m m

^^=7 ^1=7^2

or

or

2v= V2-v^

V2 = 2v+ Vj

-2x50 + 50-

= 150ra/s

# Illustrative Example 4.25

A shell is fired from a cannon with a speed of 100 m/s at an angle
30® with the vertical (y-direction). At the highest point of its
trajectory, the shell explodes into two fragments of masses in
the ratio 1 : 2. The lighter fragments moves vertically upwards
with an initial speed of200 m/s. What is the speed ofthe heavier
fragment at the time ofexplosion.
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Solution

The velocity of shellat the highest point is

1v,200 m/s

Figure 4.51

V = M Sin

= 100xsin30°^

- =50 m/sec ' ' ' ' '

Let m be the mass of the shell. Then the mass of the lighter
fragtnent is m/s and that of heavierfragment is 2 m/s.

Initialmomentum of theshell beforeexplosionis

wv = 50m

•"1 , i ,
As no external forces is acting on the shell, we can conserve
momentumofshell before and after its explosion.

NOTE : An external force of gravity is present here during
explosion but as explosion is an instantaneous phenomenon,
so due to very short duration impulse of gravity is negligible
andcannot cause anychange in momentum. Thus in all very
short duration explosions or collisions, always we ignore the
presence of gravity just before and after the occurrence.

InA:-direction

or

2m
mv= V2COS0.

and iny-direction v^cosO = ~ v

m 2m
0= Y Vj - — V2 sinO

...(4.20)

or v-sinO = —
2 2

...(4.21)

Squaring and addingequations-(4.20) and (4.21),we get

2 a a

239

+v;

= 79x2500 + 40000

= 125 m/sec
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Practice Exercise 4.3

(i) In a boat ofmass 4 Afand length / on a'ffictionless water
surface. Two men.^ (mass = A/) and5 (mass 2 M) arestanding
on the two opposite ends. Now^ travels a distance //4 relative
to boat towards its centre and B moves a distance 3//4 relative

to boat and meetA. Findthe distance travelled by the boat on
water till A and B meet.

[5//28]

(ii) A shell of mass mis fired froma gun ofmasskmwhich can
recoil freely on a horizontal plane, the elevation of the gun is
45". Find theratio of the energy of theshell to that of the gun.

'• A ^

(iii) A gun in mounted on a railroad car. The mass of the car
with all ofits components is 80 m mass ofeach shell to be fired
is5m. The muzzle velocityoftheshells is 100 m/s horizontally,
what is the recoil speed of the car after second shot ? Consider
car to be at rest initially. ,

[100
15 16

m/s]

(iv) A block A (mass = AM) is
placed on the top of a wedge
block B of base length I
(mass = 20Af) as shown in
figure-4.52. When the system is
released from rest. Findthe distance moved by theblockB till
the blocks reaches ground. Assume all surfaces are frictionless.

[//6], - . .

(v) Aspace shuttle ofmass M, moving at4000 kph reiative to
earth ejects a capsule backward of mass M/5. If speed of
ejection ofcapsule is 120kph relative to state ofshuttle before
ejection, find the final velocity of the shuttle.

[4030 kph]

77777^777777777777777777777.

Figure 4.52



(vi) An isolated particle of mass m is moving slowly in a
horizontal xy plane, along A:-axis, at a certain height, above
groimd. It suddenly explodes into two fragments ofmasses w/4
and 3m/4. An instant later, the smaller fragment is at>'=+15 cm
relative to point of explosion. Find the position of heavier
fragment at this instant.

[y = - 5 cm] ^

(vii) A shell at rest at originexplodesinto three fragments of
masses 1kg, 2kg and wkg. The fragments of masses 1kgand
2kgflyoffwithspeeds 12m/s along x-axis and8m/s alongy-axis
respectively. Ifwkgflies offwithspeed40m/s thenfind thetotal
mass of the shell.

[3.5 kg]

(viii) A small block ofmass m
starts sliding down from rest
along the smooth surface of a
fixed hollow hemisphere of

same mass m. Find the distance

of centre of mass of block and

hemisphere from centre of

A'/=4 m

Figure 4.53

hemisphere C when block m separates from the surface" of
hemisphere.

4.7 Impulse and Momentum Conservation

Momentum of a system is a conserved quantity. It remains
conserved as energy whether external force are present or not.
Ifexternal forces are absent the total momentum ofa system of
particlesremainsconstant,whichwe'vediscussedin previous
section. If external forces are acting on the system, still the

momentum ofsystemremains conserved, asit isneithercreated
nor destroyed, it can only be transferred. The reasoning can
be given absolutely by Newton's Second law ofmotion, by the
definition, we have . •

dpF=-^
dt

dp = F dt ...(4.22)

Here dp is the change in momentum due to the applied force F
for a time dt. The right hand side term F dt is known as impulse
ofthe force F. Impulse is the momentum imparted by the force
Fin the direction ofthe force F. Using equation-(4.22), we can
find the net change in momentum ofa system (or a body) due
to external force. If Ap be the net change in momentum then it
can be evaluated by

Linear Momentum and I'tS'-ConSei^tibh^

If a constant force F is acting for a time t then

Ap = Ft

Ifvariable force is acting for a time t then

Ap

I

F dt

Theconcept ofimpulse canbebetterexplained byanexample
shown in figure-4.54.

F ,
m

F ^
m

r = 0 r = 0

Figure 4.54

^ is a blockofmass mmoving witha velocity Vj, attimer= 0 a
constantforceF is appliedon it in the directionof velocityfor
a time t. Due to this force the velocity of the body increases
hence momentum increases. If after time t the velocity of the
body becomes Vj, then according to momentum conservation
we have •

Initial momentum + momentum imparted = Final momentum

'mVj+F/ =wv2 ...(4.23)

If applied force is opposite tothedirection of Vj thenwe'll have

wVj-F/^wvj ...(4.24)

Equations-(4.23) and(4.24),are similarto the equations written
for work - energy theorem as work done by the system or on
thesystemaresubtractedor addedto the initialkineticenergy,
gives the final kinetic energy of the system. Similar to that in
initial momentum impulse due the forces acting on the system
are added or subtracted, gives the final momentum of the
system. If force is in the directionof the initialvelocityof the
particle, impulse is addedto the initialmomentum and if it is
against the velocity, impulse is subtracted from the initial
momentum

# Illustrative Example 4.26

A body ofmass 10 kg is pulled with a time varying horizontal

force F = 2r^ N ona rough surface having friction coefficient
|i = 0.2. Find the speed ofblock after 6 seconds.

Solution

We can see that block starts sliding when external force exceeds
frictional force, thus we have

F=2/^ =pm^=0.2x 10 X10 =20

t= Vio secr^=10
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Att=VlO sec block starts sliding, then onwards its acceleration
can be given as

2i^-20 ,2
a= m/s

10

Werequirevelocityat ?= 6 sec, thus

or

v = 2/
15

dv = y-2

V

\dv =
6 /• 2 ">

1 T-^ dt
J
0

Vio ,
S-) -I 15 J

v =

7

1

(̂ |̂Vio-2vro^

V = (f+fVTSjm/s •

Alternative Solution

As now we have studied the concept of impulses, whenever
velocity ofanobject is required in the friction, we should go
like this

Here we have F=2^

2r
-20t

Figure 4.55

Solution

if time of contactbe t, we have

(mg sinO - \i.mg cos9) t = mv^

Also we have ..

1 .
(mgsinG - \xmg cosG) cosecG = —mv^

Dividing the two equations we have

t ^ 2^
• /jcosecG Vq

2^cosec0
or ^0

§ Illustrative Example 4.28

241

On a spring block system shown infigure-4.56, atime varying
force F=5fNisapplied on2kgmass. After 10 s,velocity of3kg
mass is 30 m/sec.Find velocityof 2 kg mass at this instant.

/«2= 3kg m, =2 kg
A=50jit/ni

77^^77777h7777777777h7777F777777r/
Figure 4.56

F=5tNt

Wealsohave total givenmomentum is
6

Ap= j(2t^-20)dt=
J\o - VTo Solution

We have

(144-i20)-f^5^_20Vl0
X

Ap = 24 +
40Vl0

. • 40Vl0
Ap =m(v^- V.) mv^= 24 + —-—

v^= m/s

if Illustrative Example 4.27

A block of^4 is released from rest from the top of a wedge block
ofheight h shown in figure-4.55. If velocity ofblock when it
reaches the bottom ofinclive isVq, find the time ofsliding.

If aftertimet, we find velocity of centre ofmass of system, we
can find byusing impulse moment equation. Asspring force is
the internal force ofsystem, we have

(2+3K„=j5<rf^= —
0

andat/= 10 s, we have

5[10]^
— =50m/sec

If at this instant velocity of 2 kg mass is V2, we have

3x30 + 2xv2

or

5x50-3x30 • 160 ,
v., = —— - 80 m/s
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4.8 Cases ofMass Variation

The impulse concept is very useful in studying the mass
variation problems. We have discussed several cases in which
the mass ofthe body ordifferent bodies ofasystem ofparticles
does notchange, remain constant during experiment. Now we'll
discuss somedifferent kind of problems in which mass of an
object also changes with time.

All the problems inwhich the mass ofan object changes and
dueto which if motionof a bodyin a system is affected, it can
be solved with the help of impulse concept and the
conservation of momentum in anefficient and easier way. To
understand directly the cases, read out the following example.

# Illustration Example 4.29

A tank-car of mass Mis at rest on a road.At r = 0, a force F
starts acting on the tank-car and also the rain fall starts, in
vertical direction, asshown in figure-4.57. The rain is falling
witha velocity withrespectto earthandthe rateof collection
ofwater in thetankis r kg/s. Findthevelocity of thetank-car
as a function of time t.

Solution

Inthe cases ofmass variation, wegenerally apply momentum
conservation at time t = t t = t + dy. Figure shows, the
situation at time /= ^andalso Q.it = t+dt. Letat time t=t, mass
ofthe carbemand itsvelocity as v, intheduration dt, further
dm mass will be added and inthis duration car gains the speed
to V+ dv.

M
F

/ = 0 t = t

Figure 4.57

V + m"

m-^dm I

t=t+dt

If weapply momentum conservation at time t and t + dt, we
have

mv+ F dt-{m-\- dm) (v+dsf)

• mv +Fdt = mv + dmv + mdv

F dt = dmv + mdv

Here

and

Thus, we have

On integrating,

Linear Momentum and its Con^rvatiorv-

m = M+rt

dm = rdt

(M+ rt) dv = {F~rv)dt

dv dt

F~rv M+rt

f—=fJ F-rv J

dt

F-rv J M+rt
0 0

, F ' M+rt
In— =ln

F-rv M

Frt
v=-

Mr + r t

The example can bemodified ifwe consider rain fall atanangle
0 to thevertical in thedirection against thevelocity of thecar
as shown in figure-4.58. In this case, we have to add the
momentum carried by the rain fall in time dt, to the car in
opposite direction. Now the equation of momentum
conservation will be of the form

mv+Fdt-dm Vj^ sin0= (m + dm) (v+ dv)

Now we can separate the terms of dv and. dt and then on
integration gives the velocity oftank-car as a function of time.

v + dv

m + din

/=0 ^ t=t t=l-^d(

Figure 4.58

There can be manycases in whichthe mass of system varies
with time. As discussed, "Inall the cases of-mass variation,
we use momentum conservation at an intermediate instant

from time ttot + dt". Read outcarefully the examples given
below.

# Illustration Example 4.30

Letthere bea tank-car filled with water, shown in figure-4.59.
The initialmass of the car withwateris M.At / = 0, a hole is
made intheleftwall of thecarandwater startspilling outfrom
the car, with a constant velocity u with respect to thecar. The
rateofejectionofwateris r kg/s.FindAe velocity of thecaras
a fiinction oftime.
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So mass of dust striking to plate in time dt is

dm = {3dV=^A{v-\-u)dt ...(4.26)

It we consider plate + dm mass of dust as system, and apply
impulse momentum equation overtimedt.

dm
...

. •

V

u ...

/V
M dm M+ dm

Figure 4.64

Fdt = (M+ dm) v- [Mv- dmu\
Fdt —Mv + dmv —Mv + dmu ,

dmu
(„.+ v)

From equation-(4.26)we have
F=p^(v + w)^
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. Practice Exercise 4.4

(i) A mass Wj is connected by a weightless
cable passing over a frictionless pulley to a
container ofwater, whose mass is OTq at t=0. If
the container ejects water in downward
direction at a constant rate b kg/s. With a
velocity Vp relative tothe container, determine
the acceleration of as a function oftime.

(̂OTl-OTo+Z>/)g +feVo
pj]+ otq—bt •] Figure 4.65

Linear Momentum and lt^ <Son^[yahQ6>|

whichfuel is exhaustedis disengagedfromthe rocketand then
the rocket continues to the second stage at the same rate and
exhaust velbcity as in the first stage, tmtil itreaches amass Mj..
(a) Calculate therocket velocity at the endof the first stage,
given that it is started at rest.

(b) Calculate the rocket velocity at the end of the second
stage.

(c) Whatis thefinalvelocity ofa onestagerocketof thesame
initial M^ mass and the same amount of fuel ? Is it greater or
less than final velocity of the double stage rocket ?

[(a)V, = « In— (b) Vj = « In (c)v, = mIn V, > vJM^.+ m' 2

(iv) Aparticle ofmass Mis initially at reststartsmoving under
the action of a constant force Fi .It encounters the resistance

of a stream of fine dust moving with velocity -Vp i, which
deposits matter on it at a constant rate p, showthat its mass
will be m when it has travelled a distance -

F-pvp
m -M\ 1 + ln

(v) A balloon having mass'm' is filled withgas and is heldin
hands of a boy. Then suddenly it get released and gas starts
coming out of it with a constant rate. The velocities of the
ejected gasesis alsoconstant 2m/swithrespect to theballoon.
Find out the velocity of the.balloon when the mass of g^ is
reduced to half. . • -.

[21ii(2) m/s] '

(vi) A railroad car of length'T-and mass Wp when empty is
moving freely on a horizontal track while beingdoaded with
sand from a stationary chute at a rate dmidt = q. Knowing that
the car was approaching the chute a speed Vq, determine

(ii) A rocket with initial mass Mis launchedby emitting, gas
vnth velocity Vp (relative itb the rocket body) downwards. The
mass of the gas emitted per second is k. (k is constant and
obeys kv^ < Mg). Findtime when rocket startto lift.

M Figure 4.66

(a) The mass of the car and its load after the car has cleared
the chute.

(iii) A double stage rocket has an initial mass U.. Gas is at that time,
exhausted from the rocket at a constant rate ofdm/dt and with
an exhaust velocity Mrelative tothe rocket. When the mass of -f-^1 ^ •
the rocket reaches the value )j,,>the first stage of mass m of Iw wo® (D;voe j .
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4.9 Collisions

Collision is the transfer ofmomentum due to only internal forces
between the particles taking part, in collision. The proper
definition of.collision between two bodies can be written as -

"When exchange of momentum takes place between two
physical bodies onlydue to their mutual interactionforce, is
defined as collision between two bodies." As shown in
figure-4.67, two bodies move in different directions interact
each other at the point of intersection of their line of motion
and the impulse ofreaction due to their physical contact is the
cause ofthe transfer ofmomentum fi^om one body to another.

We'll discuss the process in detail in further sections, now we
takeup a simpleexample of collisionwithoutphysicalcontact.

Figure 4.67

Consider two masses m^ and with positive charges and
q^, moving with velocities Wj and respectively, asshown in
figure-4.61 initially at a large separation. In this situation if
Wj > U2, the separation between the two charges will decrease
and the Coulambianforce ofrepulsion between them increases
and this force will act on the two particles in opposite direction,

as shown. This force accelerates the second particle and
retards the first particle. This continues until the velocitiesof
both become equal and when the velocities of both are equal
the separation between themis minimum because, before this
instant,;velocity of first was greater^than that of second and
the separationwas decreasing. Still the electrostaticrepulsion
forcCi is acting, now as shown in figure-4.68(c) and 4.68(d),
after this instant second particle's velocity further increases
and that of first particle decreases and the separation starts
increasing. When the two particles get separated very far, the
repulsive force between them will vanish and the particles
continue to move with their final velocities. •

(a)

F.

(b)

Q ^ Q
(C) (d)
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(e)

Figure 4.68

In the whole process,' we can observe that no external force is
acting on the two masses, so the momentum of the system
must remain constant. We can observe in figure-4.68(a) to (e)
that at every stage, due to electrostatic force, momentum of
second particle is continuously increasing and that of first
particle is decreasing but total momentum must remains
constant.

We've shown that for collision physical contact is not
necessary. Momentum can be transferred fi-om one body to
another by any mutual interaction force (only internal forces),
doesn't matters whether there is physical contact or not. The
cases of collision in which physical contact takes place are
known as "Impact".

Before mathematical analyzation of collision, we take up an
example ofimpact between two bodies.

Consider two bodies of masses mj and m^, moving velocities
Wj and Wj respectively («j > uf) as shown in figure-4.69(a).
After some time they'll come in contact as shown in figure-
4.69(b). As velocity of first is moreAan that ofsecond, it will
pushthe secondbodyandthere is a normalreactiondeveloped
between the two bodies and the two will get deformed as shown
in figure-4.69(c). Here this normal reaction will be the internal
force responsible for acceleration of second and retardation of
first body. Due to the contact reaction the velocity of first
becomes iq' and that of second becomes u^ but if still Mj' is
greater than u^, further deformation increases and this will
continue until the velocity of both will become equal. This
situation is shown in figure-4.69(d). At this'instant the
deformation of the two bodies is maximum and no further

deformation increment takes places at the velocities are equal.
Further process ofcollisiondepends on the nature of the bodies
as :

(i) if bodies are Elastic

If the two colliding bodies are elastic i.e. these have a tendency
to restore their deformation to original shape, a restoring force
fj^ will actbetween the two bodies, which will further accelerate
the second body and retards the first body and the separation
of the two will start increasing, as shown in figure-4.69(f).



(a)
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4.9.1 Elastic Collision

Figure-4.70 shows a collision of two elastic bodies moving in
straight line, known as head-on collision. As we have discussed
that in the process of collision no external force acts, hence the
momentum ofthe system remains constant and in case ofelastic
collision, the energy stored in deformation is restored as the
kinetic energy ofthe two bodies after separation ofthe bodies.

N<——

m, m-,

N-*—
—t'N ) --0^-

• OTi '"2

,r'«' m2 i •

deformation = x

. (c)

"'l 7^2 ffly /«2

Figure '4.70

According to momentum conservation we have for states
before and after collision

(b)

JLf. " ^ . _IL
inelastic collision , ^ ^

(bodies do not separate)

(d) .

elastic collision

(bodiesseparationstarts) I f/f

Figure 4.69

UJ
(e)

(0

After some time the deformation is fully recovered and the

bodies get separated fi^om each other. In case ofperfectly elastic

bodies, the total energy in deformation is recovered as the

kinetic energy of the bodies and no energy is lost.

If bodies are even partially elastic the restoring force will act

and bodies gets separated out deformation is riot fully
recovered, some amount of energy in deformation is lost.

(ii) IfBodies are Inelastic

If the two colliding bodies are inelastic then these does not
have a tendency of reformation. If the bodies get deformed,
these remain in the deformed shape and the two will move with
the same velocities without getting separated as shown in
figure-4.62 (e). Maximum energy is lost in inelastic collision.

We will now discuss elastic, partial elastic and inelastic collision
separately.

mjMj + W2M2 ~ WjVj + m2V2 ...(4.27)

According to energy conservation for states before and after
collision

Ym^u] +~ Y Y"^2^ •••

From equations-(4.27) and (4.28) we get the values ofvelocities
andV2 aftercollision. Expressions forvelocities Vj andV2 are

given here, students are advised to remember the results, these

are very helpful in solving a particular category of collision
problems, few are given in examples

Wi -m-,

V, =
Wj + W2

Wi +

w-> -m.

=

m2 +
«2+

2m-,

W] +W2

2m,

W2 + Wj

..,(4.29)

...(4.30)

We now discuss three particular cases of head-on elastic

collisions'

Case-1; Ifw, = ^2, wehavefrom equation-(4.29) and(4.30)

Vj = Slid '^2^ .

Thus if masses of bodies are equal, velocities after collision
are interchanged. Ifthe second particle is at rest, after collision
first comes to rest and second moves with the velocity of the

first;

Case-2 : If /Wj » m^, from equations-(4.29) and (4.30),
neglecting m^ in compression withWj

Vj = 2m2- and v., = Mo

Case-3 : If m^ » m^, from equations-(4.29) and (4.30),
neglecting m^ in compression with Wj

Vj = 2m2- Mj and V- = Mo
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NOTE: All velocities used in equations-(4.29)and (4.30) are
used in vector form as given below

2m-,
V, =

Wj +W2
«i +

Wj +/«2 «2 ...(4.31)

...(4.32)
m-y-m 2mi

v-,=
1 -

W2
«2 +

mi +^1

4.9.2 Partial Elastic and Inelastic Head-on Collision

In case ofpartial elastic and inelastic collisions, kinetic energy
of the system does not remain conserved, as deformation of
the bodies are not fully recovered. In such cases we can not
apply kirieticenergy conservation unlike to the previous case.
So we have only the momentum conservation equation and
there aretwo variables Vj andV2. Inthese casewedefme another
term known as coefficient of restitution.

Coefficient of restitution is defined as

velocity of separation after collision
e =

velocity of approach before collision

e~

"l-"2
...(4.33)

So for the case of partial or inelastic collision, we use the
equations

V, =

Vn =

WjMj 4- OTjWj ''̂ 2^2 ...(4.34)

y2-Vj = e(Wi-W2) ...(4.35)

Solving equation-(4.29) and (4.30), we get

m, - em

ymi+mi

mi - emi

mi + W2

I m-t

{\+e)u^ ...(4.36)
mj + W2

"2+
m.

m^ +mi
(l+e)u, ...(4.37)

Coefficient ofrestitution is also termed as degree ofelasticity.
PracticallyvalueofevariesbetweenO and 1.For anideal elastic
collision e - 1 and for completely inelastic collision e = 0.
Equation-(4.29) and (4.30) can also be obtained by equations-
(4.33) and (4.34) by substituting e = l.,The equation of
coefficient of restitution is applied in the direction of line of
contact ofthe bodies. This will become clear in the ne^t section.
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# Illustration Example 4.33

A ball is dropped on a floor from a height h, If coefficient of
restitution is e, find the height to which the ball will rise and the
time it will take to come to rest again.

Solution

The ball reaches the floor with velocity u=•yj2gh

Ifcollision on the floor is elastic the ball will rebound with the

same velocity u and it will reach the same height. But if the

coefficient of restitution between ball and the floor is e, the

ball will rebound with a less velocity v, given as

v = eu ...(4.38)

As have v is the velocity of separation and u is the velocity of
approach.

In thiscasetheballwillrebound to aheight h^, from equations-
(4.38), it is given as

v' 2
...(4.39)

1 2g-

In downward and upward motion the acceleration ofthe particle
is g only, thus total time of motion is the time of downward

motion plus time ofupward motion, as

# Illustrative Example 4.34

An elevator platform is going up at a speed 20 m/sec and
during its upward motion a small ball of 50 gm mass falling in
downward direction strikes the platform at a speed. Find the
speed with which the ball rebounds.

Solution

The situation is analysed in figure-4.71. There we can consider
mass ofplatform to be very large compared to that ofball, so we
have

«, =20 m/s

t

, m = 50 gm

U2 = 5 m/s

Figure 4.71

Vj = «i and V2 ~ ~ "2
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Thus rebound velocity of ball is

Vj =2 X20-(—5) = 45m/sec upward

# Illustrative Example 435

A neutron moving at a speed v undergoes a head-on elastic
collision with a mass number A at rest. Find the ratio ofkinetic

energies of the neutron after and before collision.

Solution

If we consider mass of a neutron to be m and the mass of

nucleus ofmass number.^ is mAthen for elastic head on collision,
we have

«, =v and

After collision velocity of neutron is

\~A
V, =

\-\-A

Thus KE of neutron after collision is

1 1
. kr= T mv, = — mv

/ 2 '""1 2 "" 11 + ^

Thus KE of neutron before collision was

1 2 •
k.= ~mv'

We require
k;

# Illustrative Example 4.36

\-A

\~A

\-\-A

Two balls A and B each of mass m are placed on a smooth
ground as shown in figure-4.72. Another ball C of mass m
arranged tothe right ofball £ asshown. Ifa velocity Vj isgiven
to ball A in rightward direction, find no. of collisions between

the balls of (a) M< m and (b) M> m.

A B c

TTTzS^TTTTTTTZ^^TTTTTTTP^^WTTT/
Figure 4.72

Solution

(a) FirstcoIIision will be between balls^ and5. Since both the

balls are ofsame mass, after the collisiony4 will come to rest and

Bwillmove with Vj, now itwillcollide toC.Ifafterthiscollision,
velocities ofballs B andCare andv^respectively, wehave

Linear Momenlum'and Its Conservation

m-M
Vn =
^ \m+MJ '

2m

^ \m+MJ '

here aswehave M< m, Vg < v^. andboth arepositive thus both
the balls are moving forward and will not collide again, hence

there are total two collision.

(b) If in second collision we have M> m, we get negative,
so ball B moves in backward direction after second collision

and will strikeagainto ballif (whichis at rest to the leftof it) and
come torest andballAwill more totheleftwith speed v^. Then
now there are total three collision.
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4.9.3 Two Dimensional Collisions

In the previous section we limited ourselves to one dimensional

situations. However there are many common situations, such
as collisions betweenbilliard balls or airmolecules, the objects
move in differentdirectionsafterthe collisionand it isnecessary
to consider two or three dimensions. Then the vector aspect of
momentum becomes important. We first write out the general
equations, simplifyto two dimension and consider a specific
example. As before, provided that the net external force on the

system is zero, we write the conservation rule again as "The
momentum before collision equals the momentum after
collision in every direction."

As we have discussed, two dimensional collisions, can be of

threetypes,elastic,partialinelasticandinelastic. In everycase
we use to conserve momentum in two mutually perpendicular

directions, say x andy. To understand two dimensional
collisions, we take few Illustrationexamples.Go through these
carefully.

HIllustration Example 4.37

Two balls approaching each other along two perpendicular
directions and collide at the intersection. After the collision,
theysticktogether. If oneball hasamass of 14.5kg andan initial
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speed of 11.5 m/s andthe otherhasa mass of 17.5 kg andan
initial speedof 15.5m/s, whatwillbe theirspeedanddirection
immediatelyafter impact ?

Solution

The situation isshown infigure-4.73. The collision isperfectly
inelastic. We can use the law ofconservation ofmomentum to

find the speed just after the collision. We must choose a
coordinatesystem to solve the problem. For it, generally, we
take one of the initial velocity direction as :c-axis and then
perpendicular to it asy-axis, as shown in figure-4.73. Now we
write the equation ofconservation ofmomentum in both x and

y-direction.

^ = 11.5 m/s

m,= 14.5kg

u-,= 15.5 m/s

m2= 17.5 kgj
I ' ' '

Figure 4.73

Momentum in .--direction is

WjM, = (Wj + Wj) VCOS0

= 5.231 m/s-' \.'.(4.40)
w.w. 14.5x11.5

vcos0= ^— -
/K1+W2 14.5xl7i

And in y-direction is

WjMj ~ (^1 •*" ^"2) ^

Vsin6 =
7K2W2 • 17.5x15.5

Wj+>W2 14iixl7i
= 8.48 m/s ...(4.41)

Now squaring and adding equation-(4.40) and (4.41)

''v= V5.21^+8.48^ =9.95 m/s

Dividing (4.41) by (4.40)

, 8.48
.= tan-' —=58.4=

Thusthetwoballsmove offatanangle of58.4°from theinitial
directionoftravel ofthe 14.5kg ball.

Consider thesituation shown infigure-4.74, inwhich twoobjects
collidebut do not stick together after impact.The case will be
eitherofanelasticcollisionorwillbepartialinelastic collision.
Boththe objects move in different directions. Forsolving the
problemrelated to such cases, againwe take one of the initial
direction of motion as x-axis and its perpendicular asy-axis.
Nowweconserve momentum inx andiny directions separately.

In Xdirection, we have

?Wj«j + cos8= TWjVj cosOj + cosOj ... (4.42)

n

iv v3
'X

Figure 4.74

Iny direction, we have

OT2«2 sinO = WjVj sinO, - WjVj sinOj ...(4.43)

ifthe collision is elastic, we use

' 1 2 1 2 1 2 1 • 2- «!«!+- - my[+ - ...(4.44)

. Onsolving equations-(4.42), (4.43) and(4.44), weget theresult
required in the problem but if the collision is partially inelastic,'
we cannot use equation-(4.44). Instead of this equation we
make use ofcoefficient ofrestitution as the ratio'ofvelocity of
separation after collision to the velocity of approach before
collision, but in two dimensional case it is not as easy as we
have applied in one dimensional case in equation-(4.35).

Here coefficient ofrestitution equation is made in the direction

ofline ofcontact ofthe two bodies, as shown in figure-4.75. At
the time of contact ofthe two bodies, the contact forcedevelops
between them is along the line joining their centres.
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Figure 4.75

Figure-4.75 shows the enlarged viewof thebodiesat the time
ofcontact shown in figiire-4.74. Here we use

_ V2 cosg; -V] cos(9i +a;)
«!COSttj-U2 COS(0 + 02 +a2)

e = ...(4.45)

LinearMomentum, and its Conservation

n

/

/ ^1
/

' Ve. " """"

Figure 4.76

Here the distance between the two line of motions of the
particles before collision (if parallel) is called as ''Impact
parameter". In this case impactparameteris c. For collisionto
occur, it must be less then the sum ofthe radii ofthe two balls.

Inthis situation, we can again conserve momentum ina: and y
directions as

/MjMj = WjVj COS0J + OT2V2 COS02

m,Vj sin0j =/w2V2 sin02

If collision is elastic we canuse energy conservation here as

^ 2 1 2 1 .
0

There is one important property about this type ofcollision,
which is shown in figure-4.76 is that ifWj=and mj is at rest
andit is elastic collision thanalways

01 + 02 =90"

Now carefully check each parameter and sign used inequation-
(4.45) and verify, that we have used e as ratio ofvelocity of
separation after collision to the approach velocity before •
collision, in the direction ofcontact line of the two bodies.

4,9.4 Impact Parameter

Now consider thesituation shown infigure-4.76, inwhich the
second mass,W2 is atrest. The object Wj with an initial velocity

strikes W2, at rest. These objects could be billiard balls,
subatomicparticles, whateveryou like, and the two need not
have the same mass. After the collision, we observe that the
object 1, which was initially in motion along the x direction,
diverge atan angle 0j and the onewhich was at rest, will start
from the reference line at an angle 02. As initially W2 was at rest,
when Wj comes in contact with it, their contact linemust be at
an angle 02, because a particle at rest, starts moving in that
direction where the force acts on it. Ifinitially was moving
parallel to Wj, the direction ofmotion ^2after collision will be
at an angle less than 02-

yt-

This relation can be obtained by solving above equations of
momentum and energy conservation.

# Illustration Example 4.38

A ballis thrown toward a floor at anangle of incidence 0 with
speedu. The coefficientofrestitutionbetweenfloorandball is
e. Find the speed with which the ball rebounds and the angle
which it makes with the normal.

*'X

(a)
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Solution

The situation isshown infigure-4.77. As theball comes toward
floor its velocity has two components, along the floor wsinG
and normal to the floor wcosB. Whenball strikes the floor, a
normal reaction is developed between the ball and the floor
which acts on ball in the direction away from the floor. This
force is the cause of changing the value of mcos0. If floor is
smooth noforce willactonballalong thefloor, thus there isno
change in the component Msin0. When ball rebounds its
horizontal components remains same but the normal
components is changed. Ifball rebounds with speed vmaking
an angle a with the normal as shown in figure-4.68, we have
alonghorizontal direction

vsin0 = Msin0 •••(4.46)

the velocity ofwedge and the ball justafter collision.

77777777777ZV7777777777/.

Figure 4.77

When ball iscoming toward floor, its approach velocity can be
given as the normal component of the ball's velocity «cos0
and after collision its separation velocity.with the floor isgiven
as vcosa, thus according to the definition of coeffieient of
restitution, we have :

vcosa = e mcos0

Using equations-(4.46) and (4.47), we have

Squaring and adding, we get

...(4.47)

v=w7sin^0 +e^ cos^9 -.(4-48)

Solution

-^O

V7777777Z777777777777777777^7^7777777777,
Figure 4.78

In this problem, we can conserve momentum in horizontal
direction as there is no external force acting on the system
alonghorizontal direction. ,

Here do not conserve momentum in vertical direction as in
vertical direction there is an external force onsystem i.e. the
normal reaction on prism by ground. Ifafter collision ball moves
up the incline plane with speed relative to prism and the
prism moves toward left with speed We have

mu = m(v, COS0 + Vj) + Afv- ...(4.50)

Here we can not conserve energy because ball does not rebound
from the plane as it is asort ofinelastic collision. The above
equation has two variables and V2 and we don t have any
other equation to solve this problem.

In such cases it is convenient to use impulse equation
independent for each body of the system instead ofusing
momentum conservation.

Look at figure-4.79. When ball collides with the incline, anormal
reaction F acts on it in the direction shown in figure and on
prism the same isinopposite direction.

Dividing, we get tana=~tan0 ...(4.49)

Here from equatipns-(4.48) and (4.49), we can observe that if
collision is perfectly elastic, e= 1and itgives v=wand a =0.
And ifcollision is perfectly inelastic, e=0and equation-(4.49)
shows the ball does not rebound and itwill slide onthe smooth
floor with Msin0.

Now students should think what happens in above cases if
floor is not smooth.

# Illustration Example 4.39

Figure-4.78 shows aright angled triangular prism ofmass M
resting on asmooth floor. Asmooth ball ofmass mis coming
toward its inclined surface inhorizontal direction with speed u.
It collides with it and slides along the surface ofincline. Find

Figure 4.79

Now we write impulse equations for mand Mindependently.

Forball, wehavealong horizontal direction

mu - Fdt sin0 =m(vj cos0 +v^) •••(4.51)

lidt isthe collision duration, along horizontal direction force F
imparts amomentum Fdt sin0 to ball, as aresult ofwhich the
final velocity of ball in horizontal direction becomes
(VjCOS0 + Vj).
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In vertical direction, for ball we have

0+ Fdt cosG = wvj sinO ...(4.52)

As initially ballwasmovinghorizontally ithaszeromomentum
in vertical directionand the impulsegiven to it by the forceF
inverticaldirectionis Fdt cosG, due to whichit gainsa vertical
component of velocityVj sinG.

Now for prism along horizontal direction, we have

0 + Fdt sinO = A/v. ...(4.53)

Ainitially prism was atrest and Fdt sin0 imparts avelocity Vj
to it.Thereis noneedto write thevertical impulse equation for
prism as there is no motion ofit in vertical direction.

Abovethree equations-(4.51), (4.52) and (4.53) canbe solved
forvelocities Vj andVj.

^ Illustrative Example 4.40

Aball ofmassmisjust disturbed fromthetop of a fixedsmooth
circular tubeina vertical planeandfalls impinging ona ballof
mass 2 m at the bottom. The coefficient of restitution is 1/2.

Findthe heights to which theballs rise aftera secondimpact.

Solution

Thesituationis shownin figure-4.80. If « be thevelocityof ball
Ajust before impact. Then

H=V2g(^

777777777777777777777.

Figure 4.80

Consider the first impact between.^ and5. If velocities ofthe
balls becomes Vj and Vj respectively, according to linear
momentum conservation

WM + 0 = /MVj + 2 OTVj ...(4.54)

Linear Momentum and Its Conservation |

Coefficient of restitution is given as

Vo - V, 1
...(4.55)

On solving e^uations-(4.54) and (4.55), we get

v, = 0 and

Now we consider the second impact between A and 5, when
ballB returns to its initialpositionwith the samespeed m/2. If
after second impact the velocities ofthe two balls become Vj
and V4. Again from linear momentum conservation and
coefficient of restitution

2m j+0=mv3 +2mv4 ...(4.56)
V3 - V4 1and e=^—^ = - ...(4.57)

Onsolvingequations-(4.56) and (4.57),we get

u

andV, = -4=4

Boththevelocities arepositive,it impliesthatbothmasseswill
movein samedirectionafter secondimpact.If and be the
heights to which the masses m and 2 m will rise after second
impact, according to energy conservation, we have

For ball ofmassm

1
m\-\ =mgh,

or

For ball ofmass 2 m

u

' 8g 2

. -(2m)l^-j =2mgh2

2 32^ 8

# Illustrative Example 4.41

A mass 1 kg lies on a smooth horizontal base of a rough
inclined plane at an angle 37® with the horizontal as shown in
figure-4.81.Abullet ofmassm = 0.1kg is fired horizontally
with a velocity m= 110 m/s and gets embeded in it almost
immediately. The impulse imparted carries the combined mass
up the incline and finally lands on the horizontal level with the
horizontal base.
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Ifatthis instant the speed ofblock and bead are Vj (relative to Now using energy conservation
bead) and Vj thenusing workener^ theorem we have

mgL sine =ym(vj^ + -2vj V2 sin0)+̂ (2 m)v^ ... (4.58)

Using momentum conservation in horizontal direction as
— A

horizontal

/n(v, sinO - V2) =(2m)v2

Solving(4.58)and (4.59)weget

Sv-)
V, = —

' sin I

2gL sinB = v. 1+—^5 6
• sm 0

V, =

# Illustrative Example 4.43

2gLsin 0

9-5sin^0

.(4.59)

Figure shows ablocks ofmass6m having asmooth semicircular
groove of radius a placed on a smooth horizontal surface. A
block5 ofmass misreleased from aposition ingrove where its
radius is horizontal. Findthespeedofbiggerblockwhensmaller
block reaches its bottommost position.'

Solution

V77777777777777777777777777777> •

Figure 4.84

Let smaller block is moving with speed Vj relative to bigger
blockwhen itreaches thebottommostposition andatthisinstant
bigger block is moving at (say) then using conservation of
momentum in horizontal direction we have

1 2 1 ,
- f»ga=-m (Vj - V2) + - (6 ot)v^

Solving(4.60)and (4.61),weget

2ga=36vj +6v^

...(4.61)

•Web Reference ofVideo Lectures atwww.phvsicisgalaxv.com

Age Group - High School Physics [Age 17-19 Years
Section-MECHANICS

Topic - System of Particles - II
Module Number - 27, 28,29, 30 and 31

Practice Exercise 4.5

(i) Apiece ofwood ofmass 0.03 kgisdropped from the topof
abuilding 100 mhigh. Atthe same time, abullet ofmass 0.02 kg
is firedvertically upward witha velocity of 100m/sfromthe
ground. Thebullet gets embedded in the wooden piece after
striking. Find the height to which the combination rises above
the building before it starts falling. Take g-\0 m/s^.

[40 m] .

(ii) Two ballsAand B having different but miknown masses,
collide elastically. A is initially at restwhen B has a speed v.
After collision Bhasa speed v/2 and moves at right angles to
its originalmotion, (a) Find the direction in which balM moves
after collision,(b) Determine the speed ofA.

[(a) tan-(i) from original direction, (b) if collision is elastic.]
- • 2yfS

3v

(iii) A ballof mass w= 1kgfalling vertically with a velocity
Vq = 2m/sstrikes a wedge ofmass M= 2 kg kept on a smooth,
horizontal surfaceas shownin figure-4.86. The coefficient of
resitution between the ball and the wedge is e = 1/2. Findthe
velocity ofthe wedge and the ball immediately after collision.

^ • 1—

^2

i
M

30^

Figure 4.85

6WV2 = w(v,- V2)

'777777?7777777777777777777^.

Figure 4.86

-.. (4.60) [v, =̂ ms-', Vj =̂ ms-'l
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(iv) Abody ofmass Mwith asmall box ofmass mplaced on it
rests on a smooth horizontal surfece. The box is set in motion
in the horizontal direction with a velocity u as shown in
figure-4.87. Towhatheightrelative to theinitial level willthe
box rise after breaking off from the body M ? Assume all
surfaces are frictionless.

Mu^

2g(M + m)

m V

JZt^

VTTZVTTTTTTTTTTTTTTTTTTTTTTTZ/

Figure 4.87

(v) Three identical balls each ofmass m= 0.5 kgareconnected
witheach otheras shownin figure-4.88 and restovera smooth
horizontal table. Atmoment ?=0,ball Bisimparted ahorizontal
velocity Vq = 9ms~^ Calculate velocity of^ justbefore itcollides
with ball C.

[6 ms ']

I w /

Figure 4.88

_.•. v;-:, r'ms:!

(vi) Two particles, each- ofmass m, are connected by a light
inextensible string oflength 21. Initially they lie on a smooth
horizontal table atpoints AandBdistant / apart. The particle at
^is projected across the table with velocity u. Find the speed
with which thesecond particle begins to move if the direction
of w is:

(a) along 5/4,
(b) at an angle of 120''with/45
(x^ peipendicular to/45.
Ineach case also calculate (in terms ofwand u)the impulsive
tension in the string.

Ka) 2/ Y'
mu mu•Jli «-V3 muV3

(c) ]

(vii) A^hereofmass inmotion hits directlyanother sphere
ofmass atrest and sticks toit,the total kinetic energy after
collision is 2/3 oftheir total K.E. before collision. Find the ratio

Of/MjIWj. _

[2 : 1]

fAdvance IllustrationsVideos atwww.pfavsicsgalaxv.com

Age Group - Advance Illustrations
SeetioorMediamcs , / ,

Topic-System ofParticles ^
Illustrations - 44 In-dcpth Illustrations Videos
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Discussion Question

Q4-1 "A helium filled balloon has more potential energy at man depend on the coordinate system related to the earth of

higher altitudes". Is the statement correct? Explain.

Q4-2 In head on collision of equal masses, the velocities are

interchanged. Can velocities in a head on collision be

interchanged if the masses are not equal ? ' " -

Q4-3 Explain why an egg thrown against a wall will break,
while an egg thrown against a loose vertical sheet will not.

Q4-4 When a balloon filled with air released so that the air

escapes, the balloon shoots off into the air. Explain. Would the

same happen if the balloon were released in a vacuum ?

Q4-5 Does doubling the thrust of a rocket by doubling the
rate at which mass is thrown backward double the final speed

of the rocket ? Why or why not ?

Q4-6 A baseball player has a nightmare. He is accidentally
locked in a railroad boxcar. Fortunately, he has his ball and bat

along. To start the car moving, he stands at one end and bats

the ball toward the other end. The impulse exerted by the ball

as it hits the end wall, gives the car a forward motion. Since the

ball always rebounds and rolls along the floor back to him, the

player repeats this process over and over. Eventually the car

attains a very high speed, and the player is killed as the boxcar

collides with another car sitting at rest on the track. Analyze

this dream and the physics concepts involved in it.

Q4-7 Can the coefficient ofrestitution ever be greater than 1 ?

Q4-8 Explain,on the basis of conservationofmomentum, how
a fish propels itself forward using its tail.

Q4-9 The shorter the impact time of an impulse, the greater

the force must be for the same momentum change and hence

the greater the deformation of the object on which the force

acts. Explain on this basis the value of "air bags" which are
intended to inflate during an automobile collision and reduce

the possibility of fracture or death.

Q4-10 A man stretches a

spring attached to the front

wall ofrailway carriage over

a distance / in a uniformly

moving train. During this time

the train covers a distance L.

Does the work done by the

«wuwuiMw-«^a—^

77777777^77777777777777777777P7

Figure 4.89"

the train ? The man moves opposite to the direction of motion

of the train as he stretches the spring. • '

Q4-11 Is it possible for a body to receive a larger impulse from
a small force than from a large force.

Q4-12 A truck driver-carryingchickens to market is stopped
at a weighing station. He bangs on the side of the truck to
fiighten the chickens so that they will fly up and make the
truck lighter.Will his scheme work ? Does it make any difference
if the truck is open or closed ? Explain.

Q4-13 A ball dropped onto a hard floor has a downward
momentum, and after it rebounds, its momentum is upward.
The ball's momentumis not conserved in thecollision.Explain.

Q4-14 Aball is droppedfroma heighth ontoa hard floor,from
which it rebounds at very nearly its original speed. Is the
momentum of the ball conserved during any part of this
process ? If we consider the ball and earth as our system,
during what parts of the process is momentum conserved ? If
we use a piece ofclay that falls and strikes the floor, then what
will be the answers of previous questions.

Q4-15 Sometimeswhenextinguishinga fireon a buming ship,
a fireboat will have some ofits nozzles pointing away from the
fire. Why?

Q4-16 A rocket following a parabolic path through the air
suddenly explodes into many pieces. What can you say about
the motion of this system of pieces ?

Q4-17 A gum ball is shot at a block of wood. In which case
does the gum exert the larger impulse on the block, when it
sticks or when it rebounds ?

Q4-18 When the supporting stick S is jerked out from the
apparatus shown in figure. The board falls down about the
hinged end H. The ball B is caught by the cup C. Explain how
the cup C can reach the ground before the ball, even though
the ball is in free fall.

B

7^/////////////////////////////////////////,

Figure 4.90
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Q4-19 Ifonlyanexternal force canchange themomentum of
the centreofmass ofan object, how can the internal force ofan
engine accelerate a car ?

Q4-20 It is saidthatin ancient times a richman with a bagof
gold coins was frozen to death stranded on the surface of a
frozenlake.Becausethe icewas frictionless, he couldnotpush
himself to shore. What could he have done to save himself,
had he not been so miserly ?

Q4-21 Discussthepossibilityof aparticulartypeofcollision
inwhichtheparticleshavemorekineticenergyafter thecollision
than before. It isknown as super elasticcollision.Willmomentum
remain conserved in such a coHision.

Q4-22 In a collision between two 'cars, which would you
expect to be more'damaging to the occupants, ifthe cars collide
and remaintogether,or if the two reboundbackward ? Explain.

Q4-23' The velocity of a bullet fired from a rifle held against
the shooter's shoulder is measured very carefully. The rifle is
then clamped to a massive rock so that it has no measurable
recoil. How does that affect the velocity of the bullet ?

Q4-24 Ahighjumperclearsthebarsuccessfully. Isitpossible
that his centre of mass crossed the bar from below it.

Q4-25 Most ofthe skid nwks left at the scene ofan automobile

accident are left by the car tires after the collision occurs. How

can riieasuring the direction and length of these skid marks
after the collision reveal whether either of the cars involved

was speeding before the collision ?

2521

Q4-26 In a head on collision between two particles, is it
necessarythat the particleswill acquire a commonvelocityat
least for one instant ? In oblique collision ?

Q4-27 In the early age of rocketmotion it was assumed by
many people that a rocket would not work in outer space
because there was no air for the exhaust gases to push against.
Explain whythe rocket does work in outer space.

Q4-28 An hourglass with a valve that starts the flow of sand
is being weighed on a sensitive balance. Compare the
momentum of the sand before the valve is turned, when sand
is being dropped in a steadystream from the upper to the lower
half, and when all the sand is in the bottom. What are the scale

readings at these three times. Does the scale read differently
when the momentum of the sand is changing ?

Q4-29 Amassive sphere isfitted ontoa light rod. \^en will
the rod fall faster, if it is placed vertically on end A or end B ?
The end of the rod on the ground does not slip.

777777777777777777777777777777/.

Figure 4.91

Q4-30 Explain on the basis of impulse equation, why it is
unwise to hold your legs rigidly straight when you jump to the
ground from a wall. How is this related to the commonly held
belief that a drunken person has less chance ofbeing injured
in a fall than one who is sober ?
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ConceptualMCQs Single Option Correct
4-1 A rocketworkson theprincipleof conservation of:
(A) Mass (B) Kinetic energy
(Q Linearmomentum (D) Angularmomentum

4-2 Choose theonlyincorrect statement from thefollowing:
(A) The positionof the centreof mass of a systemof particles

does not dependupon the internalforcesbetweenparticles.
(B) The centre of mass of a solid may lie outside the body of

the solid.

(C) A body tied to a string is whirled in a circle with a uniform

speed. If the string is suddenly cut, the angularmomentum
ofthe body will not change from its initial value.

P) The angular momentum of a comet revolving around a
massive star, remains constant over the entire orbit.

4-3 Two identical balls marked 2 and 3, in contact with each
other and at rest on a horizontal frictionless table, are hit head-
on by another identicalball marked 1 moving initiallywith a
speed Vas shown in figure-4.92. What is observed, if the
collision is elastic ?

9-y^^77777/>y77777777777777777777777777777y

Figure 4.92

I 5

^77777777777777777777}

4-6 A bullet is firedfroma riflewhichrecoilsafter firing. The
ratio of the kinetic energy of the rifle to that of the bullet is :
(A) Zero , (B) One
(Q Less than one P) More than one

4-7 A moyingbullethits a solidtargetrestingon a frictionless
surface and gets embedded in it. What is conserved in this

process ?

(A) Momentum and kinetic energy
P) Kinetic energy alone
(Q Momentum alone

p) Neither momentumnor kinetic energy

4-8 Two balls marked 1 and 2 of the same mass m and a third

ball marked 3 of mass Afare arranged over a smooth horizontal
surface as shown infigure-4.93. Ball 1moves with avelocity Vj
towards ball 2 and 3. All collisions are assumed to be elastic. If

M< m, the number of collisions between the balls will be :

M

1 2 3

"^^^777777777777777^^777777777777777^^7,
Figure 4.93

(A) One

(Q Three
P) Two

p) Four

(A) Ball 1comestorestandballs2and3rolloutwithspeed - InQ.No.4-8,ifM>m,thenumberofcollisionsbetweenthe
2 balls will be:

each (A) One
P) Balls 1and2 come to rest andball 3 rolls outwith speed v (Q Three

p) Two

p) Four

(C) Balls 1,2 and 3 roll outwithspeed each

P) Balls 1,2 and 3 come to rest

4-4 Whichone of the following is true in the case of inelastic
collisions ?

Total Energy

(A) conserved
P) conserved

(C) conserved

p) not conserved not conserved conserved

4-5 A ball isdroppedfroma heightof 10m.It is embedded 1m
in sand and stops. In this process :
(A) Only momentum is conserved

P) Only kinetic energy is conserved
(Q Both momentumand kinetic energy.areconserved
p) Neithermomentum nor kineticenergyis conserved

Kinetic Energy Momentum •

conserved conserved

not conserved conserved

conserved not conserved

4-10 Fourparticles, eachofmass/«,areplaced at comers of a
square of side a in the x-yplane. If the origin of the co-ordinate
system is takenat the pointof intersection of the diagonals of
thesquare, theco-ordinates of thecentre of mass of thesystem
are:

(A) {a, a)

(Q {a,-a)

P) {-a, a)

(D) (0,0)

4-11 Which one of the following statements is correct with
reference to elastic collision between two bodies?

(A) Momentum and total energy are conserved but kinetic
energymaybe changedinto some other form of energy

P) Kinetic energy and total energy are both conserved but
momentum is only if the two bodies have equal masses

(Q Momentum, kinetic energy and total energy are all
conserved

P) 'Neither momentum nor kinetic energyneed be conserved
but total energy must be conserved.
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4-12 "The velocities in a head on elastic collision be
interchanged" :
(A) If masses are equal only
(B) It may bepossible ifmasses are noteqiial.
(Q It is always possible
(P) It is never possible

4-13 A body of massmmoves in ahorizontal circleofradiusr

at contact speed V. Which pair of values correctly gives :

(Q Of the ball remains constant
P) Of the ball relativeto the box remains constant.

4-18 Astrip ofwood oflength /isplaced onasmooth horizontal
surface. An insect starts from one end ofthe strip, walks with
constant velocity and reaches the other end in time /j. It then
flies offvertically. The strip moves afurther distance /in time ty
(A) ^2 = ?,
P)

(Q
P) Either (B)or (C)depending onthemasses of theinsect and

the strip

4-19, The centre ofmass ofasystem ofparticle isatthe origin.
It follows that:

(A) The number ofparticle tothe right ofthe origin is eqiial to
the number ofparticle to the left

P) TJie total mass ofthe particles to the right ofthe origin is
same as the totalmass to the leftof the origin

(Q The number ofparticle on X-axis should beequal to the
number ofpartidles on Y-axis

P) None of these

4-20 Six identical marbles are lined up in a straight groove
made onahorizontal fiictionless surface asshown infigure-4.95.
Two similar marbles eachmoving witha velocity vcollide with
the row of6 marbles from the left. What is observed ?

y/7//7////////////////^//y///A

Figure 4.95

(A) One marble from the right rolls outwith a speed 2v, the
remaining marbles do not move •

P) Two marbles from therightrolloutwitha speed veach, the
remaining marbles do not move

(C) All sixmarbles inthe row will roll outwith aspeed v/6 each,
the two incident marbles will come to rest

P) All eight marbles will start moving tothe right, each with a
speed*ofv/8

4-21 n small balls, each ofmass m, impinge elastically each
second ona surface with velocity u. The force experienced by
the surface will be: ,

(A) mnu p) 2mnu

(Q Amnu P) ^mnu

Figure 4.94

(i) the workdone by the centripetal force^-
(ii) thechange inlinear momentum ofthebody, when itmoves

fromXto 7(where^is a diameter) ?
(A) lm\?- . 2mv
(B) Tuwv^ 2mv
(Q 0 0

(D) 0 2»iv

4-14 Fora particle moving ina horizontal circlewith constant
angular velocity:
(A) Thelinear momentum is constant but theenergy varies
(B) The energy is constant but the linear momentum varies
(Q Both energy and linear momentum are constant
(D) Neither the linear momentum northe energy is constant.

4-15 Ina system ofparticles,'internal forces can change :
(A) Thelinear momentum butnotthe kinetic energy
(B) The kinetic energy but not the linear momentum
(Q Linear momentum aswell askinetic energy
P) Neither the linear momentum northe kinetic energy

4-16 Threeparticleseachof hiassmare located'atthevertices
of anequilateral triangle ABC. They start moving with equal
speeds veachalong themedians of thetriangle &collide at its
centroid G. Ifafter collision, A comes to rest and B retraces its
path along GB, then C:
(A) Also comes to rest

(B) Moves witha speedv alongCG
(Q Moves with a speed v along BG
P) Moves with a speed along AG

4-17 A ball kept in a closed box moves in the box making
collisions withthewalls. Thebox is kepton a smooth surface.
The velocity of the centre of mass :
(A) Of the box remains constant

P) Of the box plus the ball system remains constant

4-22 Thebob ^ of a pendulum released from a height h hits
head-on another bob B of the same mass of an identical'
pendulum initially at rest. What is the result ofthis collision ?
Assume thecollision to be elastic (seefigure-4.96):
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Figure 4.96

(A) Bob A comes to rest at B and bob B moves to the left
attaininga maximumheight h

4-25 Auniform sphere isplaced onasmooth horizontal surfece
and a horizontal force F is appUed on it at a distance h above
the surface. The acceleration ofthe centre:

(A) Ismaximum \\ften/?= 0
(B) Ismaximumwhen/i=i?
(Q Ismaximum v^en^=2/?
P) Is independent of h

4-26 Five identical balls each ofmass m and radius r are strung

like beads at random and are at rest along a smooth, rigid
horizontal thin rod of lengthL, mounted between immovable
supports asshown inthefigure-4.98. Assume 10r<I.andthat
the collision between balls or between balls and supports areattammg amaximum heigh , . . . elastic. Ifone ball is struckhorizontally so as to acquire aspeed

(B) Bobs.4andi!bothmovetotheleft,eachattammgamaxmium average force felt by the support is:

height I"
(Q BobB moves tothe leftandbobAmoves to theright,each

r. • ^ hattammg amaximum height ^

P) Both bobs come to rest

•4-23 Twoidentical blocks each ofmass 1kg are joined together
with a compressed spring.When the system is released from
rest the twoblocksappearto bemovingwithunequalspeedsin
the opposite direction as shown in figure-4.97. Choose the
correct statements (s):

3 ms" 5 ms"'

7;^;777^77777^777777777Z^.
Figure 4.97

(A) It is not possible
P) Whatever may be the speed of the blocks the centre of

mass will r^ain stationary

(Q- Thecentre ofmass ofthesystem ismovmg with avelocity
of2 ms~^

p) Thecentreofmass ofthe system ismoving witha velocity
of 1 ms"^

4-24 A nucleus moving with a velocity v emits an a-particle.
Letthe velocityofthe a-particle and the remainingnucleusbe

Vj and Vi andtheirmasses be mj and W2:

(A) V, Vj and Vj mustbeparalleltoeachother

P) None of the two of v , Vj and V2 should be "parallel to

each other.

(Q ^1 ^2 parallel to v

p) Wj Vj +W2 V2 mustbeparallel to v

(A)

(Q

5otv^

I-5r

L-lOr

7777^7777777777777?77777;77/.

Figure 4.98

(B)

P)

mv

L-\Or

mv^

Paragraphfor Question Nos. 27 to 28

Alargeheavysphereanda smalllightsphere aredropped onto
a flat surface from a height h. The radius of spheres is much
smaller thanheighth.Thelargesphere collides withthesurfece
with velocity Vq and immediatelythereafterwththe small ^here.
Theq)heres aredropped sothatallmotion isvertical before the
second collision, and the small sphere hits the larger sphere at
ananglea from its uppermost point,as shown in thediagram.
Allcollisions areperfectlyelastic andtheteisnosurfece friction
between the spheres.

Figure 4.99
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4-27 The angle made byvelocity vector of small sphere with
thevertical just afterthe second collision in theframe of large
sphere:
(A) a (B) 2a
(Q "iafl zero

4-28 Find the verticalvelocityof smallerspherejust after the
collision with respect to ground : .
(A) 2vq cos a (B)
(Q Vq cos a + Vq

2Vq cos2a + Vq
VQC0s2a + VQ(P)

4-29 Theendofachainoflengthi andmass perimitlength p,
whichispiled up on a horizontalplatformis liftedverticallywith
a constant velocity mby a variable force F. Find F" as a function
of height Xof the end above platform :
(A) p(gx+ 2u^) (B) p(2gx + piF)
(Q p(gx + u^) (D) p{u^-gx)

4-30 Which of the following is correct about principle of
conservation ofmomentum?

(A) Conservation ofmomentum can be applied only in absence
ofexternal forces

(B) Conservation of momentum can be applied only during
collisions of bodies

(Q Conservation of momentum can be applied in a process
even in the presence ofexternal forces

(D) Conservation of momentum is not applicable in rocket
propulsion

4-31 A uniform rod AB of mass m and length / is at rest on a
smooth horizontal surface. An impulse Jis applied to the end B
perpendicular to the rod in horizontal direction. Speed of the
point.^ ofthe rod after giving impulse is :

(A) 2
m̂

(Q
j

m

(B)
J

72;m

. (D) 42-.,.
m

4-32 A car C ofmass m is initially at rest on the boat A ofmass
M tied to the identical boat 5 ofsame, mass m through a massless
inextensible string as shown in the figure-4.100. The car

accelerates from rest to velocity with respect to boat^f in time
sec.At time t = tQ the car applies brake and comes to rest

relative to boat in negligible time. Neglect friction between boat
and water find the velocity ofboat A just after applying brake

Figure 4.100

(A)

(Q

Mmvn

(2M + m)(M + m)

2MmvQ

{M + 2mXM + m)

261

(B)
Mmvn

(M + 2m)(M + m)

(D) zero

4-33 A bodyis firedfrompointP and
strikes at Q inside a smooth circular wall
as shown in the figure-4.101. It
rebounds to point S (diametrically
opposite to P). The coefficient of ^
restitution will be:

(A) cot a
(B) 1
(Q tan a

P) tan^a

Figure 4.101

4-34 A fixedU-shapedsmoothwirehasa semi-circular bending
m between^f and B as sho\«a inthe figure-4:102. Abehd ofmass
'/w' moving with uniform speed v through the wire enters the
semicircularbend at^ and leaves at:B. The magnitude ofaverage
B force exerted by the bead on the part AB ofthe wire is :

(A) 0

(Q
2mv'

nd

Figure 4.102

(B)
4otv''

•Kd

p) none of these

4-35 A collision occurs between two identical balls each of

mass m, movingwith velocities Sj and «2, colliding head-oiL

The coefficient of restitution is 0.5. The energy lost in the
collision is:

(C) ^w(hi+H2)2

1 /- - .2P)

^ —\2P) Y^K«1-«2)
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NumericalMCQs Single Option Correct

4-1 Three particles ofthe same mass lie in the x plane. The

(x,>') coordinates of their positions are (1,1), (2, 2) and (3, 3)
respectively. The (;c—y) coordinates ofthe centre ofmass are :

(A) a,2) (B) (2,2)

(Q (4,2) - (D) (6,6)

4-2 In the HCl molecule, the separation between the nuclei of
hydrogen andchlorineatomsis 1.27A. If themassof a chlorine
atom is 35.5 times that ofa hy(h:ogenatom, the centre ofmass of
the HCl molecule is at a distance of:

(A)

(B)

(Q

P)

35.5x1.27

36.6

35.5x1.27

36.6

1.27

36.6

1.27

36.6

A from thehydrogen atom

A from the chlorine atom

AAfrom thehydrogen atom

A from the chlorine atom

4-3 A cubical block ofsideL rests on a rough horizontal surface
with coefficientof friction p. Ahorizontal force F is applied on
the block as shown. If the coefficient of friction is sufficiently
high so that the block does not slide before toppling, the
minimum force required to topple the block is:
(A) Infinitesimal

(B) mg/4
(Q mgl2

P) fng{l-\x)
Figure 4.103

4-4 A boy ofmass m stands on one end ofa wooden plank of
lengthL and mass M. The plank is floating on water. If the boy
walks from one end of the plank to the other end at a constant
speed, the resulting displacement of the plank is given by :

tnk ' mi —
M ® m

mL _. mL

(A)

(Q {M-m)

F •

1
L

P) (M + w)

4-5 A neutronmovingat a speed vundergoesa head-on elastic
collision with a nucleus ofmass number ^4 at rest. The ratio of

the kinetic energies ofthe neutron after and before collision is :

(A) [7^1 P)

(Q
^ + 1 P)

A~\

A

A-1

4-6 A wooden block of mass 0.9 kg is suspended from the
ceiling ofa room by thin wires. A bullet ofmass 0.1 kg moving

horizontally with a speed of 10 ms~^ strikes the block and
sticks to it. What is the height to which the block rises ?
Take g = 10 ms~^:
(A) 2.5 m (B) 5.0m -

(Q 7.5m P) 10.0m

4-7 In Q. No. 4-6, what is the loss in kinetic energy of the
system due to impact ?

(A) 450J P) 400J
(Q 350J.,., P) 300J

4-8 A shell of mass 2 m firedwith a speedwat an angle 0 to the
horizontal explodes at the highest point of its trajectory into

two fragments ofmass m each. Ifone fragment falls vertically,
the distance at which the other fragment falls from the gun is
given by:

M^sin20 .•
(A)

(Q -
2u^ sin20

g

P)

P)

3m sin28

2g

3m^ sin20

g

4-9 A rubber ball is dropped from a height of 5 m on a planet
where the acceleration due to gravity is not known. On bouncing
it rises to 1.8 m. The ball loses its velocity on bouncing by a
factor of:

(A)

(Q

26
25

3

5

P) 5

(D) f

4-10 Two equal discs are in contact on a table. A third disc of
same mass but ofdouble radius strikes them symmetrically and
remains at rest after impact. The co-efficient ofrestitution is :

(A)
2

3 •

P)
1

® 16

Figure 4.104

4-11 Aneutronmass 1.67 x 10~^^ kg moving with a velocity
1.2 X 10^ ms"* collides head-on with a deuteron of mass
3.34 X10" '̂̂ kg initiallyatrest. Ifthe collision isperfectly inelastic,
the speed ofthe composite particle will be :
(A) 2 X10^ ms"^ P) 4 X10^ ras"^
(Q 6x lO^ms"' (P) 8x lO^ms-i
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4-12 InQ.No. 4-11, ifthecollision were perfectly elastic, what
would be the speed of deuteron after the collision ?

(A)2xl0^ms-' (B) 4xl0^ms^i
(Q bxlO^ms"' p)8xl0^ms^^

4-13 A loaded spring gun of mass Mfires a 'shot' ofmass m
with avelocity vatanangle ofelevation 0. The gunis initially
at reston a horizontalfrictionless surface.After firing, thecentre
of mass of the gun-shot system :
(A) Moves with a velocity v mIM

(B) Moves with velocity cos 0 in the horizontal direction

(C) Remains at rest

(D) Moves with a velocity in the vertical direction
M

4-14 Ashell ofmass misat restinitially. It explodes intothree
fi-agments having masses in the ratio 2:2: 1. The fi-agments
having equal masses fly off along mutually perpendicular
directions with speed v. What will be the speed of the third
(lighter) fi-agment ?

(B) V2v(A) V

(Q 2V2V (D) sVIv

4-15' A ball P of mass 2 kg mdergoes an elastic collision with
another ball Q at rest. After collision, ball P continues to move
in its originaldirectionwith a speed one-fourth of its original
speed. What is the mass of ball Q ?
(A) 0.9kg (B) 1.2kg
(Q 1.5kg (D) 1.8kg .

4-16 A rocket, set forvertical launching, hasa mass of 50 kg
and contains 450 kg of fuel. It can have a maximum exhaust

speed of2 kms"^ Ifg= ID ms~^, what should betheminimum
rate of fuel consumption to just lift it off the launching pad ?
(A) 2.5kgs-' (B) 5;kgs-'̂
(Q 7.5 kgs"' P) lOkgs^^

4-17 In Q. No. 4-16, what should be the minimum rate of fuel
consumption to give an initial acceleration of 20 ms~^ to the
rocket ?

(A) 2.5 kg s"*^ (B) 5kgs~^
(Q 7.5kg s"^ p) lOkgs-^

4-18 A bulletof mass50 g is firedbya gunof mass5 kg. If the
muzzle speed ofthe bullet is200 ms"', what is the recoil speed
of the gun ?
(A) 1 n^

(Q 3 ms

p) 2 ms '
p) 4 ms"'
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4-19 Aparticle isprojected with avelocity 200 m/s atanangle
of 60". At thehighest pointj it explodes into three particles of
equal masses. One goes vertically upwards with a velocity
100 m/s, thesecond particle goes verticallydownwards at same
speed. What is the velocity of the third particle ?
(A) 120.m/s with60" angle p) 200m/swith30"angle
(C) 200m/shorizontally p) 300m/shorizontally

4-20 A hockey player receives a comer shot at a speed of
15 m/s at an angleof30°with thej'-axis and then shootsthe ball
along the;c-axis with a speed of30 m/s. If the mass of the ball is
100gm andit remainsin contactwiththe hockeystickfor 0.01s,
the force imparted to the ball in the x-direction is :

(A) 28125N

(Q 562.5 N

Figure 4.105

P) 187.5N
p) 375N

4-21 A shell is fired froma cannonwith a speed of 100ms" at
an angle 60° with the horizontal (x-direction). At the highest
point of its trajectory, the shell explodes into two equal
fragments. One of the fragments moves along the negative
x-direction with a speed of 50ms"'. What is the speed of the
other fragment at the time ofexplosion ?
(A) 150 ms"' p) 50 ms"'
(C) lOOms"' P) 200 ms"'

4-22 Four particles of masses 1 kg, 2 kg, 3 kg and 4 kg are
placed at the comers of a square of side 2 m in the x - plane.
If the origin of the co-ordinate system is taken at the mass of
1 kg, the (x,y) co-ordinates of the enter ofmass, expressed in
metre are :

(A) |1,| P) ^•1
(Q |3,j 7

P) 4,

4-23 A child is standing at one end of a long trolley moving
with a speed v on a smooth horizontal track. If the child starts
running towards the other end ofthe trolley with a speed u, the
centre ofmass ofthe system (trolley + child) will move with a
speed :

(A) Zero p) (v-i-«)

(Q (v-w) P) V
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4-24 A blacksmith carries a hammer on his shoulder and holds

it at the other end of its light handle in his hand. If he changes
thepoint of supportof the handleandx is the distancebetween
the point of support and his hand, then the pressure on his
hand varies with x as :

(A) X (B)

(D) A

4-25 A ball of mass m moving with a velocity v undergoes an
oblique elastic collision with another ball of the same mass m
but at rest. After the collision, if the two balls move with the

same speeds, the angle between their directions ofmotion will
be:

(A) 30P (B) 60P
(Q 120" (D) 90"

4-26 A smooth semicircular tube AB of radius r is fixed in a

vertical plane and contains a heavy flexible chain of length nr
and weight Wnr as shown. Assuming a slight disturbance to
start die chain inmotion, the velocity vwith which it will emerge
from the open end B of the tube is :

Agr(A),^

(Q ^\2gr\- + K

•////////////.

Figure 4.106

2gr(B) ^

(D) ,|2gr|f+f

4-27 A ball ofmass mmoving horizontally at a speed vcollides
with the bob ofa simple pendulum at rest. The mass ofthe bob
is also m. If the collision is perfectly inelastic and both balls
sticks, the height to which the two balls rise after the collision
will be given by:

(A) — (B)
V

(Q 4g (D)
V

4-28 In Q. No. 4-27, the ratio ofthe kinetic energy ofthe system
immediately after the collision to that before the collision will

be:

(A) 1:1 (B) 1:2

(Q 1:3 (D) 1:4

4-29 In Q. No. 4-27, ifthe collision is perfectly elastic, the bob

Linear Momentum^and Us ConsSiVatiorj.

ofthe pendulum will rise to a height of:

(A)
g

(Q Ag

- (B)

(D)

2g

8^

4-30 If a man ofmass Mjumps to the ground from a height h
and his centre ofmass moves a distance x in the time taken by

him to 'hit' the ground, the average force acting on him
(assuming his retardation to be constant during his impact with
the ground) is;
(A) Mghlx (B) Mgxfh
(Q Mg{k/x)^ P) Mgixlhf

4-31 A radioactive nucleus ofmass number.4, initially at rest,

emits an a-particle with a speed v.What will be the recoil speed
of the daughter nucleus ?

2v _ 2v
(A)

(C)

A-A

Av

A-A

(B)

(D)

A + 4

4v

A + A

4-32 A cart ofmass Mis tied at one end ofa massless rope of
length 10 m. The other end ofthe rope is in the hands ofa n^an
ofmass M. The entire system is on a smooth horizontal surface.
Themanisatx = 0 andthecartatx= 10 m. Ifthe man pulls the
cart by the rope, the man and the cart will meet at a point:

(A)x = 0 (B) x=5m
(Q x=10m p) They will never meet

4-33 A shell explodes into three fragments ofequal masses.
Two fragments fly off at right angles to each other with speed
of9 ms"^ and 12 ms~^. What isthe speed ofthe third fragment?
(A) 9ms-^ p) 12 ms"'
(Q 15ms-' P) 18ms-'

4-34 Four particles ofmasses m,m,2m and 2 w are placed at
the four comers ofa square ofside a as shown in figure-4.107.
The (x, y) coordinates ofthe centre ofmass are :

(A)

(Q
£ —
2' 3

Figure 4.107

(B)

P) 3



4-35 A small coin is placed at a distance r from the centre ofa
gramophone record. The rotational speed of the record is
gradually increased. If the coefficient of friction between the
coinandthe recordis p, theminimum angularfrequency of the
record forwhichthe coinwill fly off is givenby:

(A)

(Q

4-36 Sphere A ofmass '/«' moving witha constant velocity u
hits another stationary sphere B of the same mass. If e is the
co-efficient of restitution, then ratio of velocities of the two

spheres : Vg aftercollision willbe:

1-e 1+ e
(A),

(Q

1+ e

e-1

I-e

(B)

(D)

1-e

e-1

1 + e

4*37 A smooth sphere is moving on a horizontal surface with

velocity>ector 3i + /immediately before it hits a verticahvall.

The wall is parallel to the vector j and the coefficient of
restitutionbetweenthe walland the sphereis 1/3.The velocity
vector of the sphere after it hits the wall is :

(A) 3i-iy

(Q i-j

(B) -i + j

(D) -i-^j

4-38 Froma point on smoothfloorof a rooma toyball is shot
tohita wall. Theballthenreturns backto ftie pointofprojection.
If the time taken by ball in returning is twice the time taken in
reaching the wall, find the coefficient ofrestitution:

(A).= i

(Q

(B) e=j

(D) e=0.2

4-39 In the figure-4.108 shown, the heavy ball of mass 2m
rests on the horizontal surface and the lighterballs of mass m is
dropped from a height h > 21. At the instant the string gets taut,
the upward velocity ofthe heavy ball will be :

(A)

(B)

(Q

•P)

V///////////////.

m

UlT
h>2l

12m ('O
- V77Z07777777777,

Figure 4.108

4-40 Ashell isfired from acannonwith avelocity Fatanangle
9 with' the horizontal direction. Atthe highest point in its path,
it explodes into two pieces of equal masses. One of thepieces
retraces its path to the cannon. The speed of the otherpiece
immediately afterthie explosion is:
(A) 3F cose (B) 2Fcose

(Q jFcose P) F COS0

4-41 Abullet movingwithavelocity upasses through aplank
which is free to move. Thetwoareofequalmass. Afterpassing
through the plank, the velocity of the bullet becomesJu. Its
velocity relative to the plank now is :

(A)> (B) (1-/)H
(Q (2/-l)« P)(2-/)w

4-42 Aparticle ofmass /w, makes anelastic, one dimensional
collision with astationaryparticle ofmass Wj. What fraction of
the kinetic energy ofmj iscarried away by^2 ?

(A)^
m-,

(Q
2m^m2

(w, + /«2)'

(B) ^
Wi

P)
4Wi/«2

(^1+^2)^

4-43 Two balls with masses in the ratio of 1 : 2 moving in
opposite direction have a head-on elastic collision. If their
velocities before impact were in the ratio of3 :1, then velocities
after impact will have the ratio:
(A) 5:3 P).7:5
(Q 4:5 (D) 2:3

A B

cv- o

4-44 Two identical balls of

equal massesAandB, are lying
on a smooth surface as shown

in figure-4.109. Ball A hits the Figure 4.109

ball B (which is at rest) with a velocity v = 16m/s. What should
be the minimum value ofcoefficient ofrestitution e between ^4

and B so that5 just reaches the highestpoint ofinclinedplane :
(Takeg= lOm/s^)

(A) f

(Qi
P) T

P)

4-45 Two blocks of mass and W2 are connected by light
inextensible string passing'over a smooth fixed pulley of
negligible mass. The acceleration of the centre of mass of the
system when blocks move imder gravity is :

(A)

(Q

Wo -Wi

W] + W2^ g

Wj + W2 I
Wi-WjJ^

P)

P)

Wj + W2

W, — Wo

Wj ~W2

W, +W2

g
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4-46 A girlthrows aballwithinitialvdocity vat an inclination
of45®. The ball strikes the smooth'vertical wall at a horizontal

distance d from girl and after rebounding returns to her hand.
What is the co-efficient of restitution between wall and ball ?

(A) ^-gd

(Q
Mi.
..2

(B)

(P)

4-47 A small block ofmass m is

pushed towards a movable wedge
of mass riw and height h with
initial velocity u. All surfaces are
smooth. The minimum value of u

forwhich the block will reach the

top of the wedge :

gd

V -gd

V

gd

^^^VTTTTTTTTTTTTTTTPTTa^,

Figure 4.110

(A) (B)

(Q J2gh\l +̂ P)

4-48 A heavy ring of mass m is clamped on the periphery ofa
lightcirculardisc.Asmallparticlehavingequalmass isclamped
at the centre of the disc. The system is rotated in such a way
that the centre of mass moves in a circle of radius r with a

uniform speed v. We conclude that an external force :

2

(A) must be acting on the central particle
r

(B)
2mv^

must be acting on the central particle

(Q
2mv' must be acting on the system

2mv'(D) ^ must be acting on the ring.

4-49 A light particle moving
horizontally with a speed of 12 m/s

strikes a very heavy block moving in 12m/s
the same direction at 10 m/s. The

collision is one-dimensional and

elastic. After the collision, the particle

will:

(A) .Move at 2 m/s in its original direction
(B) Move at 8 m/s in its original direction
(Q Move at 8 m/s opposite to its original direction
(D) Move at 12 m/s opposite to its original direction

10 m/s

Figure 4.111

Linear Momentum and Its Conservation

4-50 Two particles of masses w, anditij in projectile motion
havevelocities Vj and respectively attime /= 0.Theycollide
attime t^. Their velocities become Vj and Vj at time 2?q while
still movingin air. The value of [(wjVi +w2V2)-(wiVi -I-/M2V2)]
is:

(A) zero (B) {niy + m^gtQ

(Q 2(m.^+m2)g/o P) )^{ni^+m^gt^

4-51 A chain oflength (/ < 0.5 jc/?) placed on a smooth spherical
surface of radius R with one of its ends fixed at the top the
sphere.The valueof tangential acceleration of each elementof
chain when its upper end is released :

(A)

(Q f (l-tanl

4-52 A ball is released from a

.height /jq above a horizontal
surface rebound to a height

after one bounce. The graph that
relate Aq to Aj is shown below. If
the ball (of the mass m) was

dropped from an initial height h
and made three bounces, the kinetic energy of the ball
immediately after the third impact with the surface was :
(A) (0.8)^ mgh (B) (0.8)^ mgh
(Q 0.8mg(/2/3) (D) [(1-(0.8)^mgh]'

(D)

100

Figure 4.112

Hq (cm)

4-53 A ball of mass m is

released from point A inside a
smooth wedge of mass m as

shown in figure-4.113. What is
the speed of the wedge when
the ball reaches point B ?

s.l/2

7;7777777777777777777777777r/

Figure 4.113

(A)

(Q

g^

3V2

5g/g

2V3

n1/2

P)

P)

4-54 Two blocks Wj and arepulled ona smooth horizontal
surface; and are joined together with a spring of stiffriess k as
shown in the figure'-4.114. Suddenly, the block receives a
horizontal velocity Vq, then themaximum extension inthe
spring is:

'"i

////////////////////y/y//.

Figure 4.114
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Wi mV"2 2WiW2
(A)- vc

Wj + W2
(B) Vf

(/«! +m2)k

tnim2

{nil

m^mV"2
(Q Vo 2(otj + )k P) n

4-55 The centre of mass of a ,non uniform rod of length I

kx^whose mass per unit length p varies as p = where A: is a
X/

constant and x is the distance of any point from one end, is
(from the same end):

(A) fi
(Q f

(B)

(0)f

4-56 Two objects move in the same direction inastraight line.
One moves with a constant velocity Fj.The other starts at rest
and has constant acceleration a. They collide when the second
object has velocity IVy. The distance between the two objects
when the second one starts rnoving is :

(D) ^

(A) Zero

(Q ^

4-57 Figure-4.115 shows aboy on ahorizontal platform^ on a
smoothhorizontal surface, holdinga rope attachedto a box B.
Boy pulls the rope with a constant force of50 N. The combined
mass ofplatform^andboyis250kgandthat'ofbox5 is500kg.
The velocity of A relative to the box5 5s afterthe boy onA
begins topull,therope,will be: .

(A) 1 m/s

(Q 2 m/s

y77Z^777777777777777777777777777?77^y

Figure 4.115

(B) 1.5 m/s

(D) 0.5 m/s

4-58 A wind-powered generator converts wind energy into
electrical energy. Assumethat the generator converts a fixed
fraction of the wind energy intercepted by its blades into
electrical energy. Forwind speed v, the electrical power output
will be proportional to:
(A) V (B) v2
(Q . (D) v"

4-59 Aballfalls vertically ontoa floor, withmomentum;?, and
then bounces repeatedly. The coefficient ofrestitution is e. The

267

total momentum imparted by theball to the floor is :

(A) J3(l+e)

(Q p\\+̂

(B).
l-e

\ + e
(D)p

l-e

4-60 Aprojectile ofmass misfired with velocityvfrom apoint
P, asshown below. Neglect airresistance, themagnitude o/the
change inmomentum.between thepoint 5 andarriving atg is :

(A) Zero

(Q mv^Jl

Figure 4.116

• (B) ~mv

(D) 2wv

4-61 Two balls of equal mass moving in opposite, direction
have a head-oncollisionwith speed6 m/s. If the coefficient of
restitution is 1/3, thevelocity ofeachballafterimpact willbe:
(A) 18m/s ' (B) 2m/s
(Q 6m/s (D) 4m/s

4-62 An alpha particle collides elastically with a stationary
nucleusand continues on at an angleof 60® withrespectto the
original direction of motion. Thenucleus recoils at anangle of
30® with respect to this direction. Mass number ofnucleus is

(A) 2 (B) 4
(Q 8 (D) 6

4-63 A uniformsolid rightcircularcone of
base radius R is joined to a uniform solid
hemisphere of radius R and of the same
density, so as to have a common face. The
centre ofmass ofthe composite solid lies on
the commonface. The height ofthe cone is:

(A) 1.55

(Q 35

(B) V35

(D) 2V35

Figure 4.117

4-64 A Sphere moving with velocity v strikes a wall moving
towards the sphere with a velocity u. If the mass of the wall is

infinitelylarge the workdone by the wall duringcollisionwill
be;

(A) mu{v + u) (B) 2 w M(v+ m)
(Q 2mv(v+M) (D) 2m(v+M)

4-65 Aprojectile ofmass 20kgisfired withavelocity of400m/s
at an angleof 45® with the horizontal.At the highestpoint ofthe



trajectocy the projectile explodes into two fragments of equal
mass,one of whichfalls verticallydownward with zero initial
speed; Thedistance of thepointwhere theotherfragmentialls
from the point of firing is:
(A) 24000m (B) 16000m
(Q 32000m (D) 8000m

4-66 -A ballfallsvertically for2 secondsandhitsa planeinclined
3

at 30° to horizon. If the coefficient ofrestitution is —, find the

time that elapses before it again hits the plane :
(A) 3 seconds 2 seconds
(Q 5 seconds (D) 4 seconds

4-67 Three boys are standing on a horizontal platform ofmass
170kg as shownin figure-4.118(a). The exchangetheirposition
as shown in the figure-4.118(b). Distance moved by the platform
is:

60 kg 40 kg 80 kg

2m 2m

(a)

(A) 0.35m
(Q 0.45m

80 kg 60 kg 40 kg

2m 2m

Figure 4.118

(B) 0.55m
P) 025 m

(b)

4-68 A platformofinfinitemassismovingupwardwithvelocity
5 m/s. At time t = 0,?t ball which is at height 100 m above the
platform starts falling freely. The velocity ofball just after the
collision will be(Assume elastic collision) (g= 10 m/s^):
(A) 40 m/s (B) 50 m/s
(Q 20 m/s . p) None

4-69 A force exerts an impulse I on a particle changing its

speed from U to 2U. The applied force and the velocity are
oppositely oriented along the same line. The work done by the
force is:

(A) ylU

(Q lu

(B) |iu
P) 2IU

4-70 What is the maximum offset that one can obtained by

piling up three identical bricks of length /:

(A) f / .

(Q f/

Linear Momentum and Its ConservatlonJ -

offset

Figure 4.119

4
(B) 3/

(D)

4-71 When the kinetic energy of the body is increased by
300 %, the momentum ofthe body is increased by:
(A) 20% P) 50%
(Q 100% P) 200%

4-72 Two astronauts, each of mass 75kg are floating next to
each other in space, outside the space shuttle one of them
pushes the other through a distance of Im (an arms length)
with a force of300N. What is the final relative velocity of the
two ?

(A) 2.0 m/s P) 2.83m/s
(Q 5.66 m/s P) 4 m/s

4-73 A stream ofwater droplets, each ofmass m = 0.001kg are
fired horizontally at a velocity of 10 m/s towards a vertical steel
plate where they collide. The dropletsone spaced equidistant
witha spacingof 1cm.Whatisapproximate average force exerted
on the plate by the water droplets. (Assuming that they do not
rebound after collision.)

(A) ION' P) lOON
(Q IN P) O.IN

4-74 A bowler throws a ball horizontally along east direction

withspeedof 144km/hr. Thebatsman hitstheball suchthat it
deviates from its initial direction ofmotion by 74° north of east

1
direction, without changing its speed. Ifmass ofthe ball is j kg
and time ofcontact between bat and ball is 0.02 s. Average force

applied by batsman on ball is:
(A) SOON,53° East ofNorth P) SOON, 53° North ofEast

(Q 800,N, 53°North ofWest p) 800 N, 53°West ofNorth

4-75 A small ball rolls off the top landing of a staircase. It
strikes the mid point ofthe first step and then mid point of the
second step. The steps are smooth & identical in height &
width. The coefficient ofrestitution between the ball & the first

step is :
(A) 1 • P) 3/4
(Q 1/2 P)' 1/4
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4-76 ABand CDare twosmoothparallelwalls.Achild rolls a
ball along ground from A towards point P find PD so that ball
reaches point B after striking the wall CD. Givencoefficient of
restitution e = 0.5 :

(A) 0.5m
(Q Im

D
t
/

1

Figure 4.120

0) 1.2m
P) None"of these
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4-77 Asphere ofmass inmotion hitsdirectlyanother sphere
ofmass /«2 at restandsticks to it, thetotal kinetic energy after
collision is 2/3 oftheir total K.E. before collision. The ratio of

m, :m.yis:

(B) 1:2

P) 2:3 '

'] • '"2

(A) 1:1

(Q 2:1
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AdvanceMCQswith Oneor More Options Correct
4-1 Inwhich of thefollowing cases thecentre ofmass ofa rod
is certainly not at its centre ?
(A) The density continuously increases-ffom left to right.

The density continuously decreases from left to right.
(Q The density decreases from left to right upto the centre

and then increase.

P) Thedensity increases from lefttoright upto thecentre and
then decrease.

4-2 When two blocks initially at rest connected by a
compressed spring move towards each other under mutual
interaction:

(A) Theirvelocities are equalandopposite.
(B) Theiraccelerations areequal andopposite.
(Q The force acting onthem are equal and opposite.
(D) Theirmomentum areequal andopposite.

4-3 A body has its centre of mass at the origin. The
AT-coordinates of the particles :
(A) May be all positive
(B) May be all negative
(Q May be all non-negative
p) May bepositive forsome case andnegative in other cases

4-4 Abody moving towards a finite body at restcollides with
it. It is possible that:
(A) Both the bodies come to rest

(B) Both the bodies move after collision

(Q The moving body comes to rest and the' stationaiy body
starts moving •

P) The stationary body remains stationary, the moving body
changes its velocity.

4-5 In an elastic collision between smooth balls :
(A) The kineticenergyremainconstant
P) The linear momentum remains constant
(Q The final kinetic energy isequal to the initial kinetic energy
p) The final linear momentum is equal to the initial linear

momentum

4-6 Anonzero external force acts onasystem ofparticles. The
velocityand the accelerationofthe centre ofmass are found to
be-Vq andOq at an instant t. It is possible that:
(A)vo =0,ao =0 (B)V(, =0,flo^O
(C)vo^0,ao =0 (D)vo^O,ao^O

4-7 In an elastic collision between spheres Aand Bofequal
mass but unequal radii, A moves along the x-axis and B is
stationary before impact. Which of the following is possible
after impact ?

(A) A comes to rest

p) The velocity of 5 relative to A remains the same in
magnitude but reverses in direction

(Q Aand B move with equal speeds, making an angle of 45®
each with the x-axis

P) ^ and 5 move with unequal speeds, making angles of 30®
and 60® withthex-axisrespectively.

4-8 Aparticle moving with kinetic energy=3 J makes anelastic
head-on collision with a stationary particle which has twice its
mass. During the impact:
(A) Theminimum kinetic energy of thesystem is 1J
P) The maximum elastic potential energy of thesystem is2J
(Q Momentum and total energy are conserved atevery instant
P) The ratio ofkinetic energy topotential energy ofthe system

first decreases and' then increases.

4-9 Along blocki4 is at rest on a smoothhorizontal surface.A
small blockB,whose mass ishalfof^, isplaced onAatoneend
andprojected along^ withsomevelocity u. Thecoefficient of
fiiction between theblocks is |i:
(A) The blocks will reach the final

common velocity -j.
P) The work done against friction is

two-thirds of the initial kinetic

energy ofB.

(Q Before the block reach acommon velocity, theacceleration
2ofArelative to 5 is ^ pg.

p) Before the blocks reach acommonvelocity the acceleration
3

ofrelative to .5 is-J pg.

4-10 A strip ofwood ofmass A/and length I isplaced on a
smooth" horizontal surface. An insect of mass m starts at one
end ofthe strip and walks tothe other end intime t,moving with
a constant speed :

(A) The speed of the insect as seen from the ground is <j
P) The speed of the strip as seen from the ground is

1 ( M
t kAf + w,

(Q The speed of the strip as seen from the ground is

L ( ^
t I^M +m

P) The total kinetic energy ofthe system is + fy

'TTTTTTTTTZ^TTTZ^.
Figure 4.121
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4-11 In one-dimensional collision between two identical
particles ^4 and 5,5 isstationary and^l has momentump before
andafter theimpact, and0 - 7) during theimpact:
(A) The total momentum of the 'A plus 5' system isp before

and after the impact, and {P-J) during the impact.
(B) During theimpact, A gives impulse J\oB

U(Q The coefficient of restitution is — -1

(D) The coefficient ofrestitution is +1

4-12 Two blocks Aand Beach ofmass mare connected bya
massless spring of natural lengthI andspring constant k. The
blocks are initially resting on a smooth horizontal block C also
of mass m moves on the floor with a speed v along the line
joining^ and5 andcollides elastically withy4 then:

warn

y/////////^///////////////y/////}///M

Figure 4.122

(A) The KE ofthe system atmax. compression ofthe spring
is zero

(B) TheKEof^5systemisatmaxcompressionis(l/4)/«v^

(Q The max compression ofspring is v4^mlk)

(D) Themaximum compression ofspring isv / Ik)

4-13 Theelastic collision between two bodies, AandB canbe
consideredusingthe followingmodel.Aand B are fi-ee to move
along a cpmmon linewithout friction. When separation between
thesurfaces isgreater theni/= 1m,theinteracting force iszero,
whentheirdistance lessthanc^, a constant repulsive force F= 6N
ispresent. The mass ofbody^isOT^ = 1kg and it is initially at
rest. The mass of body5 is = 3kg and it is approaching
towards A with a speed = 2 m/s. Then choose the correct
option(s).

Rest

, 2ni/s

Figure 4.123

(A) The commonvelocity attained by the bodies are 1.5 m/s
The minimum separation between the bodies is 0.25 m

(Q The minimumseparation between the bodies is 0.75 m
(D) The commonvelocity attained by the bodies are 2.0 m/s

.1^

4-14 The sum ofall the external forces on asystem ofparticles
iszero. Which ofthe following must betrue for the system of
particles ?
(A) The totalmechanical energy is constant
(B) The total potential energy is constant
(Q The total kinetic-energy is constant
P) The total momentum is constant

"4-15 Consider a particle at rest which may decay into two
(daughter) particles or intothree (daughter) particles. Which of
the following is/are true? (There are no external forces):
(A) Thevelocity vectors of thedaughter particles must lieina

plane.
(B) Given the total kinetic energy of system and the mass of

each daughter particle, it ispossible todetermine thespeed
of each daughter particle.

(Q Given the speed (s) of all but one daughter particle it is
possible to determine thespeed of the remaining particle,

p) The totalmomentum of the daughter particles is zero.

4-16 Threeidentical cylinders eachofmassAfandradiusRare
in contactand kept on a roughhorizontal surfacecoefficient of
friction between anycylinder andsurface isp;Aforce F=\3Mgt
act on the first cylinder mark the correct statement.

M'.=0 ^' = 0

F - nmgt

y777777777F7777?7777777777777777777777777777}

Figure 4.124

(A) The cylinder will start pure rolling and keep on rolling
without sliding

p) At / = 9 second slipping will start
(Q Velocity of centre of mass of each sphere will keep on

increasing
p) After a certain value ofF angular velocity ofeach sphere

will become constant

4-17 A wooden block (mass M) is hung from a peg by a
massless string. A speeding bullet (with mass m and initial
speedVq) collides withblockat time/= 0 andembeds in it. Let
S be the system consisting of the block and bullet. Which
quantities are NOT conserved between t=-10 sec to ^=-I-10 sec ?

(A) The total linear momentum ofS

(B) The horizontal component of the linear
momentum ofS

(Q The mechanical energy ofS
P) The angular momentum of S as

measured about a perpendicular axis ®
through the peg



4-18 Velocity of a particle of mass 2kg changes from

vj = 2i - 2j m/s to V2 = (i* - j) m/s after colliding with aplane
surface:

(A) theangle made bytheplane surface with thepositivex-axis

Iis 90® + tan M -

(B) theangle made bytheplane surface with thepositivex-axis

"1"
IS tan"

(Q the direction of change in momentum makes an angle

,-i . _tan' with the +ve x-axis

(D) the direction of change in momentum makes an angle

v3.
90® + tan' with the plane surface

4-19 Two identical particles A and B of mass m each are
connected togetherbya lightandinextensible stringof length/.
The particleare held at rest in air in samehorizontallevel at a
separation I. Both particles are released simultaneously and
one ofthem (say^) isgiven speed Vq vertically upward. Choose
the correct options(s). Ignore air resistance.
(A) The maxiTmim heightattainedby the centreof massof the

2

system afAand Bis ^.

Linear MomenETr^anp^^

(B) The kinetic energy of the system of A and B when the

centre ofmass is at its highest point, is —^.
} •

(Q The maximum height attained bythe centre ofmass ofthe

• 'A.system ofA and B is

(p) The kinetic energy of the system of A and B when the

mvo
centre of mass is its highest point, is ——

4-20 A disk movingon a fiictionless horizontaltable collides
elastically yvith another identical diskasshown. Thedirections
ofmotion of the two disks make angles 0 and ^ with the initial
line ofmotion as shown. Then :

(A) 0 = 30®
(Q ())=30®

Figure 4.126

(B) 0 = 60®

(P) ({>=60®
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UnsolvedNumericalProblemsfor Preparation ofNSEP,INPhO &IPhO
For detailedpreparationoflNPhO and IPhO studentscan referadvancestudymaterialon www.physicsgalaxy.com

4-1 A proj.ectile is firedfroma gunat an angleof 45° withthe
'horizontal and with amuzzle speed of1500 ft/s. At the highest
point in its flight the projectile explodes into two fragments of
equal mass. One fragment, whose initial speed is zero, falls
vertically. Howfar fromthis gundoesthe other fragment land,
assuming a level terrain ?

Ans. [l.I X10^ ft]

4-2 A ball is dropped at / = 0 from a height 12 m above the
ground. At the instant of release a very massive platform is at
a height 4 m above the ground and moving upward with velocity
3 m/s as shown in the figure. Find :

(a) The height reached by the ball after a perfectly elastic
impact with the wall.

(b) The time when the ball strikes the platform second time.

Ans. [19.8 m'above the ground, 3.6 s]
' \ • ,

4-3 A block of mass 200 gm is suspended through a vertical
spring. The spring is stretched by 1 cm when the block is in
equilibrium. Aparticle ofmass 120 gm is dropped on the block
fromaheight of45 cm. The particle sticks to the block after the

impact. Find the maximum extension ofthe spring.

Ans. [j5;l cm]

4-4 -A ball ofmass mis projected with speed v into the barrel
of a spring gun of mass M initially at rest on a ffictionless
surface. The mass m sticks in the barrel at the point ofmaximum

compression of the spring. No energy is lost in friction. What
fraction of the initial kinetic energy ofthe ball is stored in the

spring ?

M

Ans. [.
M

Figure 4.127

]m + M

4-5 A wooden block ofmass lOgisdroppedfromthetopofa
cliff 100 mhigh. Simultaneously, a bullet of mass 10 g is fired

from the foot ofthe cliff vertically upwards with a velocity of
. 100 m/s.

(i) Where, and after what time will they meet ?

(ii) If the bullet, after striking the block, gets embedded in it,
how high will it rise above the cliffbefore it starts falling ?

Ans. [4.9 m, 77.55 m]

4-6 The bob of a pendulum of length 980 cm is released from
rest with its string making an angle 60° with the vertical. It
collides with a ball ofmass 20 gm resting on a smooth horizontal
surface just at the position of rest of the pendulum. With what
velocity will the bob move immediatelyafter the collision? What
will be the maximum angular displacement ofthe bob after the

collision ? The mass ofthe bob is 10 gm. '

Ans. [980/3 cm/s]

4-7 Aw=20gmbulletpierces through aplate ofmass Mj = 1kg
and then comes to rest inside a second plate of mass

= 2.98 kg as shown in figure-4.128. It is found that the two
plates, initially at rest, now move with equal velocities. Find
the percentage loss in the initial velocity ofthe bullet when it is
between Mj andM2. Neglectanylossofmaterial of theplates,
due to the action of the bullet.

m

Ans. [25%]

M,

Figure 4.128

A/,

4-8 A ball ofmass m is shot with a velocity u at an angle 0 with
the horizontal which strikes the box of mass Arresting at the
edge ofa smooth table as shown in figure-4.129. After striking
the box ball falls down vertically. Find the value of u such that

the box is raised to the point A shown in figure. Also find the
horizontal distance / from which shot was fired.

M

-Q
7^777777777777^

Vf7777777777777777777777777777//.

Figure 4.129

2 tan 9
Ans. [

mcos9
]
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4-9 A locomotive ofmass m starts moving so that its velocity

varies according to the.law v=ayfs ,where a is aconstant, and
s is the distance covered. Find the total work done by all forces
which are acting on the locomotive during the first t seconds
after the beginning of the,motion.

1 ,,
Ads. [ —ma r]

o

4-10 A ball moving translationally collides elastically with
another, stationary, ball of the same mass. At the moment of
impact the angle between the straight line passing through the
centres ofthe balls and the direction ofthe initial motion ofthe

striking ball is equal to a. Assuming the balls to be smooth,
find the fraction of the kinetic energy of the striking ball that
returned into potential energy at the moment of the maximum
deformation.

Ads. ['/2 cos^a]

4-11 Arod oflength 1 m and mass 0.5 kg is fixed at one end'is
initially hanging vertical. The other end is now raised until it
makes an angle 60° with the vertical. How much work is
required ? :

Ans. [1.225J]

4-12 A block ofmass 2 kg is moving on a fiictionless horizontal
surface with a velocity of 1 m/s towards another block ofequal
mass kept at rest. The spring constant of the spring fixed at
one end is 100 N/m. Find the rnaximum compression of the
spring.

2 kg 2 kg

v/y//////////////'//'///'///////'////////////.

Figure 4.130

Ans. [10 cm]

4-13 Aparticle1movingwithvelocityv= 10m/sexperienced
a head on collision with a stationary particle 2 of the same
mass. As a result of collision, the kinetic energy of the system
decreased by 50%. Find the magnitude and direction of the
velocity ofthe particle 1 after collision.

Ans. [5m/s]

4-14 A 3 kg melon is balanced on a bald man's head. His friend

shoots a 50 gm arrow at it with speed 25 m/s. The arrow passes
through the melon and emerges at 10 m/s. Find the speed of
the melon as it flies off the man's head.

Ans. [0.25 m/s]

4-15 A 42 kg girl walks along a stationary uniform beam of
mass 21 kg. She walks with a speed of 0.75 m/s. What is the
speed of the center of mass of the system of girl plus beam ?

Ans. [0.5m/s]

Linear Momentum and.lts 'Conseiwatfort!

4-16 Two perfectlysmoothelastic discsA and 5, onek times
as massive as the other, rest on a smooth horizontal table. The
disc is made to move towards B with velocity u and make a

head on collision. Calculate the fraction of the kinetic energy

transferred to B from^. Also show that the value ofthis fraction

is the same whether Bisk times as massive as A or vice versa.

Ans. [
4k

(k+iy 1

4-17 A ball of mass m moving at a speed v makes a head on

collisionwth an identical ball at rest. The kinetic energy ofthe

balls after the collision is three fourths ofthe original. Find the

coefficient of restitution.

4-18 Two vehicles A and B are traveling west and south,

respectively, towards the same intersection where they collide

and lock together. Before the collision A (9001 b) is moving

with a speed of40 mph, and B(12001 b) has a speed of60 mph.

Find the' magnitude and direction of the velocity of the

interlocked vehicles immediately after collision.

Ans. [38.33 mph]

4-19 An object ofmass 5 kg is projected with a velocity of20

m/s at an angle of60° to the horizontal. At the highest point of

its path the projectile explodes and breaks up into two

fragments of masses 1 kg and 4 kg. The fragments separate

horizontally after the explosion. The explosion releases internal

energy such that the kinetic energy ofthe system at the highest

point is doubled. Calculate the separation between the two

fragments when they reach the ground.

Ans. [44.18 m] - -

4-20 A 120 gm ball moving at 18 m/s strikes a wall

perpendicularly and reboimds straight back at 12 m/s. After the

initial contact, the center ofthe ball moves 0.27 cm closer to the

wall. Assuming uniform deceleration, show that the time of
contact is 0.00075 seconds. How large an average force does

the ball exert on the wall ?

Ans. [4800 N] - ' .

4-21 Ahorizontal planesupports a stationary vertical cylinder
ofradius R and a disc A attached to the cylinder by a horizontal

thread AB of length /q. An initial velocity v is imparted to the
disc as shown in figurer4.131. How long will it move along the

plane imtil it strikes against the cylinder ? The friction is

assumed to be absent.
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Figure 4.131

4-22 Twocarts, initiallyat rest, are freeto moveon a horizontal
plane. CartA hasmass 4.52kg andcartB has a mass 2.37kg.
They are tied together, compressing a light spring in between
them. When the string holding them together is burned, the
cartAmovesoffwitha speed of 2.11 m/s. (a) Withwhatspeed
does cart B leave ? (b) How much energy was stored in the
spring before the string was burned ?

Ans. [4.02 m/s, 29.3 J]

4-23 A horizontalplanesupportsaplankwithabar of massm
placed on it and attached by a light elastic non formed cord of
length to a point O as shown in figure-4.132.The coefficient of
friction betweenthe bar and the plank equalsk. The plank is
slowly shifted to the right until the bar starts sliding over it. It
occurs at the moment when the cord deviates from the vertical

by an angle 0. Find the work that has been performedby that
moment by the friction force acting on the bar in the reference

frame fixed to the plane.

7777777777777777777777777'/

Figure 4.132

kmglg 1-COS0
Ans. [A =

2 (sm6+/tcos0)cos0

4-24 A series of N identical balls are at rest on a smooth

horizontal surface. The number 1 ball moves with velocity u

towards the ball number 2 which in turn collides with the ball

number 3 and so on. Find the speed ofNth ball ifthe coefficient

ofrestitution for each impact is e.

Ans. [
uil+e)'

]

275]

4-25 Asteel ballofmass w= 50gmfalls from height /? = 1mon
the horizontal surface of a massive slab. Find the cumulative

momentum imparted to the slab by the ball after numerous
bounces, if the coefficient of restitution between the ball and

the slab is e = 0.8.

Ans. [2 N-s]

4-26 Inthefigure-4.133 shown^ isaballofmass 2kgfixed at
itsposition andS^, Sj arethewalls facing A. Another ballBof
mass 4 kg incidenton the wall at an angle of incidence60°
and then successively it collides elasticallywithwall and
as shown in figure-4.132. Trace the locus of centre of mass of
the two balls during the motion of the ball B.

Figure 4.133

4-27 Two bars connectedby a weightless spring ofstiffriess
k and lengthIq rest on horizontal plane. A constant horizontal
forceF startsacting on one of the bars as shownin figure-4.134.
Find the maximum and minimum distances between the bars

during the subsequent motion of the system, if the masses of
the bars are:

k
1 2

Figure 4.134

(a) Equal; (b) Equal toWj and Wj.

Ans. = /(, + F/k, - /g, = /(, + 2m^ Flk(m^ + m^)]

4-28 A raft of mass M with a man of mass m aboard stays
motionless on the surface of a lake. The man moves a distance

/' relativeto the raft withvelocityv' and then stops.Assuming
thewaterresistance tobe negligible, find: (a) thedisplacement
of the raft / relative to the shore; (b) thehorizontalcomponent
of the force with which the man acted on the raft during the
motion.

Ans. [ —
ml'

M + m
,F. = -

mM dv'

M + m dt
]

4-29 A shell flying with velocity v = 500 m/s bursts into three
identical fragments so that kinetic energy of the system
increases 1.5 times. What maximum velocity can one of the
fragments obtain ?

Ans. [1 km/s] ^
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4-30 Two identical buggies 1 and 2 with one man in each
move without friction due to inertia along the parallel rails

towards each other. When the buggies get opposite each other,
the men exchange their places by jumping in the direction
perpendicular to the motion direction. As a consequence,
buggy 1 stops and buggy 2 keeps going in the same direction,
with its velocity becoming equal to v. Find the initial velocities
of each buggy, Vj and v^, if the mass of each buggy without a
man equals Afand the mass of each man is m.

Mv mv
Ans. [

M-in M-m

4-31 A2 kg block rests over a small hole in a table. A woman
beneath the table shoots a 15 gm bullet through the hole into
the block, where it lodges. How fast was the bullet going if the
block rises 75 cm above the table ?

Ans. [515 m/s]

4-32 A1 kgblocksIidesdownaninclinedplaneofmass3.2kg
having inclination 45®. Ifthe inclined plane is fixed and the 1 kg
block slides without friction, find the acceleration ofthe centre

of mass of the system of the block and inclined plane.

Ans. [1.2 m/s^]

4-33 Aball/f ofmass 10kgandaballj9ofunknownmassare
placed on a horizontal frictionless table which rest against a
rigid wall as shown in figure-4.135. The hailA moves towards
the ball B with a velocity v. What should be the mass ofB such
that both A and B move with the same speed after A has
undergone a collision with ball B and the wall ? All collisions
are assumed to the elastic.

Ans. [30 kg]

VTTTTT^TTTTTTTTT^T/TTTTTTT?^.

Figure 4.135

4-34 A plastic ball is dropped from a height ofone meter and
rebounds several times from the floor. If 1.3 seconds elapse
from the moment it is dropped to the second impact with the

floor, what is the coefficient ofrestitution.

Ans. [0.04]

4-35 A chain is held on a frictionless table with one fifth ofits

length hanging over the edge. If the chain has a length / and a
mass w, how much work is required to pull the hanging part
back on the table ?

Ans. [-^]
50

Linear Momentum and Us Conservation

4-36 The Atwood machine in figure-4.136 has a third mass
attached to it by a limp string. After being released, the 2 m
mass falls a distance x before the limp string becomes taut.
Thereafter both the masses on the left rise at the same speed.

What is this final speed ? Assumethat pulley is ideal.

2in

77P7777777777777.

Figure 4.136

Ans. [•

4-37 Abullet ofmass 20 gmtravellinghorizontally witha speed
,of500 m/spassesthrough awooden blockofmass10kg initially
at rest on a level surface as shown in figure-4.137. The bullet

emerges with a speed of 100 m/s and the block slides 20 cm on
the surface before coming to rest. Find the friction coefficient

between the block and the surface.

500 m/s

Ans. [0.16]

10 kg

77777777777777777777777777777r/

Figure 4.137

4-38 A particle A of mass m moving on a smooth horizontal
surface collides with a stationary particle B ofmass 2 m directly,
situated at a distance d from a wall. The coefficient ofrestitution

between A and B and between B and the wall is e = 1/4. Calculate

the distance from the wall where they collide again. Assume

that the entire motion takes place along a straight line

perpendicular to the wall.

Ans. [12rf/13]

4-39 An 80 kg caveman, standing on a branch of a tree 5 m

high, swings on a vine and catches a 60 kg cavegirl at the

bottom ofthe swing. How high will both ofthem rise ?

Ans. [1.632 m]

4-40 What is the thrust of a rocket that bums fuel at a rate of

1.3 X10"^ kg/sec ifthe exhaust gases have avelocity 2.5 x 10^ m/s
with respect to the rocket.

Ans. [3.3x10'N]
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4-41 A camion is mounted ona railway wagon which stands
ona straight section ofthetrack. The mass of thewagon with
the cannon,projectiles and man is 2000 kg and mass of each
projectile is 25 kg. The cannon is fired in a horizontal direction
along the track, the projectiles having an initial velocity of
1000 m/s with respect to the cannon (i) what shouldbe the
speed of the cannon after the first shot ? (ii) what should be
the speed after the third shot ?

Ans. [12.5 m/s ,37.5 m/s]

4-42 A wagon of mass M can move without fiiction along
horizontal rails.A simple pendulum consisting of a sphereof
mass'w is suspended from theceiling of thewagon by a string
of length/. Angle a from the vertical. Find the velocityof the
wagonwhenthestringforms an angleP(P< a) withthevertical
and hence find the velocity of the wagonwhen the pendulum
passes through its mean position.

Ans. [2m sin(a/2) ]

4-43 A ball of mass 2m moving due'east with a speed of 8w
collides directly with a ball B of mass m and the velocity of B
after collision is 5u due east. If the coefficient ofrestitution is

1/11, find the fraction ofthe total kinetic energy lost ?

Ans. "[80/137]

4-44 Aballwithinitial speedof 10m/scollides elasticallywith
two other identicalballs at rest as shownin figure-4.138, whose
centres are on a line perpendicular to the initial velocity and
which are initially in contact with each other. All the three balls
are lying on a smooth horizontal table. The first ball is aimed

directly at the contact point ofthe other two balls. All the balls
are smooth. Find the velocities of the three balls after the

collision.

ift

Figure 4.138

Ans. [2 m/s, 6.93 m/s at 30° with incident direction]

4-45 A rocket with initial mass 8000 kg is fired vertically. Its
exhaust gases have a relative velocity"of 2500 m/s and are
ejected at a rate of40 kg/s. (a) What is the initial acceleration of
the rocket ? (b) What is its accelerationafter 20 s have elapsed.

Ans. [2.7 m/s^, 4.1 m/s^]

4-46 A ball of mass mis moving with speed u to the left along
the positive x-axis, toward the origin. It strikes another ball of

2i7-

massw/4at rest at theorigin. Aftercollision the incoming ball
is reflected back to the right an angle of 37® to the positive
x-axis with a speed of m/5. Find the speed,and direction of
motion ofthe other ball.

Ans. [4.66 u, 185.9°]

4-47 A shell of mass 3m is moving horizontally through air
with velocity u when aninternal explosion causes it toseparates
into two parts of masses m and 2m, which continue to move
horizontally inthesamevertical plane. If theexplosion generates
additional energy, of amount \2mu^, prove that the two
fragments separate with relative speed 6«.

4-48 Aclosed system consists oftwo particles ofrhasses m,
andm^ which move at right angles toeachotherwithvelocities
Vj andVj. Find :

(a) The momentum ofeach particle and

(b) The totalkineticenergyof the twoparticlesin the reference
frame fixed to their center ofmass.

Ans.
mi +/«2

1 mjm2 .7 2, 1
T (V! +v|)]
2/K|+ m2

4-49 A smalldisc.4 slidesdownwith initialvelocityequal to
zero from the top ofa smooth hill ofheight Ffhaving a horizontal
portion as shown in figure-4.139. What must be the height of
the horizontal portion h to ensure the maximum distance s
covered by the disc ? What is it equal to ?

H

TTTTTTTTTTTTTTZ/

Figure 4.139

Ans. [Ml, H]

4-50 The inclined surfaces of two movable wedges of the
same mass M are smoothly conjugated with the horizontal
plane as shown in figure-4.140. A.small block ofmass m slides

down the left wedge from a height h. To what maximum,height
will the block rises on the right wedge.

Ans. [
hM"-

/////////////////////////////////////

Figure 4.140

{M+mY
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4-51 A particle of mass m having collides with a stationary
particle ofmass Mdeviated byanangle nil whereas the particle
M recoiled at an angle 0 = 30® to the direction ofthe initial
motion of theparticle m. Howmuch inpercent andinwhatway
has thekineticenergyof thissystemchangedafterthe collision,
ifMm = 5.

Ans. [- 40%]

4-52 A bulletof mass0.25kg is firedwithvelocity302 m/s into
a block ofwood of mass 37.5 kg. It gets embedded into it. The
block OTj isresting onalong block and the horizontal surface
on which it is placed. The coefficient of friction between
and ^2is0.5. Find the displacement of on and the common
velocity of m^ andm2. Mass ^2= 12.5kg.

m^

m2

Figure 4.141

Ans. [0.1 m, 1.51 m/s]

4-53 A simplependulumof length/ andconsistingof a ball of
mass mis released from apositionmaking an angle 0=cos"' (0.8)
with the vertical and strikes at its lowest position a block of
mass M resting on a rough horizontal plane. If the coefficient
of kinetic friction between the plane and the block is 0.2 find

(a) How long the block will move along the plane, if the ball
ofthe pendulum rebounds to an angle p = cos"' (0.9)A

M
(b) The coefficient ofrestitution, use ~ =10 and 1 = 1 m

m

Ans. [2.916 cm,'0.879]

4-54 A small disc of mass m slides down a smooth hill of

heighth without initial velocityand gets onto a plank of mass
Mlying on the horizontal plane at the base of the hill as shown
in figure-4.142. Due to friction between the disc and the plank
the disc slows do'wn and, beginning with a certain moment,
moves in one piece with the plank. Find the total work
performed by the friction forces in this process.

mMeh
Ans. [- ^1

OT+ M

M

• V7777777777777777777777777/.

Figure 4.142

Linear Momentum and jts gonseivatid| |

4-55 A steel ball of mass m falls from a height h on the
horizontal surface of a massive slab. Find the cumulative
momentum that the ball imparts to the slab after numerous
bounces, if every impact decreases the velocity of the ball r|
times. (t)> 1).,

4-56 An elastic body is projected from a given point with
velocity u atangle withthehorizontal andafterhitting avertical
wall returns to the same point. Show that the distance of the

.2

, where e is thepoint from the wall must be less than

coefficient of restitution.

Ans.

4-57 A body of mass m moving with a velocity v in the
x-direction collides with another body of mass M moving in
they-directionwith a velocity m. They collapseinto one body
during the collision. Calculate.

(a) The directionandmagnitude of the momentum of thefinal
body.

(b)v_ The fraction of the initialkinetic energytransformed into
heat during the collision in terms of the masses.

mA/(w^+v^) -
Ans. [ —5—^—5-]

(M + tn){mv + Mv )

4-58 A 10kghammer strikesanail ata velocity of 12.5 m/sand
comes to rest in a time interval of0.004 sec. Find the impulse
impartedto thenail and the averageforce impartedto the nail.

Ans. [125 N-s, 31300 N]

4-59 A wedge of mass M rests on an absolutely smooth,
horizontal surface. A block of mass m is placed on the wedge,
inclined at an angle a to the horizontal. All the surfaces are
frictionless. Assuming that the system was at rest at the initial
moment, find the velocity of the wedge when the block slides
down the plane through a vertical height h.

Ans." [
1m gh cos a

^(M+mXM +msin^ a)

eu

(l + e)g

4-60 A mass of 2.9 kg is suspended from a string of length
50 cm and is at rest. Another body of mass 10 gm, which is
moving horizontally with a velocity of 150 m/s stiikes and sticks
to it.

(i) What is the tension in the string when it makes an angle of
60° with the vertical.

(ii) Will it complete a vertical circle. -

Ans. [135.3 N]
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4-61 Three particlesA, Band Cofequal mass move with equal
speed Valongthemedians of an equilateral triangle as shown
inthe figure-4.143. They collide atthe centroid Gofthetriangle.
Afterthecollision.,^ comes to rest,Bretraces itspathwiththe
speed V. What is the speed of C ?

Figure 4.143

Ans. {V\

4-62 Ablockweighing 1kg isreleased from restatpoints on
a track which is one quadrant of a circle of radius 1.2 m as
shown in figure-4.144. It slides down the track and reaches
points with a velocity of3.6 m/s. From the point 5 it slides on
a level surface a distance of2.7 m to point C, where it comes to
rest, (a) What was the coefficient of friction on the horizontal
surface ? (b) How much work was done against friction as the
body slid down the circular track from^ to 5 ?

A\

Ads. [.24, -5.28 J]

V777777777777777777777777,
B C

Figure 4.144

4-63 A cylindrical solid of mass 10"^ kg and cross sectional
area 10"^ is moving parallel to its axis (the x-axis) with a
uniform speed of10^ m/s inthe positive direction. At /= 0, its
front facepasses theplanex = 0. Theregionto the right of this
plane is filled with stationary dust particles of uniform
density 10~^kg/m^ When adust particle collides with the face
of the cylinder, it sticks to its surface. Assuming that the
dimensions of the cylinderremainpracticallyunchanged, and
that the dust sticks only to the front face of the cylinder, and
the Xcoordinate ofthe front ofthe cylinder at / = 150 sec.

Ans. [lO'm]

4-64 Twosmall identicaldiscs,eachof massm, lie on a smooth
horizontal plane. The discs are interconnected by a light non-

deformed spring of length /q andstiffiiess Atacertain moment
one of the discs is set in motion in a horizontal direction

perpendicular tothespring with velocity Vq. Find the maximum
elongation ofthe spring in the process ofmotion^ ifit is known
to be considerably less than unity.

_

4-65 Acart loaded with sand moves along a horizontal plane
due to a constantforceF coincidingin directionwith the cart's
velocity vector. In the process, sand spills through a hole in
the bottomwith a constantvelocity r kg/s.Find the acceleration
and velocityofthe cart as a function of time. If at the initial, the
cartwiththe loadedsandhasthe mass and its velocity was
equal to zero. Neglect friction. ' .

A r ^ , I '"iAns. [v = — In ,
r [niQ-rt

'0

(mo- rt)

4-66 A ball fallsunder gravityfroma heightof 10m, with an
initialvelocity Vq. It collides withthe ground, loses 50%of its
energyin collision and then rises to the same height. Find :

(a) The initial velocityVq.

(b) The height to which the ball would rise, after collision, if

theinitial velocity Vq was directed upward instead ofdownward.

Ans. [14 m/s, 10 m]

4-67 Two balls A and B are ofthe same size but the mass ofA

is double that of B. They move along the same line in opposite
direction, A with velocity 2 u and B with velocity 3 u. If their
total kinetic energy after collision is halftheir total kinetic energy

before collision find the coefficient of restitution. Find also

their velocities after collision.

Ans. [0.7, 5u/6, 8u/3]

4-68 Find the mass ofthe rocket as a function oftime, it moves

with a constant acceleration a, in absence of external forces.

The gas escapes with a constant velocity u relative to the

rocketand its mass initially wasm^.

Aos. [m =

4-69 A ball movestowardsa smoothwedgewitha velocityu
as shown in figure-4.145. After collision the ball rebounds

vertically upwards. The coefficient ofrestitution is e. Find the

velocity of the wedge block and ball after collision. Do you
need some other parameters to solve the given problems.

V777777777777777777777777777777Z^777777777,

Figure 4.145

mu m

Ans. = u tan0 (e - — ) or u cot6 where m and M are

the masses of ball and block.]



4-70 Masses'of the bodies A, B and C are 1 kg, 2 kg and 3 kg
respectively. There is no friction between the ground andthe
bodies. Initially balM ismoving withavelocity 20 m/scollides
inelastically (e= 0.5)withtheball whichwasinitiallyat rest.
The ball B further collides elastically to the block C (at rest),
and then C collides elastically to the wall in front. Find the
velocities of the three blocks after all collisions occurred.

B

o
y//////y///////7/////////A

Figure 4.146 •

Ans. [v^ = 9.4 m/Si = 5.7 m/s, = 2.4 m/s]

4-71 Figure-4.147 shows a small block of mass m which is
startedwitha speedvon thehorizontalpart of thebiggerblock
ofmass Mplaced on a horizontal floor.The curved part of the
surface shown is semicircular. All the surfaces are frictionless.

Find the speed of the bigger block when the smaller block
reaches the point A of the surface.

Ans. \ ,,,
^ (M + m) ^

Figure 4.147

4-72 From a uniform circular disc a circular hole is cut out

touching the rim of the disc at the point A. Prove that the
center of gravity G of the remainder is on the circumference of
thehole ifAG^=AB. GBwhere5 isdie otherendoftbe diameter
through^ of the disc.

4-73 A block of mass 2 kg moving at 2 m/s collides head on

with another block of equal mass kept at rest. (a) Find-the
maximum possible loss in kinetic energy due to the collision,
(b) If the actual loss in kinetic energy is half ofthis maximum,
find the coefficient ofrestitution.

Ans." [2 j, ^1

4-74 A ball with a speed of9 m/s strikes another identical ball
such that after collision the direction of each ball makes an

angle 30® with the original line of motion. Find the speeds of
the two balls after the collision. Is the kinetic energy conserved

in this collision process ?

Ans. [ 3>/3 , No]

Linear Momentum and Its Conservation

4-75 TVbeads are restingona smoothhorizontalwirewhichis
circular at the end with radius r as shown in figure. The masses

ofthe beads are m, mil, miA ..... mil'̂ '̂ respectively. Find the
minimum velocitywhichshouldbe imparted to thefirstbead of
mass m such that the n'^ bead will fall in the tank shown in
figure-4.148.

Figure 4.148

Ans. [[-J 7^]

4-76 While moving in a wagon(5 kg) along a smooth road at
0.5 m/s, a 15 kgboy throws a3 kgbag of sand in front ofhim
witha speed4 m/s relativeto his originalmotion.Howfast is
he moving after he throws the bag of sand. What is his final
direction of-motion ?

Ans. [0.1 m/s backward]

4-77 Two men, each mass m, stand on the edge ofa stationary

buggy of mass m.Assuming the friction to be negligible, find
the velocity of the buggy after both men jump off with the
same horizontal velocity u relative to the buggy :

(a) Simultaneously;

(b) One after the other,

In what case will the velocity of the buggy be greater and
how many times.

Ans'. [
2mu

• + •
M+2m M + m M + lm

4-78 According to a FIR in police station, car^ was sitting at
rest waiting for a red light at a crossing when it was hit by an
identical car B from rear side. Both cars had their hand brakes

on, and from their skid marks it is surmised that they skidded
together about 6ra in the original direction of travel before

coming to rest. Assuming a stopping force of about 0.7 times
the combined weights of the cars (that is, p = 0.7), what must
have been the approximate speed of car B just before the
collision ?, ,

Ans. [18.1 m/s]

4-79 A particle ofmass Mis at rest when it suddenly explodes
into three pieces of equal masses. One piece flies out along
the positive x-axis with a speed of 30 m/s, while another
goes in the negative y direction with a speed of20 m/s.



|Linek^Momentum a.nSTts Conservation •" ^

(a) Find the components ofthe velocity ofthe third piece.

(b) Repeat if the thirdpiecehasa mass Ml andtheothertwo
each have mass MIA.

Ans. [-30 m/s, 20 m/s, -15 m/s, 10 m/s]

4-80 Avertical, uniform chain oftotal mass Mand length Lis
being lowered onto a table ata constant speed V. Attime ?= 0,
the lower end of the chain touches the table. Find the exerted

by the chainon the tableas a function of time, as the chainis
deposited on the table.

VM
Ans.[— (V+gt)]

4-81 A springof free length 15 cm is connected to the two
masses as shown in the figure-4.149 and compressed 5 cm.
The "system is released on a smooth horizontal surface. Find
the speed of each block when the spring is again at its free
length! The force constant for spring is2100 Nm"'. •

' 2kg • '• 3kg
k

1 -tiOOOOOOOOOOOOOd- 2

I Figure 4.149

Ans. [1.575 m/s, 1.05 m/s] ,

4-82 A 44 gm bullet strikes and becomes embedded in a 1.54
kgblockofwoodplacedona horizontal surface just in front of
the gun. If the coefficient ofkinetic friction between the block
and the surface is 0.28, and the impact drives the block a
distance of 18 m before it comes to rest, what was the muzzle
speed of the bullet ?

Ans. [360 m/s]

4-83 A4200 kgrocket istraveling inouter space with avelocity
of 150m/stoward the sun.It wishes to alterits course by 30®,
and can do this.by.shooting its rockets briefly in a direction
perpendicular to its original motion. If the rocket gases are
expelled at a speed of2700 mi/s, what mass ofgas must be
expelled? .

Ans. [131 kg]

4-84 The tennis ball may leave theracket of a topplayer on
theserve with a speed of 65m/s. Ifmass of theballis 0.06 kg
and is in contact with the racket for 0.03 sec, what is the average
force n the ball ? . . ; .

Ahs.-[I30N] •

4-85 A block of mass 2'kg slides down a 30® incline which is
3.6m high. At thebottom,it strikesa blockof mass6 kg which
is at rest on a horizontal surface. If the collision is elastic, and
friction can be ignored, determine (a) the speeds of the two

blocks after thecollision and (b) 'how far back up the incline
the smaller mass will go.

Ans. [4.2 m/s, 4.2 m/s, 1.8 m along incline] • •

4-86 Arocket ejects a steady jet whose velocity isequal to u
relative to the rocket. The gas discharge rate equals r kg/s.
Determine the acceleration of rocket in terms of the external

force on rocket F and the speed u.

F+ru
Ans. [ ]

4-87 Two billiard balls ofequal mass move atright angles and
meetat the originof a coordinate system. First is moving up
alongthey-axis at 3 m/s and the other is moving to the right
alongthex-axiswith speed4.8 m/s.After the elasticcollision,
the second ball is moving along the positive y-axis. What is
the final direction of the first ball, and what are their two
speeds ? , , -

Ans. •[+ X direction, 4.8 rii/s, 3'm/s]

4-88' A cannonof masswstarts slidingfreelydowna smooth
inclinedplaneat an angled to thehorizontal. Afterthe cannon
covered the distance /, a shot was fired, the shell leaving the
cannon in the horizontal direction with a momentum P. As a

consequence, the camion is stopped. Assuming the mass of
the shell to be negligible, determine the duration of the shot.

Pcosa-mJlglsina
Ans. [/ M ],

mg sin a -*

4-89 A ball moving transitionally collides elastically with
another, stationary, ball of the same mass. At the moment of

impactthe angle between the straight linepassing through the
centres ofthe balls and the direction ofthe initial motion ofthe

striking ball is equal to 45®. Assuming the balls to be smooth,
find the fraction of the kineticenergy of the striking ball that
turned into potential energy at the moment of the maximum

deformation.

Ans. [0.25]

4-90 A flat car of mass Mstarts moving to the rightdue to a
constant horizontal force F. Sand spills on the flat car from a
stationary hopper. The velocity of loading is constant and

equal to r kg/s. Find the time dependence of the velocity and
the acceleration of the flat-car in the process of loading. The
fiiction is negligibly small.

Ans. [
Ft

•]-
1-f-

M.
1 + -

M



4-91 A block ofmass Mwith a semicircular track ofradius R

rests on a horizontal Motionless surfaces shown in figure-4.150.

A uniform cylinderofradius r and mass m is released from rest
at thepoint Thecylinderslipsonthesemicircular Motionless
track. How far has the block moved when the. cylinder reach"
the bottom of the track ? How fast is the.block moving when
the cylinder reaches the bottom of the track ?

7777777777777777777777777777777777777777?.

Figure 4.150

Ans. [
(M + m) ]

4-92 Two balls of masses m and 2m are suspended bytwo
threads of same length / and from the same point of a ceiling.
The ball m is pulled aside through an angle a and released from
rest, after a tangential velocity towards the other stationary
ball is.imparted to it. To what height will the balls rise after
collision if the collision is perfectly elastic ?.

Ans. [h^ - — _[v^ + 2g/(l cosa)], ^2=7^ [''o +2g (1 - cosa)]]

4-93 Three identical discs A, B and C rest on a smooth

horizontal plane as shown in figure-4.151. The disc A is set in
motion with velocity v along the perpendicular bisector of the
line5Cjoining the centres of the stationarydiscs. The distance
BC between the centres of stationary discs B and C is «times
the diameter of each disc. At what value of n will the disc A

recoil. Stop, and move on after elastic collision. ?
' D

Figure 4.151

Ans. [n<-j2,n ='j2,n>-j2 ] • -

4-94 A simple pendulum is suspended from a peg on a vertical,
wall. The pendulum is pulled away from the wall to a horizontal
position and released as shown in figure-4.152. The ball hits

the wall, the coefficient ofrestitution being 2/ VJ. What is the
minimum number of collisions after which the amplitude of

Linear Mornenjum.aOdlfe:Go^

oscillation becomes less than 60®.

Figure 4.152

Ans. [4]

4-95 A block A of mass 2m is placed on another block B of

mass 4 m which in turn is placed on ground. The two blocks
have the same length 4d and they are placed as shown in
figure-4.153. The coefficient of friction between the block B
and the ground is p. There is no friction between the two
blocks. A small object ofmass m moving horizontally along a
line passing through the centre of mass ,of the block B-and
perpendicularto its face witha speedvcollideselastically with
the block 5 at a height d above the table.

A
2m

B
4 m 2d

I''
. 7777777777777777777777777777/..

Figure 4.153

(a) Whatis theminimum valueof v(say Vq) required to make
the block A topple ? , • ,

(b) IfV= 2vq, find thedistance atwhich themass mfalls onthe
table after collision from point P.

Ans. [^yl6ngci-6ci.J^ ]

4-96 A haihmer ofmass Mkg falls from a height h meter upon

the top of an inelastic pile of mass m kg and drive it into the
ground a distance x meter. Find the resistance of the ground
when it is assumed to be constant. Find also the time during
which the pile is in motion and the kinetic energy lost at the
impact.

. M'̂ gh (M +m)x ' 12 . -
M ' V

4-97 Two identical blocks A and B each ofmass 2 kg hanging
stationary by a light inextensible flexible string passing over a
light and Motionless pulley. A shot C, of mass 1 kg moving
vertically with velocity 9 m/s collides with- block B and get
stuck to it. Calculate:

(a) Time after whichblockB starts movingdownward



(b) Maximum height reached by5

(c) Loss of mechanical energy upto that instant

Ans. [0.9 s, 0.81 m, 32.4 J]

4-98 Ashot ofmass misfired horizontally from the top ofa
towerof height 100m,witha velocityu =.50m/sas shown in
figure-4.154. At a distance 100m from the'foot of the tower a
childthrows a ballof samemassminverticaldirection withthe
same velocity u= 50 m/s. He throws the ball such that the ball
will collides with the shot in its path and merged with itmaking
anobjectof mass 2 m.Findthe distance from thechild, where
this object lands on ground.

lOOm

y77Z:7777777777777777?7777777^^
100 m

Figure 4.154

Ans. [213.27 ra from the foot of tower]

4-99 Mass Wj hits with inelastic impact (e=0)while sliding
horizontally withvelocity valongthe common lineof centres
ofthree equal mass asshown infigure-4.155. Initially, masses
Wj and W3 are stationaryand the spring is unstressed. Find :

m, ^2
k

-bOOOOOOOOOOOOOd- '"3

Figure 4.155

(a) The velocities of/Wj, and immediately after impact.

(b) The maximum kinetic energy ofW3. .
(c) The minimum kinetic energy ofm^.
(d) Themaximum compression of thespring.

. r V . 2 -r mv
Ans. [—, 0,—mv , ,

2 9 72 6k

4-100 A spaceshipofmassMmovesin theabsence of extemal
forces with a constant velocity Vq. To change the motion
direction, a jet engine is switched on. It starts ejecting a gas jet
with velocity u, which is constant relative to the spaceship
anddirected atright angles tothespaceship motion. The engine
is shutdown when the mass of the spaceship decreases to m.
Through what angle a did the motion direction ofthe spaceship
deviate due to the jet engine operation?

u M
Ans. [a = — In — ]

.

4-101 A cannon of mass A/located at thebase of an inclined
plane, shoots a shell of mass /« in a horizontal direction with
velocityv.Towhatverticalheight doesthe cannonascendthe
inclined plane asaresult ofrecoil, iftheangle ofinclination of
theplaneis a andthecoefficient of friction between thecannon
and the plane is p.

Aos. [h ~
w^v^sina

IM g(sina+)icosa)

4-102 Aprojectile isfired with a speed uatanangle 9above
a horizontal field. The coefficient of restitution of collision
between the projectile and the field is e. How far from the
starting point, does the projectile makes its second collision
with the field ?

^ . (l+e)M^sin20
Ans. [ ]

4-103 A wedge of mass m and triangular cross section
{AB =BC=CA = 2R) is moving with a constant velocity - vi
towards sphere ofradius R fixed on smooth horizontal'table as

shown in figure-4.156. The wedge makesan elastic collision
with thefixed sphere andreturns along thesame pathwithout
anyrotation. Neglect all friction andsuppose that the wedge
remains in contact with the spare for a very short time A/,
during which the sphere exerts aconstant force F on.the wedge.

A •

B C

Figure 4.156

'X

(a) Findthe force F andalso normal force N exerted by the
table on the wedge during the time At.

(b) Leth denotetheperpendicular distance betweenthecentre
of mass of the wedge and the line of action of F. Find the
magnitude of the torque diie to the normal force N about the
centre of the wedge during the interval At.

Ans. —7=^)-
At V3

2mv

-j3At
+ mg

Amvh
k,TN =-!^ ]

Sai

4-104 A cone of mass M, radius R and height Ffis hanging
from its apex from the ceiling. Its height is vertical in this
position. Now two small beads of masses m each are now
stuck on the lateral stirface of the cone. One at the rim of its



s284,:

base and other at the surface at its mid height on its opposite
projector. In this situation find the angle made by the axis of^
the cone with the vertical. •

_ V////////////A

H

Figure 4.157

Ans. [0 = tan
ImR

3//(2/«+A/)

4-105 A chain ofmass m and length / rests on a rough surfaced

table so that one of its ends hangs over the edge. The chain

starts sliding offthe table all by itselfprovided the overhanging
part equals 1/3 ofthe chain length. What will be the total work
performed by the friction forces acting on the chain by the
moment it slides completely offthe table ? Friction coefficient
is p.

An,. [-It*]

4-106 A and B are two identical blocks of same mass 2m and

same physical dimensions as shown in figureT4.158. A is placed
over the block B which is attached to one end of the spring of
natural length / and spring constant k. The other end of the
spring is attached to a wall. The system is resting on a smooth
horizontal surface with the spring in the relaxed state. A small

object ofmass m moving horizontally with speed v at a height
dabove the horizontal surface hits the blocks along the line of

their centre ofmass in a perfectly elastic collision. There is no
friction between.^ and 5.

A

m V • k

B

Figure 4.158

(a) Findthe minimum valueof v(sayVq) suchthattheblock/4
will topple over block B.

(b) What is the energy stored in the spring when the blocks A
and B returns to their initial position as before collision ?

Ans. [(a) Vq = Zd - (b) Zero]

Linear Momentum and Its Conservation

4-107 The two masses on the right are slightly separated and
initially atrest; theleftmass is incident with speed Vq. Assuming,
head on elastic collisions, (a) if M < w, show that there are
exactly two collisions and fmd all final velocities; (b) if M> m,
show that there are three collisions and find all final velocities.

M mm

^77^7777777777777777^77777^777777,
.Figure 4.159

4-108 The block ofmass Mshown in figure-4.160, initially has
avelocity Vq to the right and itsposition is such that the spring
exerts no force on it, i.e., the spring is not stretched or
compressed. The block moves to the right a distance / before
stopping in the dotted position shown. The spring constant is
k and the coefficient ofkinetic friction between block and table

is p. As the blockmovesthe distance /, (a) what is the work done
on it by the friction force ? (b) what is the work done on it by the
spring force ? (c) are there other forces acting on the block, and

ifso, what work do they do ? (d) what is the total work done on
the block ? (e) find the value of /.

M
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Figure 4.160

1 , 1 ,
Ans. [jimg/, - ~kl, No. 0, - (nmg/ + —/:/),

^ 2mumg + +4Amv^ ^
Ik

4-109 A ball ofmass m, moving with a velocity u along x-axis,
strikes another ball ofmass 2m kept at rest. The first ball comes
to rest after collision and the other breaks into two equal pieces.

One of the pieces starts moving along y-axis with a speed v.
What will be the velocity of the other piece ?

Ans. [Vh^+v^ ]

4-110 Two spheres ofmasses 2m and 3m move towards each
other with speed u and v respectively. The centres ofthe sphere

move in the same straight line. The coefficient ofrestitution is
1/2.Find: ;

(a) The condition for which motion of each sphere will be
reversed on impact

(b) The condition for which each sphere will lose kinetic
energy on impact.

2 w „ 9 u 1



FEW WORDS FOR STUDENTS
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In previous chapters, our study of mechanics Has included the
revolution ofbodies aroundan axis7A slightly different kindofangular
motions the spring of a leather hall when thrown. This latter type of
motion is called rotational motion and is defined more precisely im
this chapter.First weconsider the motion ofsolid objectsturning about
a fixed axis, we will also discuss moving objects that combine
translational and rotational motion;: known as roiling motion.

In this chapter, we'll describe several newconcepts that are neededfor
rotatory motion, for making use of many principles that you already
know.

5.1' Rotational Kinematics

5.2; Moment ofInertia

5.3 Torque and Newton's Second Law

5.4 .The Kinetic Energy ofRotation

5.5 Angular Momentum and its Coriservqiion

5.6 'Rigid Body Rotation about a Moving-Axis

5.7 , Rolling Friction .
! ; : . .rl' . : • . • ' . "

5.8 . Rolling with Slipping .. .

5.9, Rotational Collision and Angular Momentum

5i10 Work and Power in Rotational Motion '

' i.'.-'i

In

5



In our everydaylife,we oftensee the objects in our surrounding
that rotate such as a door on its hinges, a pulley on its axle, or
a CD on a CD player turntable. Our earth is involved in two
simultaneous rotational motion. It spins on its axis once a day
and it orbits the sun once a year. At atomic and nuclear level,
all atoms and nucleons in nuclear spin and orbital motion play
an important role in their properties.

Before starting our discussion, first we will discuss the
fundamental difference between translational and rotational

motion.Asimpleexample oftranslationalmotion is dragginga
box on floor in a straight line. In translational motion each
particle of the body has the same displacement in the same
time duration. Unlike to this in rotational motion each particle
moves in a circular path (figure-5.1). All circles are concentric
with the centre at the axis of rotation. In a rotating object if a

line is drawi perpendicular to the axis ofrotation then all points
of the object on this line cover equal angles in equal time
duration hence angular velocity ofall the particles in rotational

motion is same. Ifthe body is a point mass its rotational motion

about an axis is identical to circular motion and there is only
one circle of rotation. Now first we discuss the fundamentals

behind rotational motion and then we will explain every key
concept related to rotational motion.

Figure 5.1

About equilibrium, we have studied an object at rest such as a

book on a table remains motionless if vector sum of all the

forces acting on it is zero. That is certainly true if the object is
a point mass. It is also true for an extended object ifthe two or
more forces are applied along the same line. If the forces are
not along the same line the book may turn or rotate. This will

take place even when the net force is zero. The direction in

which the book will turn, clockwise or anticlockwise, depends
on its size and shape as well as on its mass. In this chapter we
will discuss the techniques necessary for describing rotational
motion in general.

Rigid Bodies and Rotationaf Motion^

5.1 Rotational Kinematics

Rotational kinematics is the studyof relations andAnalysis of
angular displacement, angular velocity and angular
acceleration in different situations, which we have already
discussed in chapter-3, section-3.5. We can list up once again
the rotational properties along with comparison with
translational motion.

Tabie-5.1
Summaryofthe linear and rotational kinematic equations

. Linear Rotational

dx

• dt

8

II

dv dv
a= ~r ~r

dt dx

d(£> d(ii
a= —= (0—;r

dt dQ

V= M'+ at 0)= cOq + a/

S~ut+ "2 • 1 7
® 2

v^= tP'+ las = Q>o + 2a0

1
s„= u-\--a{2n-l)

1

5.2 Moment of Inertia

As we have studied Translational kinematics and dynamics in
previous chapters, in rotational motion, we will also study the
concepts of rotational dynamics. Before that one important
thing required to be discussed in detail is the Moment ofInertia.

As ^Inertia" plays an important role in definition ofNewton's
first law which is also called as inertia law, moment ofinertia is

the key concept in defining the state of rotation. It is the
property of a body rotating or which can rotate about an ^is

and which resists the change in state of body's rotational
motion. Ifbody is rotating with a constant angular velocity, it
continues with the same angular velocity unless some external
torque will act on it. Similarly ifa body is at rest about an axis of

rotation it is impossible to rotate it in an inertial fi-amewithout
application of an external torque. Moment of inertia gives a
measurement of the resistance of the body to a change in its
rotational motion. Higher the moment of inertia of a body, it
requires a high torque to produce a required change in its

motion. If body is at rest, the larger the moment ofinertia of a
body, the more difficult it is to put that body into rotational
motion. Similarly, the larger the moment ofinertia ofa body, the
more difficult it is to stop its rotational motion.
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In translation motion, the mass of a body m gives measure of
the inertiaofa body.But in rotationalmotionmomentofinertia
depends on mass of body as well as on its distribution about
the axis ofrotation.

Fora verysimple caseofcircular motion ofapointmass, shown
in figure-5.2, themomentof inertia is givenas

Figure 5.2

I=m? ...(5.1),

Here m is the mass ofparticle and r is its distance from axis of
rotation.The above relation showsthat the larger the distance
ofmass from axis ofrotation, larger the moment of inertia is.
Butbe carefiil thattherelation inequationT(5.1) is strictly valid
for point masses. . .

5^.1 Moment oflnertia of a Rigid Bodyin Rotational Motion

Have a look at figure-5.3. A body of mass M is free to rotate
about in axis of rotation passing through the body. We have
already discussed that when a body is in rotational motion, its
different particles are in circular motion of different radii.
Consideranelemental massdmin thebodyat a distancex from
theaxisofrotation. Duringrotationofbodythisdmwillrevolve
about the same axis in a circle of radius x. The moment of

inertia of the elementalmass dm is dl, it is givenas

Figure 5.3

dl = dmxr

• ;,287]
This expression can be used to find the moment inertia of
different objectaboutthe givenaxisof rotation.In nextsection
we will evaluate some standard moment of inertias of some
objects, which will beveryhelpful in study offurther sections
ofrotational motion.
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5.2.2 Moment oflnertia of Different Objects

Using equation-(5.2), we can evaluate moment of inertia of

different shaped rigid bodies. We will solve this equation for
some standard objects.

(i) Moment oflnertia of a Ring

Figure-5.4 shows a ring of mass M and radius R. To find its
moment of inertia, weconsider anelemental mass dmonit (see
figure). When the ring rotates, the element dm will revolve in a

circle ofradius R, infect here radius ofall the elements taken on

ring will be same R. The moment of inertia of this elemental
mass dm is given as

• Figure 5.4

dl= dmR^

Moment of inertia ofthe complete ring is

l=^dI=^dmR^

=R^^dm
Now the moment ofinertia ofthe whole body can be evaluated
by integrating the above expressionfor the wholebody. Thus
moment of inertia of the body is given by

1=MR^

dmx' ...(5.2)
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(ii) Moment oflnertia ofa Disc

Consider a disc of mass.Mand radius R, shown in figure-5.5.

To find the moment of inertia of it, we consider an elemental
ring of radius x and width dx. Its mass dm is given by \

M
dm =

nR'
X 2Tvcdx

Figure 5.5

Now the moment of inertia of this elemental ring is given as

dI=dmX^

or

2M 3
—TT X dx
R^

Moment of inertia of whole disc is given by integration of
above relation from 0 to R.

or

or

or

1=

2M f

= IM.
R^

1= - MR^
2

(ui) Moment oflnertia ofa Hollow Sphere

...(5.3)

As we have already discussed that generally in case of hollow
spherical section and circular arcs, we use polar form of
integration, here to find the moment oflnertia ofthe spherical
shell shown in figure-5.6, we consider an elemental ring of
width RdQ,at an angular distance 0 from the reference line. If
shell is ofmass Mand radius i?, the mass of the elemental ring
(strip) is given as

dm =
M

4nR'
X 27iJ?cos0. RdQ

RigM Bodies: and Rptadonaf MOIfdri

. Y

• \
Ae 1

Figure 5.6

The moment of inertia ofthis elemental strip is given as

dl= dm (i?cos9)^

MR'
or ;COS^(

Now the moment of inertia of the shell is given by integrating
this relation over its surface from bottom to top, given as '

or

or

or

or

1=
MR'

+—
2

cos 0 dQ

+—
2

MR' I(1-sin^ 0)cos0 dQ

MR'

MR'

1= - MR'
3

sin0-

i-il-f-i.i

sin 9

...(5.4)

(w) Moment oflnertia ofa Solid Sphere

Just by using the procedure above for hollow sphere, we can
find the moment of inertia of a solid sphere. Here instead of
using a ring or strip, we take an elemental disc at a distance x
and of width dx from the centre of sphere, as shown in
figure-5.7. The mass ofthis elemental disc is dm given as

dm =
2M

4tzR^
^n{R?-x^).dx
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Figure 5.7

Moment of inertia of this disc is

1
• dl=-

289,

Figure 5.8

dl— — dm

Moment of inertia of the whole sphere can be given by Substituting dm andintegrating this within limits from 0 toR,
integrating the abovedl withinlimits from~RXo + R.Thus gives

or

or

or

or

•+R

2 J 4Ji'
-R

2>M 7, .,4
8/?'

-2R^x'̂ )dx

3M

~ %R^

2 2= -j

-R

' 4 2R^x'̂
+R

R^x+
5 3

-R

...(5.5)

The above result can also be obtained by integrating thin
elemental spherical shells in the solid sphere within limits 0 to
R.

Alternative treatment

Instead of taking disc at a distance x from centre, we consider

a thin elemental spherical shell of radius x and width dx, as
shown in figure-5.8. Mass of this shell can be given as

dm - X . dx
4nR^

Moment of inertia of this elemental shell is given as

or

or

J 3

_ ^

" .R?'

2 2
= ~ MR^

5

(v) Moment oflnertia'ofa Solid Cone

To find the moinent of inertia of a solid cone ofihass M, radius

R and height H, we consider a disc at a distance x from the

vertex of the cone. The mass of this disc is

V/////////,

Uk

Figure 5.9

H

dm = —^— Xni^ dx
nR^H
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Here r is the radius of the disc which can be evaluated by

similar triangles shown in figure-5.9, as

- A
X H

and moment of inertia of this disc is

1 ^
£f/ = — dmr

Moment of inertia of complete cone can be evaluated by
integrating the above expression for the total height of the
cone as

or

or

or

or

H

•I

dmr'

2 R^\h)

3 MR^ r 4 ,
• — X dx
2 J

1
2

-3 ^
= —MR^

10

nH

(vQ MomentoflnertiaofaHollowCone

...(5.6)

Here we consider elemental strips of vertical width etc, at a
distance x from the vertex ofthe cone. The actual width ofthis

strip is dx sec0, where 0 is the half angle of the cone. If cone
mass is M, mass ofthe elemental strip ring is

dm =
M

nRyfR-
X 27cr. dx sec9

+ H'

H

Figure 5.10

Rigid Bodiesand Rdtatibnal Mdtlb^

Rx
Where, radius of this ring is r = —. The moment ofinertia of

ti

this ring is given as

dl=dmP'

or

or

or

or

or

n

2MR' ^ .
r-.- . X :rdX

VF^ H' H

H

/= ^dmr'
0

, ^Ir^ +h^

2MR^ f 3
H' J"

2MR-

H'

= - MR^

(vii) Moment ofInertia ofRod

X dx

H

...(5.7)

Consider a rod ofmass Mand length L shown in figure-5.11. It

is pivoted at its centre. We consider an element ofwidth dx at

a distance X from the axis ofrotation. It will revolve in a circle of

radius x when rod will rotate. Mass ofthis element is given as

M
dm = — dx

1j

Moment ofinertia ofthis element dm is

.dx.

Figure 5.11

dl - dnvP'

Moment of inertia of the complete rod is given by integrating

the above expression as

7=J dmx^

or
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or

or

M

L

m}

12
...(5.8)

If rod is pivoted at one ofits end, instead ofcentre, the limits of
integration will become 0 to L and the moment of inertia will
become

or

or

M 2 ,
X axI ~Jt

0

_ K
L

Mt
...(5.9)

We can see that when rod is pivoted at an end, moment of
inertia is higher than that obtained when it is pivoted at centre.
This is due to the difference in mass distribution from the axis

of rotation. As mass is distributed more away from the axis of
rotation, increase in moment ofinertia is more.
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5.2.3 Moment ofInertia About a GeneralAxis ofRotation

In previous sections, the moment ofinertia ofdifferent objects,
we have evaluated are about the axis ofsymmetry ofthe objects,

generally passing through the centre of mass. For evaluation

of moment of inertia about any randomly selected axis of
rotation of body we use axes theorems. There are two axes

theorems which are used frequently in problems.

1. Perpendicular Axes Theorem

This theorem is only valid for laminar objects that is only for
two dimensional objects which are rotating about an axis

passing through their centre of mass. Consider such a plate
like object shown in figure-5.12. We rotate this body about an
axis alongx-axis, lying in the plane on body and passing through
its centre ofmass. Let the moment ofinertia about this axis be

/j andnowif it is rotatedabouty-axis,whichisalso in its plane
and passing through its centre of mass. Let moment of inertia
about this axis be 1^. If the body is rotatedabouta third axis,

291

which is perpendicular to both of the previous axes and also
perpendicularto theplane of the body, its momentof inertia
is given bythesumof /j andl^.

h A"^^2 ...(5.10)

center ofmass

Figure 5.12

Proof:

We consider an elemental mass dm in the body at a distance r
from the main axis, which is perpendicular to the plane of body,
as shown in figure-5.13. Let the distance of dm from x and y
axes are a and b respectively. The moment of inertia of the
whole body about main axis will be according definition of
momentum ofinertia

or

or

or

center ofmass

Figure 5.13

/=jdmr^

/=jdm(a^+b^)

=jdma^ -t-j" dmb'

=/.. + /

2. Parallel Axes Theorem

It can be used for bodies of any shape rotating about any axis
ofrotation. Consider a body rotating about an axis passing
through it shown in figure-5.14. To fmd moment ofinertia about
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this axis ofrotation, first we find an imaginary axis BB' which is
paralleltoAA' andpassing through centre of mass of thebody.
Now we evaluate the moment of inertia of the body if it were

rotated about-55', let it be The moment of inertia of the
body about the axis AA' is given as

I=I+M(f-

Where d is perpendicular distance between the two axes AA^

and 55'This theorem will be extensively used in next sections
of this chapter.

centre ofmass.

Figure 5.14

Proof-.

Consider the body shown in figure-5.15. C is the centre of
mass of the body and P is the point in xy plane on the axis
about which we are required to evaluate the moment ofinertia.
Consider a mass dm at coordinates (jc, y) with respect to C and
let {a, b) be the coordinated of the point P. The moment of
inertia of the body about the axis AA' is given as

I=^dmr'

Figure 5.15

We have r' = {x —of' + (y- b'f', thus

Rigid Bodies and Rotationai K^tion J

1dm[ix -af +{y-bf]

• =^dm{{x^ +y^)+^dm{a^ +b^)~2a^dmx'-2b ^dmy

(5 11) =^dmf' +J -2fl (0)-26(0)

Here Jdmy and J* dmy are zero according to the definition of
centre of mass, as the sum of mass moments of all the masses

of system about centre of mass is equal to zero.

Here j" dmf' is the moment of inertia of the body about the

central axis 55', which is 7^ and in the second term j* dmd^ ,dis
a constant distance between the two axes, thus it can be written

as M^.

So we have I-I+M(f'
C

5.2.4 Application ofAxes Theorems

Moment ofInertia of a Ring and DiskAbout DifferentAxes

When a ring rotates about the symmetry axis passing through

its centre, as shown in figure-5.16(a), its moment of inertia is

MR^. Now consider anaxis along the diameter (XT)ofthe ring
shown in figure-5.16(b). Ifring is rotated about this axis and if
the moment ofinertia be I and ifwe consider another diameter

perpendicular to it (TT) and if ring rotates about this axis,
again moment of inertia remains unchanged as both situations
are identical. Now according to perpendicular axis theorem

sum of these two equal moment of inertias must be equal to

MR^ (about axis ZZ'). Thus we have

I=MR^=1+I=2I

or I=-MR^ ...(5.12)

Equation-(5.12) gives the moment of inertia of a ring when it
rotates about a diametrical axis.

Now consider figure-5.16(c). In this situation the ring is rotating
about a tangential axis which is perpendicular to the plane of
ring. Moment of inertia of the ring about this axis can be
evaluated by using parallel axis theorem as

or

I=f +MR^

= MR^+ MR^= 2MR^ ...(5.13)
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4^

z

Z'

(a)

(c)

y—_

2^

Figure 5.16

X'

(d)

Similarly,figure-5.16(d), shows a ring which can rotate about
an axistangential to ringand lyingin theplaneof ring. Again
usingparallelaxistheorem, moment of inertiaofringaboutthis
axis IS

1=1.+ MR^

or = ~ MR^+m^

...(5.14)

In this situation is the moment ofinertia about the diametrical

axiswhichis parallel to the givenaxisand passingthroughthe
centre of mass.

Similarly we can find these moment of inertia for a disc about

diametrical andtangential axes. Theresults aregiven according
to the situations shown in figure-5.17.

M.I. ofdisc aboutthe centralaxis is [figure-5.17(a)]

M.I. ofdisc about the diametricalaxis is [figure-5.17(b)]

1 7
I = - MR^=I+I=2I

or
i. ^

= - MR}
4

...(5.15)
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X

(?
X

(d)

Figure 5.17

M.I.ofdiscaboutthetangential axis perpendicular to theplane
ofdisc is [figiire-5.17(c)]

1=1+MR^

or - - MR^+ MR^

= ~ MR' ...(5.16)

M.I. of disc about the tangential axis in the plane of disc is
[figure-5.17(d)]

1=1+MR^

or = - MR^+ MR^
4

= - MR' • ...(5.17)

Moment of inertia of differentobjects can be obtained by using
axes theorems as we have obtained for ring and disc. Students
are required to evaluate moment of inertias of different objects
about anyrandomlyselectedaxis of rotation for practice.

5.2.5 Mass Distribution and Moment ofInertia

We have read that moment of inertia of an object depends on
its mass as well as its mass distribution about the axis of

rotation. There are several objects which can be derived fi"om
the basic objects by changing their dimensions. For example if
we increase the thickness of a disc it becomes a cylinder
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{figure-5.18). The expression for moment of inertia for the
derived objectwillalsoremain same. Similarly ifwethinkabout
ahollow cylinder shown infigure-5.19, it isderived from aring.
Its moment ofinertia can be given directly as ME^. Oh changing
thedimensions, expression formoment ofinertia willnotchange.

Figure 5.18 Figure 5.19

For another example consider a tliin rod with a square cross
section. If we increase its thickness of this rod, it becomes a

rectangularplate, shownin figure-5.20. The momentof inertia
of the rectangular plate can also be given by the expression
used for rod as

12
/=

Figure 5.20

Now consider a rectangular plate shown in figure-5.21, with
dimensions / x 6. If this plate is rotated about axis XX' and YY',
tlie respective moment of inertias can be given as

Rigid Bodies and Rotational Motion,

Figure 5.21

Now if this plate is rotated about the axis passing through its
centre and perpendicular to its plane as shown in figure-5.21.
The moment of inertia can be given by the sum of the above
two moment of inertias according to perpendicular axes
theorem. So the moment of inertia of plate about axis ZZ' is
given as

/ =
12

{Hb^) ...(5.18)

If we consider a box (figure-5.22), with dimensions I x b x h,
which can be rotated about its symmetry axis passing through
its centre of mass. The moment of inertia can be given by

equation-(5.18) according to mass distribution property.

Figure 5.22

The Mass Distribution Property is stated as

"Ifsize ofa body in any or all dimensions is increased in such
a way that its mass distribution about given axis of rotation
remain same then expression ofmomentofinertia also remain
same."

Illustrative Example 5.1

Findthemoment of inertia ofa spherical ballofmass m,,radius r
attachedat theend ofa thinstraightrod ofmassm^ andlength/,
if this system is free to rotate about an axis passing through an
end of the rod (end of rod opposite to sphere).
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Solution

In this system shown in figure-5.23, the total moment ofinertia
can be given as the sum ofmoment of inertia ofrod and that of
the spherical ball.

Moment of inertia ofthe rod about the axis passing through an
end is

M t
I

m

A'

Figure 5.23

^rod
Ml'

Moment of inertia of the spherical ball about the axis passing
through'its geometrical centre is

7= I
Using parallel axes theorem we get its moment ofinertia about
the axis passing through the end of rod as

Thus total moment of inertia of the system can be given as

^Total ~ ^rod'̂ ^AA'

or ^ +i—mr^

# Illustrative Example 5.2

A rod of length I is pivoted about an end. Find the moment of
inertia of the rod about this axis if the linear mass density of

rod varies asp= ax^ + b kg/m.

Solution

As mass of the rod varies with its length, here we cannot use

the expression —^ , which is only used for uniformly
distributed mass along the length ofrod pivoted at an end. In
this case we consider an elemental length dx from the axis at a

distance x. Let its mass be dm, where

Figure 5.24

or

dm = pdx

= + b)dx

295^

During rotation of rod this dm revolves in a circle ofradius x,
hence its moment of inertia dl is given as

dl=dmx^

or = (ax^ + b)j<^dx

The moment of inertia ofthe whole rod is given by integrating
the above expression within limits from 0 to / as

or

or

I

7= J* (ax^ +b)x^dx
0

ax^ hx^

5 3

al" br
-i

5 3

# Illustrative Example 5.3

Findthemoment of inertia ofhalfdiscof radius R2 andmass M
about its centre, shown in figure-5.25. A smaller half disc of

radius is cut from this disc.

Figure 5.25

Solution

Moment of inertia of this object can be obtained as we have
evaluated the moment of inertia of a disc by integrating
elemental rings of radius x and width dx.

We consider an elemental half ring ofradius x and width dx, as
shown in figure-5.26. Let mass of this elemental disc be dm,
which is given as

M dm

Figure 5.26

tiRI - nR-l
'X^TVcdx
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Moment of inertia of this elemental half ring can be given as

dl=dnv^

•M

nR^ -kR^
><1^ dx

1 /

Moment ofinertia ofthe whole object can be given by integrating
the above expressionwithinlimits fromR^ to i?2

"2

M

R^-Rfj
xx^ dx

M
or

^Ri-RfJ

-M(Rl+Rl)or
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Practice Exercise 5.1

(1) Find the moment ofinertia ofa cylinder ofmass Mradius R
and length L about an axis passing through its centre and
perpendicular to its symmetry axis. Do this by integrating an
elemental disc along the.length of the cylinder.

[4MR2+ —ML^]

(ii) Calculatethemomentofinertiaofa rodwhose lineardensity
changes from p to Tip from the thinner end to the thicker end.
The mass of the rod is equal to Mand length L. Consider the
axis of rotation perpendicular to the rod and passing through
the thiimer end. Express your answer in terms ofM, L andtl.

(iii) Find Mofthe triangular lamina
of mass M about the axis ofrotation

AB shown in figure-5.27. I
<21

Figure 5.27
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(iv) Find moment of inertia ofa hemisphere
of mass Mshowninfigure-5.28, about anaxis -j

passing through its centre of mass.

83

320
MR^

(v) Find moment ofinertia ofthe halfcylinder
ofmass Mshown infigure-5.29, about the axis

AA'.

9n

6jt
IMR^

I

/

A'

Figure 5.29

(vi) On the flat surface ofa disc ofradius a a small circular hole

of radius b is made with its centre at a distance c from the

centre ofthe disc. Ifmass ofthe whole uncut disc is M, calculate
the moment of inertia of the holed disc about the axis of the

circular hole.

\-M
^2

(vii) One quarter section is cut from a uniform
circular disc of radius R. This section has a

mass M. It is made to rotate about a line

perpendicular to its plane and passing through
the centre ofthe original disc. Find its moment
ofinertia about the axis of rotation.

Figure 5.30

(vili) Calculate the moment ofinertia of a wheel about its axis

which is having rim ofmass 24M and twenty four spokes each
of mass Mand length /.

[32A//2]

5.2.6 Radius of Gyration

We know that when a point object of mass m revolves in a
circle of radius r, itsmoment of inertia isgiven asmr^. Letan
extended object ofmass Mrotate about a fixed axis ofrotation
and its moment of inertia be I, then radius of gyration of this
object can be considered as the equivalent radius ofthe circular
motion of this object, if treated as a point mass. The previous
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statement implies thatif apointobject ofmass Af(same asthat
ofextended object) revolves ina circle ofradius K,itwill have
moment ofinertia MI^. Ifthis is equal to the previous moment
of inertia I, K is termed asradius ofgyration. Mathematically
radius of gyration can be given as

"Itis the square ofdistance, when multiplied with the mass of
the body, gives the moment ofinertia ofthe body with respect
to a given axis ofrotation"

For example, if a sphere of mass m and radius R is rotating
abouta tangential axis, its radiusof gyration canbe givenas

MK^= ~ MR^

or K= Jj R

Similarly,we can say that for a ring rotating about its central
axis J?, about diametrical axis K=R/y[2, for a disc about
central axis K=Rl4l, about diametrical axis K=RHetc.

5.5 Torque and Newton's Second Law

In section2.4, we have discussedabout the turningeffect of a
force, torque. We know that for a body to be in rotational
equilibrium, the sumof all the torqueactingon it mustbe zero.
Now what happens ifnet torque is not zero. The case is similar
ifnet forces actingon abodyisnotzero,thebodywillaccelerate
according to Newton's second law. In rotational motion also

the law holds good, but require some modification as when net
torque on a body about a given axis of rotation is not zero,
bodywillhaveangular acceleration. Themagnitude of angular
acceleration can be obtained by Newton's Second law in
rotational motion.

In translational motion we use F = ma ...(5.19)

In rotational motion we use x = / a ...(5.20)

Left hand side is the net torque acting on the body and on
righthandsideI is themoment of inertiaof thebodyaboutthe
givenaxisand a is the angular acceleration of thebody.

This corresponds to'Newton's second law for translational

motion, aaF, where torque has taken the place of force and
correspondingly the angular acceleration a takes the place of
the linear acceleration a. In the linear case, the acceleration is
not only proportional to the net force but is also inversely
proportional to the inertia ofthe body, which we call itsmass m,
thus we can write a=Flm. In case ofrotational motion moment

of inertia plays the role ofmass.

As we have discussed that the rotational inertia of an object
depends not only on its mass, but also on how that mass is
distributed. For example, a large diameter cylinder will have
greaterrotational inertia than one of equal mass but smaller
diameter(longer than previous). The formerwill be harder to
start rotating, and harder to stop as its moment of inertia is
larger. When the mass is concentrated farther from the axis of

rotation, the rotational inertia isgreater. This isthe reason why
in rotational motion themass of a bodycannotbe considered
as concentrated at its centre of mass.

For understanding the application of Newton's second law in
rotational motion, consider therodshown infigure-5.31, pivoted
atan end about which itcan rotate. Iftwo forces Fj and Fj are
applied on it as shown from opposite directions, tend to rotate
the rod. The respective torqueof these forces are givenas

Figure 5.31

Clockwise torque due to force Fj is Xj =Fj sin0 . r^

Anticlockwise torque due to force Fj is Xj =F2. /*2

LetTj >X2, therodrotates inclockwise direction with anangular
acceleration a, which canbe shown from equation-(5.20), as

ne torque is in clockwise direction, we have

FjZ-j sin0- F2r2 = a ...(5.21)

As moment of inertia of the rod of mass A/and pivoted at one

of its end is given as ^ .Above equation-(5.21) will give
initial angular acceleration ofthe rod.

Following examples willalsoexplaintheapplication ofx= /a in
different rotational problems.

# Illustrative Example 5.4

Find the acceleration ofm^ and m^ inanAtwood's Machine if
thereis friction presentbetweensurface of pulleyandthe thread
and thread does not slip over the surface ofpulley. Moment of
inertia ofpulley is I.
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Solution

As there is friction between pulley and
thread, tension in thread throughout will
riot remain same. Let on two sides ofthe

pulley tension in threadbe T,and and
the masses are going with acceleration
a. As thread does not slip of the surface
of pulley,pulleywill rotate and the linear a
acceleration of the particles on pulley at
its rim will also be a, thus its angular

acceleration can be given as

a =
R

///////A

Figure 5J2
I"-

Now we write motion equations for masses and as

or

or

or

T^-m^g = m^a

m2g -^2 = m2a

and for rotational motion ofpulley, we have

T2R - T^R =Ia

T2R-T^R=1
R

T,-T,=l^
2 1

Adding equations-(5.22),(5.23) and (5.24),we get

(^2 - =i'"l +̂ "2 +-^J^

or a —

# Illustrative Example 5.5

(mi-m2)g

/
mi + m-, + —r

R^

...{5.22)

...(5.23)

...(5.24)

...(525)

A uniform disc of radius R and mass Mis mounted on an axis

supported in fixed frictionless bearing. Alight cord is wrapped

around the rim of the wheel and suppose we hang a body of
mass m from the cord.

(a) Find the angular acceleration of the disc and tangential
acceleration ofpoint on the rim. • -

(b) At a moment t = 0, the system is set in motion, find the lime
dependence of the angular velocity of the system and the
kinetic energy of the whole system.

Rigid Bodies anCRotarionaj,;Mptfe

Solution

(a) The situation is shown in figure-5.33.
M

V7777777,

Figure 5.33

Let T be the tension in the cord for mass m going down, we

have

mg-T-ma ...(5.26)

Where a is the tangential acceleration of a point on the rim of
disc. If it.rotates with angular acceleration a, we have

a =

R

For rotational motion of disc, we have

TR=[^ MR^^ a

or

or

1
T=-Ma

From equations-(5.26) and (5.27), we have

1
mg - ~ Ma = ma

2m
or a —

M+2m
S

...(5.27)

...(5.28)

Angular acceleration of disc'cannowbe written as

a 2m 2

(b) The angular velocity of the system after time t can be
given as

co= at

or

2mg

R{M + 2m)
.t
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At this instant linear velocity of mass m is given as

„ 2mgr
r • V = CQi?=———

M + 2m

The kinetic energy of whole system is given as

(KE)
1 2 I 2

or

1 ill 11
= -- m{oiRf + - X- co^

2 2 2

or = - fi?R^{M+2m)

or
M-v2m

# Illustrative Example 5.6

A uniform cylinder of radius R and mass M can rotate freely
about a stationary horizontal axis 0. A thin cord oflength / and

mass m is wound on the cylinder in a single layer. Find the
angular acceleration of the cylinder as a function of the length

Xofthe hanging part of the cord. The wound part of the cord is
supposed to have its centre of mass on the cylinder axis.

Solution

Let w' be the mass of hanging part of the
cord as

m

m'= ~x

If the tension at the upper end of the cord,
which is in contact with the cylinder is T and
it is descending with an acceleration a, we Figure 5.34
have

T= [^yxj a ... (5.30)
For cylinder which will be rotating with an angular acceleration

a = "T, we have
R

TR = Ia

mg

...(5.31)

Here I is the moment of inertia of the cylinder plus the wound
part of the cord, given as

1= ^MR^+ y il-x)R~ ...(5.32)

From eqiiation-(5.31) and (5.32), we have

TR =
1 , ~2 /? \ n2MR^ +—a~x)R
2 r ^
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a

or T= -MR + —(l-x)R
2 / ^

a... (5.33)

From eqmtion-(5.30) and (5.33), we have

m

•xg -MR + -il-x)R
2 '

Solving, we get , a =

2mgx

{2m-^M)Rl

# Illustrative Example 5.7

a= I —XI Ra.

using

A cylinder ofmass m suspended by two strings wrapped around
the cylinder one near each end, the free ends of the string
being attached to hooks on the ceiling, such that the length of
the cylinder is horizontal. From the position ofrest, the cylinder
is allowed to roll down as suspension strings unwind, calculate

(a) The downward linear acceleration of the cylinder

•(b) The tension in the strings

(c) The time dependence of the instantaneous power
developed by gravity

Solution

(a) The situation is shown in figure-5.35. Let the downward
linear acceleration of the cylinder be a, then we have for its
linear motion

mg-2T=ma ...(5.34)

///////////////////////////////

Figure 5.35

For its rotational motion, we have

2RT=Ia
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or

or

2RT=
2 •) R

1
T= — ma

4

From equations-(5.34) and (5.35), we get

ima= Y
or

2

...(5.35)

0)) Substituting the value ofa in equation-(5.35), we get

(c) Velocity of the cylinder at time t is given as

v = qt^ —

Power developed due to gravity is

2 2 -
P = F .v = mg X — gt= — mg^t

# Illustrative Example 5.8

The arrangement shown in figure-5.36 consists oftwo identical
uniform solid cylinders, each of mass w, on which two light

threads are wound symmetrically. Find the tension of each
thread in the process of motion. The fnction in the axle of the

upper cylinder is assumed to be absent.

Solution

For the situation shown in figure-5.36, all the forces acting on

bodies are shown in figure-5.36. For translational motion of
lower cylinder is

mg-2T~m{lcd) ...(5.36)

v////////////////////////////////^

[-3-

2a ^

Figure 5.36
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As tension on the two cylinders are equal, their angular
acceleration will also be equal, thus if they are unwinding by
angular acceleration Ra, the lower cylinder will go down with
linear acceleration 2 Ra i.e. 2 a.

For rotational motion oflower cylinder, we have

2TR=Ia

or

or

1 ^ a
2TR=-mR^.-

2T= — ma

From equations-(5.36) and (5.37), we have

or

1
mg ma—2ra&

2'

a ~

...(5.37)

Substituting the value of a in equation-(5 .37), we get
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5.4 The Kinetic Energy ofRotation

Whenever a body rotates as shown in figure-5.37, there is a
kinetic energy associated with the rotation. The body consists
ofmany small particles, and the kinetic energy ofa particle, say
particle P, with mass dm has a kinetic energy dK. If at this
instant body is rotating with angular velocity co, particle P has
velocity rco. Thus the kinetic energy dK is given as

1 7
dK = — dm (m)

Figure 5.37
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The total energy of the rotating body will be given by the
integration ofthe above term for the whole mass ofbody, thus
Total energy of rotation is

K
2„2

dm r (a

CO remains samefor all the particles of the body(explained in
section-(3.5)), so

K dm r'

or ...(5.38)

Equation-(5.38) gives the kinetic energy of a rotating body
(sumof K.E. of bodyparticles) rotating withangular velocity
CO. If during rotation, centre of mass of the objectundergoes
translational motion it will have both translational and rotational

kinetic energy. Then the total energyis written as

:..(5.39)

Where is the linear velocity ofthe centre ofmass, is the
moment of inertia about an axis through the centre of mass and
CO is the angular velocity about this axis.

# Illustrative Example 5.9

In an Atwood's machine the pulley mounted in horizontal
frictionless bearings hasa radiusR = 0.05m.Thecordpassing
over thepulley carries ablock ofmass Wj = 0.75 kgatone end
and a block ofmass = 0.50 kg on the other end. When set
free from rest, the heavier block is observed to fall' a
distance 1 metre in 10 seconds. Find the moment of inertia of

the pulley. ' '

Solution

The situation is shown in fig;ire-5.38 Let
a be the linear acceleration. According
to the given problem, the heavier block
falls through a distance 1 m in 10 sec.

Now

or

1 ^
j = w?+

1=0+-

a - 1/50= 0.02 m/sec^

V/^/z

rfei

. •
ntj" 0'50 kg

Wj = 0.50kg

Figure 5.38

Let Vbe the linear velocity at the end of 10 sec., then

v = u + at = 0 + 0.02 X 10 = 0.2 m/sec.

.301:1

Whentheheavier mass falls through a distance 1m,thelossof
potential energy

= mgh = 0.75 >< 9.8 X1= 7.35joule.

Thelighter mass ascends a distance 1mandhence, thegain in
its potential energy.

= 0.50 X9.8 X1=4.9 joule

Net loss of potential energy of the system

= 7.35-4.9=2.45 joule

As there is no friction in the pulley, hence

Loss in potentialenergy= gain inkineticenergyof twoblocks
+ rotational energy ofpulley

2.45= - {m^ +m^^?•+ ~ I CO

=yK+'"2)^+ 7^(7] co=v/i;)

2 1 .r 0.2
=I(1-25)(0.2)^+2\o.05

= 0.0250 + 8/

87 = 2.45-0.0250 = 2.425

2.425
j— n Trt-a 1 1 2= 0.3031kg-m^

# Illustrative Example 5.10

Find total energy ofthe inclined rod ofmass
m shownin figure-5.39, rotatingwithangular
velocity co, about a vertical axis XX', shown
in fi^e.

Solution

The mass of element dx shown in figure-5.40 is

dm = — dx

KE ofthis dm is

dE=— (xsinO. co)^

Total energy ofrod is

Figure 539

Figure 5.40



£= sin^G. jx^dx
-'A

\ M . 2
E= —CO sin (

2 /

1 9 9 /
= — a sin 0 —

6 4

= — wa / sin 0

Alternative Solution

^A

-//

As shown in figure-5.39 momentofinertia ofmass dm is

dl=dm (x sin0)

TotalAffofrodis I=^dl =| .x^sin^G

1= — w/^sin^G
12
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Practice Exercise 5,2

(1) A uniform solid cylinderA of mass w, can freely rotate
about a horizontal axis fixed to a mount B of mass m^ A
constant horizontal force F is applied to end £ ofa light thread

tightly wound on the cylinder. The friction between the mount

and the supporting horizontal surface is supposed to be absent.
Find the acceleration of this point P and the kinetic energy of
this system t seconds after beginning of motion.

77777777777777777777777777777777?

Figure 5.41

+2m2) F t (3»j] +2m2) j
/«,(OTj + m2) 2mj(mi+m2)
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(ii) A cubical block of side V moving with velocity v on a
horizontal smooth plane as shown. It hits a ridge at point O.
Find the angular speed of the block after it hits O.

4— a —>•

M

' 0

Figure 5.42

3v

(iii) Two thin circular disc ofmass 2kg and radius 10cm each
are joined by a rigid massless rod of length 20cm. The axis of
the rod is along the perpendicular to the planes of the disc
through their centres. This object is kept on a truck in such a
way that the axis ofthe object is horizontal and perpendicular
to the direction ofmotion ofthe truck. Its friction with the floor

of the truck is large enough, so that the object can roll on the

truck without slipping. ,

y/7/77/7777777777777777////777/77/7777777.
20 cm

Figure 5.43

Take x-axis as the direction ofmotion ofthe truck andz-axis as

the vertically upwards direction. Ifthe truck has an acceleration
9 m/s^, calculate:
(a) the friction force vector on each disc and
(b) the magnitude and direction ofthe frictional torque acting

on each disc about the centre of mass O of the object.

Express the torque in the vector form in terms ofunit vector

i, j and k in x,y and z-directions.

[(a) 6/N (b) 0.6 (-y±i), 0.85 Nm]

(iv) A uniform cylinder ofradius
R is spinned about its axis to the

angular velocity oDq and then
placed into a corner as shown
in figure-5.44. The coefficient of

friction between the comer wall,

floor and the cylinder is equal to
k. How many turns will the

cylinder accomplish before it

stops ?

^87Lt(A: +l)g ^

WalM

?77777/////77777777777/.
Floor

Figure 5.44
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(v) Aflywheel with the initial angular velocity co^ decelerates
due to the forces whose moment relative to the axis is

proportionalto the squareroot of its angularvelocity. Findthe
mean angular velocity of the flywheel averaged over the total
deceleration time.

1 •

(vi) A uniform disc of radius R is first spinned about its axis to
the angular velocity co and then carefully placed with its flat
face ona horizontalsurface. Howlongwill the discbe rotating
on the surface if the friction coefficient is equal to p ?

3(0/? •

(vii) Auniformcircular dischasradius Randmassm.Aparticle
also mass m, is fixed at point A on the edge of the disc as
shown in figure-5.45. The disc can rotate freely about a fixed
horizontal cord PQ that is at a distance R/4 from the centre C at
the disc. The line yfCis perpendicular to PQ. Initially, the disc
is held vertical with the point A at its highest position. It is then
allowed to fall so that it starts rotating about PQ. Find the
linear speed of the particle as it reaches the lowest position.

Figure 5.45

(viii) A wheel ofradius 6 cm is mounted so as

to rotate about a horizontal axis through its
centre. A string of negligible mass wrapped
round its circmnference carries a mass of0.2 kg
attached to its free end. When let fall, the mass

descends through one meter in 5 seconds.
Calculate the angular acceleration ofthe wheel,

its moment of inertia and tension in the cord.

Takeg= 10,m/s^.

[4/3 rad/s^ 0.0893 kg•m^ 1.984 N]

r = 6 cm

0,2 kg

Figure 5.46

5.5 Angular Momentum and its Conservation

Throughout this chapter we have seen that by using the
appropriate angular variables, the kinematics and dynamic
equations for rotational motion are analogous to those for
ordinary translational motion. In same manner, the linear
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momentum,/? = mv, also has a rotational analog, which is called
angularmomentum, andfor abodyrotatingabouta fixedaxisit
is defined in two ways.

5.5.1 Angular Momentum of Point Objects

The magnitude of angular momentum is the evaluated by
moment oflinearmomentum. It is always evaluated withrespect
to a given point (or axis of rotation), so its value can be
evaluated by multiplying the linear momentum with the shortest
distanceof thepoint fromthe lineof momentum. For example,
consider the situation shown in figure-5.47. A particle A of
mass m is moving with a linear speed v along a straight line. If
we, findtheangularmomentum ofthisparticlewithrespectto a
point P shown in figure, it is given as

Lap= mvxd

Figure 5.47

If the position vector ofA from Pis r , then

Lap~mvxr sinO

In vector form we can write as

L =m{f xv)

...(5.40)

...(5.41)

It states that the direction of angular momentum is

perpendicular to the plane containing vector r and vector v ,
given by right hand thumb rule.

If a particle is revolving in a circular path, as shown in
figure-5.48, here the shortest distance oflinear momentum from
the centre is its radius thus the angular momentum of particle
about the centre of circle is mvr. Here the direction ofangular
momentum given by right hand thumb rule is in upward
direction along the axis ofcircular motion in figure-5.48.

L

Figure 5:48

5.5.2 Angular Momentum of a Rigid Body in Rotation

Consider an extended body in rotational motion with an angular
velocity co. This body does not have any linear momentum, but



different particles of the body have linear momentum. The
particle whichare far awayfrom the axis of rotation have larger
speed and the particles near to the axis have small speeds. Let
us consider a small element ofmass dm at a distance x from the

axis of rotation shown in figure-5.49. During rotation of the
body, this dm is in circular motion ofradius x and it will have a
linear xco, tangential to that circle. This dm has an angular
momentum given as

dL = dm {x©)x

Figure 5.49

The angular momentum of the whole body can be given by
integrating this expression for the whole mass of body as

,^dL =^dmx^(Si
Angular velocity © remains constant for all the particle of a
body in rotation. Thus

or

Z, =©Jdmx'"
L=7© ...(5.42)

Here the term Jdmx^ is the moment of inertia ofan extended
body (equation-(5.2)).

Above discussion releases that the angular momentum of
moving bodies can be obtained in two ways. Equation-(5.41)

gives the angular momentum of point objects moving in
translational or circular motions and equation-(5.42) gives the
angular momentum of extended bodies moving in rotational
motion.

Ifa body has both translational and rotational motion, then its

angular momentum is calculated by above equations but care
must be taken in calculating the total angular momentum as
right hand thumb rule gives'the direction (signs) ofrespective
angular momentums. For such cases explained above, which
have both translational and rotational motion, we use the

Rigid Bodies and Rotational Motion j

following relation to find the angularmomentum of the body
about a given point. . '

L=L+mvR. ...(5.43)

Where L is the required angular momentum, is the angular
momentum ofthe body about its rotational axis in the reference

frame ofcentre ofmass and the last term in the equation mvR is

the angular momentum of its translational motion-about the

point with respect to which the total angular momentum is

required.

Now we consider few examples, which will make the concept of

angular momentum clear to you and than we will discuss the
conservative property of angular momentum like linear

momentum.

# Illustrative Example 5.11

Find the angular momentum ofthe system ofatwood's machine

used in example-5.4 after t second from start about point O, the

axle ofpulley.

Solution

We have already evaluated the acceleration of the masses in

example-5.4. After time /, the velocity of the masses will be

V= at. The angular velocity ofthe pulley will be ©= vIR. Now

for total angular momentum, we find the sum of angular

moments of masses and the pulley about the point O.

The angularmomentum of mass Wj is

Lj =OTjVi?

The direction of is in a direction away from the plane of

paper, according to right hand thumb rule.

The angularmomentum of mass is = WjVZ?

Thedirection ofLj issame as thatofLj asit is also inclockwise
direction with respect to 0.

The angular momentum ofpulley is /,, = /© = /
R

As pulley is also rotating in clockwise direction, it is also in

same direction as that of ij and Lj- •

Thus the total angular momentum of the system at this instant

is given as , .

L = m^vR-\-m^R+I ~
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# Illustrative Example 5.12

Consider the cylinder rolling on a horizontal plane. Its linear
velocity is v and rotational angular velocity is O). Find its angular

momentum about point P on ground as shown in figure-5.50.

What happens to this angular momentum if the cylinder is
rotating in opposite direction but moving translationally in
same direction. .

Figure 5.50 '

Solution

In the given situation, cylinder has both transl'ational and
rotational motion. We find its angular momentum about P by

,using the equation-(5.43).

The angular momentum ofthe cylinder about its axis of rotation
passing through its centre of mass is given as

L =/co=
1 2
~mr I CO

and the angular momentum of this cylinder's translational
motion about P is

L^ = mvR

Total angular momentum ofcylinder about point P is given as

L = — mP'oi + mvR
2

Here, two angular momenta are added as is in the direction
outward to the plane of paper due to clockwise rotation and
mvR is also in outward direction as with respect to point P,
cylinder is moving towards right (in clockwise direction).

If cylinder rotates in anticlockwise direction and moving in
samedirection, its total angularmomentumwillnow be written
as ' '' '

L = — mt^(£>-mvR
2

5.5.3 Conservation ofAngular Momentum

In chapter-4, we have studiedaboutthe law of conservation of
linear momentum. Similar law also exist for angular momentum.

In previous case the restriction of the law depends on the^net
external force and in present case it is the net extemal torque
which'is governing the law.

For a general rotating body the angular momentum is given as

1=7(0

Differentiating the above equation with respect to time

or

dt

d(ii
= 7

dL

dt

Which is the relation oftorque acting on a rotating body. Thus

we can write the relation between torque acting on a body and
its instantaneous angular rnomentum as

T =

•dt
...(5.44)

which is also verified by Newton's second law for rotational
motion as "The rate of change of angular momentum of a
rotating bo^ is equal to the, net extemal torque acting on
it". ' •

Now we can state the law ofconservation ofangular momentum

as, if no extemal torque is acting on a body, that is dUdt = 0,
thus £ value will not change or the angular momentum of the
body remains constant. As in later part ofprevious chapter, we
have explained the concept of linear momentum conservation
in presence of extemal forceswith the help of impulse imparted
by an extemal force. Similar concept can also be defined for
rotation.

According to equation-(5.44)

dL = i dt ...(5.45)

Here the left side ofthe above equation is the change in angular
momentum of a rotating body and the right side is known as
angular impulse where t is the extemal torque acting on the
body. Here dL is the change in angular momentum'due to the
application of extemal torque for the duration dt. If extemal
torque is acting in the same direction as that of angular
momentum, it will increase and if it is acting in a direction
opposite to that of angular momentum, it will decrease. The
conservation equation can be written as

Initial angular momentum ± Angular Impulse= Final
; angular momentum

+ and- signsare used whenthe extemal torque will be acting
in the direction of angular momentum or opposite to the
direction ofangular momentum. .
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Now we will take some examples for better understanding of
the above concepts. First we take few examples ofconservation
of angular momentum in absence of external torque and then
with extemal torque.

# Illustrative Example 5.13

A disc with moment of inertia /j, is rotating with an angular
velocity cOj about a fixed axis. Another coaxial discwithmoment
of inertia which is at rest is gently placed on the first disc
along the axis. Due to fnction discs slips against each other
and after some time both disc start rotating with a common
angular velocity. Find this common angular velocity.

Solution

Due to the fiiction between their surfaces the already rotating
disc gets retarded and the new disc gets accelerated. Friction

between them exerts a torque on both of the discs, but as here
it is the internal force of the system containing two discs and
hence the torque on the two discs will also be an internal
torque of the system and according the conservation law,
internal torques can not alter the angular momentum of the
system. Thus the final angular momentum of the two disc
system must be equal to the initial angular momentum of the
system. If the common angular velocity attained by the system
is CO2J whensliding stops, we have

/iQ)i = (/i+/2)co2

/.
or CO2

•/1+/2
CO,

In this case, energy ofthe system will not remain conserved as
the torque due friction between them will do work in slowing
down first disc and speeding up the second disc and due to
firictionheat will also be generated.

# Illustrative Example 5.14

A child of mass m is standing on the periphery of a circular
platform of radius R, which can rotate about its central axis.
The momentof inertiaof platformis I. Childjumps off fi-om the
platform with a velocity u relative to platform. Find the angular
speed ofplatform after child jumps off.

Solution

Initially the system was at rest, thus the initial angular
momentum was zero. As child jumps of from the platform, it
gains an angular momentum in the respective direction. This
implies that the platform must also gain the same amount of
angular momentum in opposite direction as the giin recoils
when a bullet is fired from it.

Rigid Bodies and Rotational MotionJ

When the childjumps off, the platform gains an angular velocity
CO. Then the net velocity ofchild with respect to earth is m- i?co.

As no extemal torque is present, the net angular momentum of
system must be finally zero, thus

or

m {u-R(}i)R =/co.

co^

muR

mR^+I

In this case we can even use energy conservation as the total

kinetic energy produced in the system, the rotational energy
ofthe platform and the translational kinetic energy ofthe child

comes fi-om the chemical energy of the child as it has pushed
platform backward and itself forward. Be careful in using this

as it is applicable if and only ifduring jump, the shoe ofchild
does not slip on the platform. If slipping occurs, some energy
will be lost in fnction work. Ifno slipping occurs during jump
we have reduction in chemical energy of child is

1 7 1 9
AE= — mv + — !(£>

# Illustrative Example 5.15

Suppose in previotis example, child stays at rest on the platform
andone ofhisfiiend throws aballofmass Wj towards himfrom
a direction tangential to the platform and the child on the
platform catches the ball. Find the angular velocity of the
platform after he catches the ball.

Solution'

Again in this case no extemal torque is' acting on the system

so we can equate the angular momentum before catch and
after catch. If after catching the ball platform start rotating with
an angular speed co, we have

Angular momentum of ball about centre ofplatform before
catch =

Angular momentum ofplatform plus childplus ball after catch

/wwi? = (7+

muR
or co= -

I •\-mR?' +Wj7?'

Here note that we are conserving angular momentum with

respect to the centre pivot of the platform. This is because

when child catches the ball, it has a linear momentum and due

to it platform tend to gain a linear momentum,which develops
a normal reaction on the pivot in opposite direction and it will
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not allow the platform to move translationally. Ifplatform was

resting on a smooth plane without pivot at the centre, after

catching the ball platform will also move translationally with

its rotational motion as in that case linear momentum ofsystem
will also remain conserved.

# Illustrative Example 5.16

In previous problem, if initially the platform with the child is
rotating withan angular speedco,. If childstartwalking along
its periphery in opposite direction with speed u relative to
platform, what will be the new angular speed ofthe platform.

Solution

As no external torque is present, we can conserve angular
momentum before starting the walk and after starting the walk

by child. As child walks in opposite direction to the rotation of
platform, its angular momentum will be in opposite direction
which will tend to decrease the total angular momentum, hence

the angular speed ofthe platform must increase to maintain the
angular momentum conservation we have

(/+ =/cOj - m{u - Rdi-^R

The term on left side of the above expression is the angular
momentum of platform plus child system when child was at
rest and the first term on right side of the expression is the

angular momentum ofthe platform with increased angular speed

(CO2), when child starts walking. The second term onrightside
is the final angular momentum ofthe child. This term is negative
due to his walking in opposite direction and we have taken the

velocity ofchild as {u - iJcOj) because uis therelative speed of
thechildonplatform which is rotating withangular speedCO2 in
opposite direction.

Again as we have used in the above example, be careful, that
angular momentum conservation should always be used with
respect to earth or some inertial reference frame.

# Illustrative Example 5.17

A force F is applied tangential in the direction of rotation on a
rotatingwheelat an angularspeed o), about its centralaxis for
a time t. Find the final angular speed ofthe wheel if its moment
of inertia is / and radius is R.

Solution

In this case a torque is acting on the body in same direction as
that of its rotation. It will increase its angular momentum and
the increment can be given by the angular impulse as

,307'

Angular Impulse or change in angular momentum = FRt

If final angular speed becomes co^ wehave

/(Oj +F/?/=/co2

or ©2 = COj +
FRt

~T~

The above result can also be obtained by use ofangular speed
equation CD2 = cOj + at, where a is the angular acceleration of
the wheel, which is given by a = x/I = FR/I.

The concept ofangular impulse is used very often when dealing
with the concepts of rolling motion with slipping and some
other examples ofrolling motion. Now in next section, we will
discuss rolling motion in detail.

# Illustrative Example 5.18

A turn table of mass M and radius R is rotating with angular
velocity cOq on frictionless bearing. A spider of mass m falls
vertically onto the rim ofthe turn table and then walks in.slowly
towards the centre ofthe table. What is the angular velocity of
the system when spider is at a distance r from the centre.
Compute also the angular velocity of the turn table when the
spider is at the rim and at the centre of the table. Is the energy
of the system in this problem conserved ?

Solution

The angular momentum of the turn table is given by

Lq =/qcOq (where 1^ = rotational inertia) .

If CO be the angular velocity ofthe turn table when the spider is
at a distance r from the rim, then angular momentum of the
system will be

L={L +mt^) CO

As no external torque acts on the system, the angular
momentum is conserved, i.e.,

L=U

or

03 =

(/o +m;^)o)-/oCOo

, —MR^diQ

{lo+mr ) fl^p2
MR +mr'

CO,

1 +
2m r'

MR'

[v I^=-MR^]

...(5.46)
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When spider is at the rim, r = i?, hence

1 +

CO/

2m R'

MR^

CO/

! + •

cOq M

{M + 2m)
M

When spider is at the centre of the turn table, r = 0

...(5.47)

...(5.48)

This shows that the angular velocity ofthe turn table increases

as spider moves from the rim towards the centre of the turn

table.

The initial energy of the system is given by

...(5.49)

When the spider is.at rim, the energy ofthe system is given by

= - MR^ (£>l
4 "

(/o + m^")co„.

1 7

M

M+2m

EqM 1 7 7

2

rim

A/co

From equations (5.49) and (5.50), we conclude that

E<E.

...(5.50)

i.e. energy is lost when the spider strikes the turn table.

# Illustrative Example 5.19

A point mass is tied to one end of a
cord whose other end passes through

a vertical hollow tube, caught in one
hand. The point mass is being
rotated in a horizontal circle ofradius

2 m with speed of4 m/sec. The cord
is then pulled down so that the radius
ofthe circle reduces to 1m. Compute
the new linear and angular velocities
of the point mass and compute the
kinetic energies under the initial and
final states. Figure S.51

Rigid Bodies and Rotationa! Motlonil

Solution

Here the force on the point mass due to cord is radial and
hence the torque about the centre ofrotation is zero. Therefore,

the angular momentum must remain constant as the chord is
shortened.

Letm,Vj and cOj be themass, linearvelocity andangular velocity
ofthe point mass respectively in the circle ofradius Further
let V2 andcOj be thelinearandangular velocities respectively of
thepointmass in a circleof radiusr2- Now'

Initial angular momentum = Final angular momentum

or

or

and

J2 ZL J. ^2

^1='"2^2

V2= — ^i~T ^4 = 8m/sec."
1

CO, = — = 7=8 rad/sec.
^ r-, \

Final K.E. 2^^^^
InitialKE. ^ t ,.2

— i iCO I
2 ' '

mr^iy^lr^f v| (8)
wrj (v,/ri)^ ' (4)2

# Illustrative Example 5.20

Two cylinders having radiii?j andi?2 and rotational inertia /j
andI2respectively, are supported by fixed axesperpendicular
to the plane offigure-5.52. The large cylinder is initially rotating
with angular velocity cDq. Thesmall cylinder is moved to the
right until it touches the large cylinder and is caused to rotate
by the frictional force between the two. Eventually, slipping
ceases, and the two cylinders rotate at constant rates in

opposite directions, (a) Find the final angular velocity cOj of
the smallcylinder in terms of /j, /j, R2 and cOq. (b) Is total
angular momentum conserved in this case ?

Figure 5.52
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Solution

(a) When the two cylinders touch each other as shown in
figure-5.53, a friction force acts betweenthe two cylinders in
opposite direction due to which first cylinder is retarded and
second is accelerated, till their contact point move with same
velocity so as to stop slipping between the two. If slipping
stops after time /, then we have

/

Figure 5.53

For first cylinder

and for second cylinder

—-^2^(2/

...(5.51)

...(5.52)

Here (Oy and ©2^^ are the final angular velocities of the two
cylinders such that linear speed of the two particles in contact
on the two cylinders are equal, thus we have

/?j©jy=i?2®2/

From equation (5.51), (5.52) & (5.53)

/2©2/

^2®2/ ] . ^2®2/
or /j©o /j

R

or ®2/
/l©0i?li?2

ARi+hRi

Alternative Solution

• ...(5.53)

LetF" be the frictional force and aj, the angular acceleration,
then the torque for the large cylinder is

T,=Fi?j=/iai

©J = ©Q - ttj /

©o-©i
or a, =

...(5.54)

The final angularspeed©j of largecylinder is givenby

...(5.55)

If be the angularaccelerationofsmall cylinder,then the final
angular speed ©j is given by

Further,.

©2 = 0 + Ojf

= cOj/?

F'i?2=^2^2

From equations (5.54) and (5.57) we have

h ^2 FRo R.

From equations (5.55) and (5.56)

a,

a- ©2 J

...(5.56)

...(5.57)

...(5.58)

...(5.59)

Substituting thisvalue of ttj/aj ffotn equation (5.59) inequation
(5.58), we get

©o-©i

©2 J R.
...(5.60)

When the two cylinders move at constant rate, then

V= ©j^j = ©2i?2

© I Ri

(£>• R.

or ©j=(i?2//^,)©2 ...(5.61)

Substituting the value of ©j fromequation (5.61) in equation
(5.60), we get

©0 -(i?2 ! •'̂ l)®2

©' R.

©2^
©r

i?2 / + R\l2 ^-^2A
...(5.62)

Initialangular momentum£. = /©Q, because thesmall cylinder
is at rest.

Final angular momentum

iy= Lj+£>2 ~A ^2 ®2
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•

R, R.

Change inangular momentum,

AL =Lj.-Li

AL = (o^
I2(l-R,/R,)

Rj / Ri +R1I2 I^2A
^0

Since

Thus angular momentum is not conserved. Thus ifwe observe,
due to friction there is a net force on the two cylinders
independently, but as the two are pivoted at centre, this pivots,
must apply an external force to keep the two cylinders at rest.
Thus about any point we observe, there must be some torque
due to the forces by or on pivots, thus in this case angular
momentum is not conserved.
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5.6 Rigid Body Rotation About a Moving Axis

In this section we will extend our analysis ofthe dynamics of
rotational motion to some cases in which the axis ofrotation
moves. When that happens, the motion of the body is
combined translation and rotation. In such situation we always
consider that "Every possible motion ofa rigid body can be
represented as a combination oftranslational motion ofthe
centre ofmass and rotation about an axis through the centre
ofmass'. This is true even when the centre ofmass accelerates,
so that itIS not at rest in any inertial frame. For example when a
bowler throws a ball with spin, in air ball follows a
parabolic trajectory as it were a point mass and during this
motion the ball is also rotating about its centre of mass. The
translation of the centre of mass and the rotation about the
centre ofmass can be treated independently.

5.6.1 Energy ofa Body in Simultaneous Translation and
Rotational Motion

When abody has both translational and rotational motion, its
total energy can be written as the sum of the two respective
kinetic energies. For example, ifabody ofmass Mis rotating
about agiven axis with an angular speed co and its moment of

Rigid Bodies and Rotational Motionl

inertia about that axis isI and simultaneously the axis moves
with a linear velocity v, its total energy can be written as

K=KE, +KE
tran rot

K= — — la?'

.,.(5.63)

...(5.64)

An important case of combined translation and rotation is
rolling motion, such as the motion of the wheel shown in
figure-5.54.

Figure 5.54

The wheel is symmetrical so its centre ofmass is at its geometric
centre. The rolling motion ofthis wheel can be analyzed by
taking translational and rotational motion separately.

When centre of mass ofa wheel moves translationally with a
speed all points on itare moving with speed along with
the body in same direction and when it rotates with an angular
speed (0 about its centre, all points on it revolve in different
circular paths with the same angular speed co and the points
will have linear tangential speed ra ifthe point is atadistance
r from the axis ofrotation. Ifthe angular speed ofrotation is
such that the linear tangential speed of the points on the
periphery ofthe wheel is equal to the translational speed of
wheel, then on combining the two motions, the resultant motion
is known as pure rolling motion or rolling motion without
slipping. This isshown infigure-5.55.

Figure 5.55

Inthis situation the point on the wheel that contacts the surface
must be instantaneously at rest so that itdoes not slip. Hence
the velocity ra ofthe point ofcontact relative to the centre of
mass must have same magnitude but opposite direction as the
centre ofmass velocity Thus for pure rolling

...(5.65)
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Theabove relation is thecondition ofpurerolling. Figure 5.53
shows the velocity of a point on the wheel is the vector sum of
thevelocity of the centre ofmass andthevelocity of the point
relative tothe centre ofmass. Thus while point 1, the point of
contact, is instantaneously at rest, point 3 at the top of the
wheel is moving forward twice as fast as the centre of mass,
and point 2 and 4 at the sides have velocities at 45° to the

horizontal moving atspeed 42 times the centre ofmass.

At any instant we can think of the wheel as rotating about an
instantaneous axisof rotationthatpasses through the point of
contactwiththe ground.The angularvelocityco is the samefor
this axis as for an axis through the centre ofmass, an observer
at the centre of mass sees the rim making the same number of
revolutions per secondas doesan observerat the rim watching

^the centre ofmass spin aroundhim. Ifwe think ofthe motion of
the rolling wheel in this way, the kinetic energy ofthe wheel is

1 2
—/qU) where/qis the momentof inertia of thewheelaboutan

axis through point 1. Using parallel axis theorem/Q=7^^ +
where 7^^ is themoment of inertia ofthewheel with respect to
an axis through the centre of mass. Thus the kinetic energyin
this reference is • ' '

or
1 2 1 2
2 + 2 ...(5.66)

It is same as that given by equation-(5.64). It shows that while
solving problems of rolling motion we can solve Using both
the methods i.e. one by considering the axis of rotation at the
centre or in a reference frame attached to the centre ofmass of

the rolling body and the same problem can also be solved by
taking reference frame attached to the instantaneous axis of

rotation.

# Illustrative Example 5.21

A primitive yo-yo is made by wrapping a
string several times around a solid cylinder
with mass M and radius R shown in

figure-5.56. The end of the string stationary
while releasing the cylinder with no initial
motion. The string unwinds but does not

slip or Stretch as the cylinder drops and
rotates. Use energy considerations to find
the speed v ofthe centre ofmass ofthe solid
cylinder after it has dropped a distance h.

Figure 5.56

Solution

Theupperendof thestringisheldfixed, notpulledupward, so
thesupport in figure-5.54 doesnoworkonthe system of string
andcylinder. Thereis friction between thestringandcylinder,
because the string never slips on the surface of cylinder, no
energy is lost. Thus we can use conservation of mechanical

energy. The initial kineticenergy ofthe cylinderwas zero when
it wasreleasedfromrest andas it fallsby a distance h, thework
done by gravity is Mgh, thus we have

Final kinetic energy of the cylinder is

1 ^ 1 oK=(i +Mgh= —m4+ -• 7co

or

or - Mv^ = Mgh

or

# Illustrative Example 5.22

A rolling body (it.can be ring, sphere,... etc) rolls down from
the top ofan inclined plane as shown in fig;ure-5.57. Find how
its velocity depends on its geometry.

7777777777777777777777777777/y -v

Figure 5.57

Solution

Differentobjectshas differentexpressionfor momentofinertia.
Here weconsider thatthe moment of inertia isMl4, where Kis
the radius of gyration of the body about the axis passing

through centre of mass. Now applying energy conservation,
when the body reaches the bottom of the plane the work done
by gravity is equal to the gain in kinetic energy as-no other
work is done on it.

or

1 1
Mgh= - Mv^+ - MKT

v =

2gh

(1 +%)

1 \

V

R'

...(5.67)



;312

Equation-(5.67) shows that the bodies with same value of K
when released from top, they'll reach simultaneously at the

bottom and those with less value of K will reach earlier. If a

solid sphere and a disc K =
R

42.
ofsame radius

and rolled from the top ofan incline plane, sphere will reach the
bottom earlier.

5.7 Rolling Friction

The rolling friction is the friction acting on the bottom most

point ofthe rolling body, when it is in pure rolling motion. We
have studied that during pure rolling the contact point of the
body with the surface remains at rest, thus the friction acting
on that point is either zero or it must be static friction. In both
the cases no work is doneby the frictionand mechanicalenergy
is conserved. In example-5.16, we have used energy
conservation as work done by the friction is zero. This is the
reason why we can ignore rolling friction in case of application
ofwork-energy theorem or energy conservation. But there is a
restriction for it that the rolling body and the surface over
which it rolls are perfectly rigid. As shown in figure-5.58, the
line ofaction of the normal force passes through the centre of
the body, so its torque is zero, there is no sliding at the point of
contact, so the friction force does no work.

Figure 5.58

Figure-5.59 shows a more realistic situation in which the surface
gets deformed in front of the sphere and due to these
deformations, the contact forces on the sphere no longer act
along a single point, but over an area the forces are concentrated

on the front of the sphere as shown. As a result, the normal
force now exerts a torque that opposes the rotation. In addition,
there is some sliding of the sphere over the surface due to the
deformation causing mechanical energy to be lost. The
combination of these two effects is the phenomenon ofrolling
friction. Rolling friction also occurs if the rolling body is
deformable, as anautomobile tire.In generalproblemstherolling
body and the surface are considered rigid enough that rolling
friction can be ignored and we consider only the static friction
acting on the bottom contact of the body as shown in
figure-5.59 for dealing with the problems ofdynamics only.

Rigid Bodies and Rotational Motion

Figure 5.59

In problems ofpure rolling motion, we consider friction at the

bottom contact of the rolling body, but it does no work on the
body as point ofcontact remains at rest and the friction which
is acting at this point is the static friction which prevents this
point to slide.

Further few examples make the concept clear for the case of
static friction acting at the bottom contact of the body with the
surface.

HIllustration Example 5.23

A force Fis applied tangential at the topmost point ofa sphere
of mass M and radius R. If the grotmd is rough enough to
prevent sliding, find the linear acceleration of the sphere.

Solution

It is given that sphere does not slip on grotmd thus the friction
between ground and sphere contact is the static friction, as

point of contact P remains at rest.

For solving problem, we can choose the direction of friction

either forwardor backward and solutionwill giveus the correct
direction of it. We can solve the problem by both ways. First
we consider the direction of friction on sphere in forward
direction then on ground it is obviously in backward direction.
Figure-5.60 shows the situation.

TTTTTTZ^eziZWTTTTTTTTTTTTTTTTTy..
f

Figure 5.60

Let the sphere be moving with linear acceleration a and rotating
with an angular acceleration a, which can be related to a as
a = Ra.
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For translational motion of the sphere, we have

F+f^Ma

For rotational motion of the sphere, we have

FR-fR= a

or FR-JR=\-MR^]^j

...(5.68)

...(5.69)

For its rotational motion, we have

FR+fR={^MR}^a
As,a~ Ra, we have

or

FR^jR=\-MR^\^ —
a

R

F+f= - Ma
5
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...(5.73)

or F-f= - Ma (5 70) Adding equations-(5.72) and (5.73)

Adding equations-(5.68) and (5.70), we get

or

2F= - Ma

lOf

IM
a =

Ifwe subtract equation-(5.70) from (5.68), we get

or

2F= - Ma

lOF

IM
a =

Which is sameas found in previousmethod, nowsubstituting
this value in equation-(5.73), we get

-F+f= - M.
\1M

or

2/"= - Ma
^ 5

3 ' 3
...(5.71) or /=- —j j ...(5.74)

Equation-(5.71) givesthe frictional forceactingon the sphere
which must be less then the limiting value ofsliding friction as
the sphere bottom point ofcontact is at rest. The friction value
comes out positive implies that the direction of frictionwe've
chosen correct i.e. in forward direction. In this case the bottom

point of the surface of sphere have a tendency to move
backward so friction acts on it in forward direction.

Alternative Solution:

Nowwe re-proceed the previous caseby considering friction
acting in backward direction as shown in figure-5.61. Here
frictionon ground is in forwarddirection.

Here for translational motion of sphere, we have

-*-F

Figure 5.61

F-f=Ma ...(5.72)

Which is also same as that found in equation-(5.71) but with-
ve sign,which shows thatin thiscasethe direction of friction,
we have taken is opposite to that of the actual direction. Here
we've considered that friction is acting on sphere in backward
directionbut equatiop-(5.74) showsthat it is actingin forward
direction.

NOTE : In problemsof pure rollingyou can considerfriction
in any direction and proceed the case with the dynamic and
rotational equations. Solutionwillgiveyouthecorrectdirection
offriction.

# Illustration Example 5.24

Acylinder ofmass Mandradius Rrolls without slipping down
an inclinedplane of length/.Find the linearacceleration of the
cylinder. Also find theminimum friction coefficient required on
the inclined plane for which the cylinder does not slip.

Solution

Situation is shownin figure-5.62.Let the frictionon cylinder is
acting in backward direction as shown in figure. Let cylinder
rolls down with a linear acceleration a and along with it rotates
with an angular acceleration a, which can be related to linear
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acceleration as a = Ra. Regarding cylinder we take friction is
acting backward, solution will give us the actual direction of
friction. We write the dynamic equation for its downward
motion as

A^sin0 -/= Ma ...(5.75)
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If ^ is the coefficient of friction between the inclined plain and
the cylinder. When equality holds, the cylinder is at the verge
of slipping.Now if 0 increases slightly or \i decreases, cylinder
starts slipping and pure rolling no longer exist. Thus the value

of p for pure rolling should be such as that equation-(5.78)
always holds true, thus

1
—Mgsin0 < pMg COS0

or p> — tan0

If on surface of incline plane value of p becomes less than

1
- tan0,cylinder startssliding. Likethisproblem, inevery case

''7777777777777?7777777777777777?777777777777777:^.

Figure 5.62

there is a limiting value of friction coefficient below which no
pure rolling can take place. Thus for pure rolling a minimum
friction isrequired andthereisno maximum limitfor it if rolling

For its rotational motion, only friction is there which will exert friction is avoided,
a clockwise torqueonit as torqueof Mgand A'̂ is zero.Thuswe
have

or

or

JR=Ia

f- — Ma
•' 2

[As a= —]

...(5.76)

Using above value of/in equation-(5.75), we get

A^sin0 = — Ma

or a = — g sin0 ...(5.77)

Substituting this value of a in •equation-(5.76), we get the
friction on cylinder is

I
/= - Mg sin0

The above value of friction is positive so direction of friction
on cylinder we have chosen was correct. It implies that the
particles of cylinder at the bottom contact have tendency of
moving forward, hence friction acts on them in forward
direction. Here the cylinderis in pure rolling. Its bottommost
point which is in contact with the inclined plain is at rest, thus
the friction actingon it mustbe staticfriction which is always
less than slidingfriction. Hence for pure rollingwe musthave

/< \iMg COS0 ...(5.78)

# Illustrative Example 5.25

A plank ofmass Mis placed on a smooth surface over which a
cylinder of mass m and radius R is placed as shown in
figure-5.63. Now the plank is pulled towards right with an
external forceF. If cylinder does not slip over the surface of
plankfindthe linearacceleration of plankandcylinderand the
angular acceleration of the cylinder.

M

777777777777777777777777777777777.

Figure 5.63

Solution

As it isgiventhatcylinderdoesnot slip overthe planksurface,
it is the caseofpure rolling, we canuse friction on cylinder in
anydirection. Here wechoose toward right. Asfriction isacting
on cylinder toward right, it mustbe toward left on plank as
shown in force diagram in figure-5.64.

7777777777777777777777777^7777777.

Figure 5.64

Let plank moves toward right with anacceleration a,, cylinder
will experience a Pseudo force in left direction map due to
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which it will roll toward left with respect to plank with an
acceleration a^ As.we have used pseudo force, ^2 must be
with respect to the plank. Let its angular acceleration during
rolling bea, we have ^2 =Ro.-

For translational motionof plank,we have

F~f= Ma^ ...(5.79)

Fortranslational motion of cylinder with respect to plankwe
have

ma. -f=ma~ ...(5.80)

For rotational motion of cylinder with respect to plank, we
have

JR-Ia

jR=\~mR^or

1
or ma..

Fromequation-(5.80) and(5.81),weget

ma^ - — ma2 = ma2

or a, =

Using equations-(5.79), (5.81) and(5.82), weget

or

1 3
F-- ma2=~Ma2

2F

^ 2M+m

3F
Fromequation-(5.82) a^ =

3M+m

...(5.81)

...(5.82)

As we have already discussed that the value of^2 isrelative to
theplank. Thusnetacceleration of thecylinder willbe given as
«, - 02- Here one importantpoint is to be noted thatat the time
ofwriting rotational dynamic equation of thecylinder, wehave
taken ^2 = Fa. Here was the relative acceleration of the
cylinder with respect toplank. In such type ofproblems when
a rolling motion takes place on an inertial or noninertial frames

(bodies), the acceleration in the rotational equation must be
relative as its rolling motion takes place on its reference.

# Illustrative Example 5.26

Find the acceleration of the cylinder of mass m and radius R
and that ofplank of massMplaced onsmoothsurfaceif pulled

315 i

witha force F" showninfigure-5.65. Giventhatsufficient friction
ispresent between cylinder and the plank surface to prevent
sliding of cylinder.

M -F

Solution

W77777PW777777777777777?77777777777777.
Figure 5.65

Ascylinder does notslip overtheplanksurface, again wecan
use friction on cylinder in any direction. Here we consider
toward right. As friction is acting on cylinder toward right, it
mustbe toward leftonplankas shown in figure-5.66. Hereno
pseudo force is shown indiagram asinthis case the plank and
cylinder are attached with a string, thus both will move with
same acceleration. Planktoward rightandcylinder toward left
and as we knowthe acceleration of cylinder as such we need
not to consider the cylinder in the non inertial frame.

/

M •F

Figure 5.66

For plank the motion equationis

F-f-~T=Ma^

For cylinder, translationmotionequationis

T-f=ma2 [a^=a2= a]

For cylinder, rotationalmotionequationis

fR=Io.

Aswe've already discussed thatinrotational motion equation,
acceleration used must be relative to the surface on which

rolling takes place, there the acceleration of cylinder with
respect to the plank is 2 a. Thus we have

2a
a =

R

(\ r2aFrom torque equation fR=\^mR j

or f~ma

From equation-(5.84) and (5.85), we have

T=2ma

...(5.83)

...(5.84)

...(5.85)



Nowusingthe above value of Tin equation-(5.83)5 we get

F— ma - 2ma = Ma

or a = -

M+3m

§ Illustrative Example 5.27

A blockXofmass0.5 kg is held by a longmassless stringon a
frictionless inclinedplane of inclination30® to the horizontal.
The string is wound on a uniform solid cylindricaldrum Yof
mass 2 kg and of radius 0.2 m as shown in figure-5.67. The
drum is givenan initial angularvelocity, such that the blockX
starts moving up

Figure 5.67

(a) Find the tension in the string during motion.

(b) At a certain instant of time, the magnitude of the angular
velocityof Fis 10 rad/s. Calculatethe distancetravelledbyX
from that instant of time until it comes to rest.

Solution

(a) The forces acting on the massJFare shown in figure-5.68.
When it rises upward its speed decreases as due to mg sinO,
the system(bothmass and the drum) retards.If the retardation
in mass Xisa and the angular retardation in cylinder is a, we
can relate the two as a = Ra.

Figure 5.68

During motion the translational motion equation for mass Xis

mg sinO-T= ma ...(5.86)

For rotational motion ofcylinder the only force having torque
on it is tension T, thus

77?=/a
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77?- 1or

or T=^Ma ...(5.87)

From equation-(5.86)and (5.87), we have

or

mg sinO- — Ma = ma

2mg sin 8

M+2m
a =

Using the above value of accelerationin equation-(5.87), we
get

T=
Mmg sin 0 05 x 2 x 9.8 x 0.5

M+2m 2 + 2x0.5
= 1.633 N.

(b) MassX will stop whenthe wholekinetic energy of drum
and mass is converted into gravitational potential energy of
the mass. If mass travels a distance L before coming to rest,
its height ascended is L sin0, thus we have

1 , 1 2
—/co + —wv = mgL smO

Initially, the block has speed v = i?co. On solving the above
equation, value ofZ, obtained is

1(1, ,,,2! . 1 .../n„s2^y-MR'̂ +-m{Rm)

(M+2m)jg^0)^
4w^sin0

or =

L =
w^sinO

(2 +2x05)(O.2)^(lO)^
4 X 0.5 X 9.8 X 0.5

# Illustrative Example 5.28

= 1.224 m

A rough wedge of mass M is free to move on a smooth
horizontalplane as shownin figure-5.69.The uniform cylinder
of mass m is placed on the wedge and it begins to roll down
withoutslipping.Showthat the accelerationof cylinderon the
surface of wedge is given as

i 2gsin0(w+M)

w + 3M+2/wsin 0

Figure 5.69



[Rigid Bodies and Rotational Motion

Solution

As the cylinder is in pure rolling, we take friction on cylinder in
upward direction and on the wedge in downward direction. Let
us consider that thecylinderis rollingdownthe inlineofwedge
with an acceleration a and the wedge is accelerating toward
right due to the normal reaction of cylinder on wedge with an
acceleration All the forces acting on the two bodies are
shown in figure-5.70.

mi

7777777777777777777777777777777777.
A\ mg

7777777Z777Z^7777777777777a777777,

Figure 5.70

As wedge accelerates towards right with acceleration Op the
cylinder rolling on its inclined surface experiences a pseudo
force wflj toward leftdirection.

For translational motion ofcylinder,we write its motion equation
as • •

Along the incline

mgsinO + ma^ cos0-/= ma

Normal to incline

N-^ ma sinO= mg cosO

...(5.88)

...(5.89)

For rotational motion ofcylinder, only friction will provide the
anticlockwise torque for its rotation, we write its torque equation
as •

or

or

fR^Ia

fR=[)-mR^

f=\ma
For translation motion of wedge, we have

N sinO - / COS0 = Ma^

Multiplying equation-(5.89) by sinO,we get

Nsin0 +ma^ sin^G =mg sinO cos0

From equations-(5.91) and (5.92), we have

ma^ sin^O +/cos0=mg sinG cosG - ma^

...(5.90)

...(5.91)

...(5.92)

or

Img sinGcosG-W£3cos0

M+wsin^ 0

317;

[Using/= - ma]

Using this value of in equation-(5.88), we get

mg sin0 + m cos0

or

2mg sin 0 cos 0-wo cos 0

M+m sin^ 0
- — ma = ma

2

0 =

2g sinG (w+ M)

m + 3M+2m sin 0
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Practice Exercise 5.3

(i) A uniform solid cylinder of mass Mand radius 2R rests on
a horizontal table top. A string attached to it runs over a pulley

(disc) ofmass M and radius R that is mounted on a firictionless
axle through its centre. A block of mass Mis suspended from
the free end of the string. The string doesn't slip over the
pulley surface, and the cylinder rolls without slipping oh the,
table top. Find the acceleration of the block.

M

y7777777777Z^7777/7/7/777777/777777777.

Figure 5.71

[5/3]

(il) As shown in figure-5.72 the solid disc and pulley have the
same radii and same mass distribution. The solid disc, pulley
and the block have equal masses. The plane has a slope of30®.
The disc rolls on the incline without

slipping or loss of energy. Find
the acceleration of the hanging

block. Consider there is no

shipping of string over pulley
surface. Takeg= 10 m/s^

[2 m/s^]
Figure 5.72

(ill) The axis of a cylinder of radius R and moment of inertia
about its axis/is fixed at centre O as shown infigure-5.73. Its
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highest point A is

in level with two

plane horizontal
surfaces. A block

of mass M is

initially moving to
the right without
friction with speed Vj. Itpasses overthecylinder to thedotted
position. Calculate the speedV2 in the dotted position and the
angular velocity acquired by the cylinder if at the time of
detaching from cylinder block stops slipping on it.

V7777-777777,

[•
1+-

MR'
1 + -

MR^

(iv) A spool ofthread of

mass m is placed on an

inclined smooth plane
set at an angle 0 to the

horizontal. The free end

ofthe thread is attached

to the wall as shown in

figure-5.74. Calculate

the acceleration of the

centre of mass of the

Figure 5.73

Figure 5.74

spool, if its moment of inertia about its axis is I and the radius
of the wound thread layer is r.

gsin6

T7X

(v) A uniform solid cylinder of mass M and radius R rolls a
rough inclined plane with its axis perpendicular to the line of
greatest slope as shown in figure-5.75. As the cylinder rolls it
winds up a light string which passes over a light and smooth
pulley and attached to a mass m, the part ofthe string between
pulley and cylinder being parallel to the line ofgreatest slope.
Prove that the tension in the string is

T=
(3 + 4sin0)M/wg

3A/+8ot

Figure 5.75

Rigid; Bodies and'RotationaliMoOon:

(vi) A small uniform ball ofradius r rolls without slipping down
from the top ofa sphere ofradius R. Find the angular velocity
of the ball at the moment it breaks off the sphere. The initial
velocity of the ball is negligible.

llQg(/?+ r) ,

(vii) A homogeneous rod ^5 of

length L and mass M is pivoted

ofthe centre O is such a way that

it can rotate in the vertical plane
as sHownin flgure-5.76. The rod
is initially in the horizontal
position. An insect 5" of the same

mass falls vertically with speed V on the point C, midway
between the point 0 and B. Immediately after falling, the insect

moves towards the end B such that the rod rotates with constant

angular velocity co.

(a) Determine the angular velocity co in terms of Vand L.

(b)' If the insect reaches the end B when the rod has turned

through 90°, determine V.

S^/12][12F/7I, 7

AL
O (

Til

Figure 5.76

1/4

]5

H

5.8 Rolling with Slipping

In previous section, we have discussed about pure rolling
when body does not slip on ground. In pure rolling as no
slipping takes place, no energy is lost against friction as friction

is static at the bottom contact of the body, which will just
oppose the tendency of motion of the particles of the body.
We also know that for pure rolling, to take place, the frictionon
ground and the body particles in contact must be more then a
certain value which is required for pure rolling. Iffriction goes
below this value, it will not be able to stop the motion of the
surface particles ofthe rolling body in contact with the ground
arid slipping of body starts and sliding friction will act on the
body.

In case of slipping the bottom point of contact of the body
with the ground will no longer be at rest. It slides either in
backward direction or in forward direction depending on the
initial rotating and translating condition of the body. As the
bottom point ofcontact slides, the translational velocity of the
rolling body will not be equal to Raiand we have two possible
cases in rolling with sliding either v > i?co or v < i?ce>, which now
we will discuss in detail.

Firstwe considerthecasewhentranslation velocityof a rolling
body is more then i?co, the tangential velocity of the points on
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surface of the body. Figure-5.77 shows such a situation.

y777^^y^77777^V777777777777777777^^77^Z7777777777/
? = 0

Figure 5.77

Abilliard ball(sphere) isstruck bya cue, which imparts a liner
speed Vq to it and dueto angular impulse imparted by the cue
the ball attains an initial angular velocity ©q. The translational
and angular speed imparted tothe ball are such that v^, >
As shown in figure, the bottom contact point has both the
speeds, Vq in forward direction and in backward direction
andhere > i?©^, this pointwill skid on ground in forward
direction andexperiences sliding friction (/"= pA)in backward
direction.

In this case we can observe that sliding friction on ball is
against the translational velocity hence it will reduce the
translational velocity and simultaneously its torque on ball is
in favourof angularvelocity ©, thus it will increase©. When,
afterSome time translational speed(decreasing) becomes^equal
to tangential speedof theparticles ofball's surface (increasing),
sliding of the bottom cannot stop and pure rolling starts.

We will now deal the above situation analytically. Let us
consider that the ball moves for a time t withsliding andafter
timet purerollingstartsandobviously afterthe t slidingfriction
stops actingand again a static frictionappearswhich opposes
the tendency of motion of the contact points.

For solving the cases ofrollingwithsliding, we generally use
impulseequations(both linear and angularimpulse). In above
example if final translation velocity of body,become v and
angular velocity become ©, whenthe bodystart pure rolling,
wehavelinearandangular impulse equations of frictional force.

During sliding, sliding friction actsfora time t,which imparts a
line^ impulse ft against the initial velocity of ball, thus we
have

mVf^-ft=mv ...(5.93)

For rotational motionofball frictional forceimpartsanangular
impulse/i? r to the ball in favour of its angular velocity, thus
we have

m m
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the sliding takes place if final v for ©is known, other canbe
obtained by using v = i?© as after this instant pure rolling
starts.

During sliding, sliding friction is the only force acting onthe
ball, thus due to this the linear retardation of the ball can be
given as

a=i-=^

This gives us the distance travelled by the ball before pure
rolling starts as

s=^Qt-- at"

Due to friction (f= pA), here we can also find the angular
acceleration of the ball as

fR \xNR

I ~ I
a =

It gives us the number of revolutions that the ball has made
before pure rolling starts as

All the speedequations (bothlinearand angular) canbe used
in these problems as the linear and angular accelerations are
constant here. Nowwediscuss thesecond possibility of rolling
with sliding when translational velocity of the body is less
then the tangentialvelocity of the particles on the siuface of
the body.

Consider the situation shown in figure-5.78. Acylinderis first
spinned on its axis atan angular speed ©^ and carefully placed
on a rough surfacehaving friction coefficientp. As soon as it
is placed on the ground as shownin figure, its bottomcontact
points skid in backward direction and experience sliding
friction (f= pA) inforward direction, due towhich thecylinder
accelerates forward and gains translational speed anditstorque
will oppose the angular speed of cylinder due to which the
angular speed decreases. Similar to the previous case after
sometime when v (translational speed) will become equal to
R(o (tangential velocity of surface particles) and pure rolling
starts.

I(i>^+fRt=l(£> ...(5.94) '̂ 77777^777^:!^777^7777777777777777777777777^77^^7777777777,
t = t

Solving the above equations, we can get the time t for which Figure 5.78
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In this example, if sliding takes placefor a time t our impulse
equations will be written as - or fhdt- I-niR^ \[—

-3 J \R

For translational motion, friction increases linear speed for time [As v+i2co]
t, thus we have Dividing equation-(5.97) and(5.98),we get

0+/r = wv ...(5.95)

Initially cylinder does not have any linear velocity as it is
lowered on ground slowly (carefully).

For rotational motion, friction decreases the angular velocity
of the cylinderfor the same time t, thus we have

l(£)-fRt=I(xi ...(5.96)

Note that here v = i?co as after time t pure rolling starts. Similar
to the previous case we can write and solve the further speed
equation for required quantities in the problems.

Now we take few examples for understanding the application
ofconcept of rolling with sliding

# Illustrative Example 5.29

A thin spherical shell ofmass m and radius R lying on a rough
horizontal surface is hit sharply and horizontally by a cue.
Where should it be hit so that the shell does not slip on the
surface ?

Solution

Figure5.79shows thesituation. If cuehits theshellat aheighth
above the centre line, it shoots with an initial, speed v (say)

and it gains an initial angular speed (©(say) then according to
the problem from start v should be equal to i?co as from start
shellwillstartpure rolling. Letus takethe impulsegivenby the
cue to the ball as Fdt, then from impulse equations for the shell
we have

'////////////////////////////

0ifCOo I = 0

Figure 5.79

For translational motion

Fdt - mv

For rotational motion

fhdt=I(ii

...(5.97)

2
h=-R

# Illustrative Example 5.30

...(5.98)

A solid cylinderof massmandradiusR is set in rotationabout
itsaxis with anangular velocity co^, then loweredwith itslateral
surface onto a horizontal plane and released. The coefficient
of friction between the cylinder and the plane is p. Find

(a) How long the cylinder will move with sliding.

(b) Total work performed by friction.

Solution

(a) Figure-5.80 showsthe corresponding situation. In thiscase
sliding friction acts on cylinder in forward direction which
increases its linear speed and decreases its angular speed. If
after time t its pure rolling is started, we take its final velocity
be v^and final angular velocity be oysuch that v^= i?(xyas pure
rolling starts.

(= 0 t = t

Figure 5.80

We have linear and angular impulse equations as

For translational motion

or

0+/^ =wv^

\i.mgt = mvj- ...(5.99)

Initial momentum ofthe cylinder is taken as zero as it does not
have any translational speed.

For rotational inotion, we have

/ci)Q-//?r=/oy

1^mR '̂̂ GiQ-\imgRt= -yor .'..(5.100)
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Dividing equations-(5.99) and (5.100), we get

R(0o~2^gt

ligt= Ro3Q-2iigtor

or t =
COq/?

(b) During sliding, friction is the only force acting on the
cylinder and we know that the work done by the friction is
always negative or loss inkinetic energy ofsystem. Here at t=
0 cylinderhas kinetic energy

Er2'<

...(5.101)

Finally when purerolling starts, kinetic energy ofcylinder is

Ej.= ...(5.102)

During sliding the acceleration of cylinder due to friction

if= pmg) is a=-^ =pg, thus after time tit gains avelocity
1

At thismoment pure rollingstarts, thus its angular velocity at

,. . . V-g^ 1this instant is ©,= — = —— = - cOf,
•'A R 3

From equation-(5.102),finalkinetic energyis

12
...(5.103)

According to WorkEnergytheorem, workdoneby frictioncan
be given as

W^=E^-E,

Substituting the value of and £^from equation-(5.101) and
(5.103), we get

=- —mco^^

# Illustrative Example 5.31

A billiard ball is struck by a cue. The line of action of the
applied impulse ishorizontal andpasses through thecentre of
the ball. The initial velocity ofthe ball is v^. If is the radius, M
isthemass of theballandp is thecoefficient offriction between
the ball and the floor, find how far the ball moves before it
ceases to slip on the floor.

Solution

The situationis shownin figure-5.81. In the case as discussed
before,thevelocityof thebottomcontactis in forward direction
asdue tostriking the cue along the centre line, itcan notimpart
any angular impulse to the ball and hence no initial angular
velocity. Friction on ball acts in backward direction which will

decrease its linear speed and increases the angular velocity
until it starts pure rolling. Ifthe ball moves a distance s in time
t after which it starts pure rolling, we have the equations of
linear and angular impulse for ball as

and

r=o t=t

Figure 5.81

mvQ-ft=mv [v= finalvelocity ofball]

^+fRt=I-

[— = final angular velocity of ball]
K

Dividing the above equations we get

mvQ~ft

or

or

mv

jRt

wvq - \xmgt 5

~ 2[xmgt

/==
2vo
^Pg

[For sliding/= pwg]'

As friction is the only force on the ball in backward direction
and Vq its initial speed.After time t, ball startspure rollingand
during thistime the ball covers a horizontal distance givenas

1 2 /
5" = Vq? - —pgr [As acceleration a= — = pg]

2 m
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Practice Exercise 5.4

(i) Aplank ofmass w,with auniform sphere ofmass placed
on it restson a smoothhorizontal planeas showninfigure-5.82.
A constant horizontal force F is applied to the plank. With
what accelerations will the plank and the centre of the sphere
move provided there is no sliding between the plank and the
sphere.

IF

F
'"l

Figure 5.82

IF

7mi+ 2w2 ' 7/wi + 2ffJ2

(ii) Acylinder ofmass mand radius Risresting onaho.rizontal
platform (which isparallel to the X-Yplane) with its axis fixed
along the T-axis and free to rotate about its axis as shown in
figure-5.83. The platform isgiven a motion inthe AT-direction
given by X= Acos (ojt). There is no slipping between the

"cylinder and platform. Find the maximum torque acting onthe
cylinder during its motion.

Z

[ - mAR(X]

x = A cos (s>t

Figure 5.83
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between thecylinder and the plane isequal to p.Find :

(a) How long the cylinder will move with sliding.

(b) The total work done bythe sliding friction force acting on
the cylinder.

3ng 6

(iv) Abilliard ball ofmass mand radius Rinitially atrest, is
given a sharp horizontal impulse by a cue. The cue is held
horizontally a distance h above the centre line as shown in
figure-5.84.

TTTTTTZTXwX^^TTTTTTTTTTTTZ^TTTTTTZ^TT^TTTTTTPTTTX

Figure 5.84

The ball leaves the cue with a speed and, because of its
"forward engUsh" eventually acquires a final speed of 9/7vo,
find the value of h.

4/?

(v) A hollow sphere is released from the top of an inclined
plane of inclination 0. (a) What should be the minimum
coefficient of friction between the sphere and the plane to
prevent sliding ? (b) Find the kinetic energy of the ball as it
moves down a length / on the incline if thefriction coefficient
is half the value calculated in part (a).

2 7[-j tan9, -g mgl sin9]

5.9 Rotational Collision and Angular Momentum

Inprevious chapter, we have discussed head on and oblique
collisions. In this section we will discuss the different cases of
collision of two bodies in which during or after collision
rotational motion of the body is also taken into account.

////
A

(ill) A uniform solidcylinder of mass mandradius R is set in
rotation about its axis withanangular velocity cOq, thenlowered
onto a horizontal surface and released. The coefficient offiiction Figure 5.85
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Wefirstdiscussthe simplestcase of a collisionwhichis shown
in figure-5.85. Arod^5ofmass Mand length!, ishinged atthe
point A, is hanging vertically. Asmall ball ofmass mmoving
with aspeed uhorizontally strike the end Bofthe rod elastically.
Let us consider that after collision the rod will start rotating
with angular speed co and the ball continues to move forward
witha lessspeedv. So theballmayreboundbut weneednot to
consider this case, as if ball will rebound, the result will give
the velocity vnegative. The values ofvand co inthis problem
can be obtained in two ways using energy and angular
momentum conservation or using impulseequations.

NOTE About Hinge at Point A: Students should note that
when ball will strike the rod, and external impulse will be
developed at the hinge which will prevent the rod to move
forward, as rod can only rotate, can not translate. Due to this
external impulse linear momentum of the system can not be
conserved but angular momentum can be conserved about the
highashereis noexternal torque or angular impulse aboutthe
hinge.

As stated in above paragraph, here we cannot use linear
momentum conservation but as no external torque is present
we use angular momentum conservation about the hinge as

muL = mvL +
ML

2\

CO ...(5.104)

Here mulis theangular momentum of theballbefore striking
the rod and it is the onlyangular momentumbefore collisionas
rodis atrest. After collision asballwill move with a speed vin
same direction, its angular momentum is mul and that ofrod is

/co as it startsrotationwithinitial angular velocity co.

Ascollision iselasticweusekinetic energyconservation before
and after collision as

1 2 1 2 1
— mu=—mv+-

Ml}^
CO ...(5.105)

Now using the above two equations, we get the values of v
and CO.

The other way of solving this problems
is by breaking Equation-(5.104). It can
be broken in two parts ifrequired in some

problems usingimpulse equations. Again
consider the initial case when ball strikes

the rod, a normal force is developed
between the surface of ball and that of

rod due to the push of ball against rod,
the situation is shown in figure-5.86.

Fdt

Figure 5.86

Fdt
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This interaction for F acts for a short duration (say di) when
the ball and rod are in contact. Itretards the bal1and its torque
accelerates the rod in anticlockwise direction. We can use
the impulse equations for ball (linear) and rod (angular).

Formotion ofball, we have thelinear impulse equation as

mu—Fdt = mv ...(5.106)

Formotion ofrod, we have the angular impulse equation as

G + F/c/r+Zco

or FLdt =
MU

CO ...(5.107)

Ifwe use the above two equations along with equation-(5.103),
we can solve the problem. Here ifequation-(5.106) and (5.107)
aremerged, it results equation-(5.104). This type of working
might beofmore utility insolving the problem instead ofdirectly
using energy conservations.

Theprevious case might also be of inelastic or partial elastic
collision. If in previous problem with same initial conditions
the collision is partial elastic and the coefficient of restitution
is given as e, the angular momentum conservation equation-
(5.104) remains same as noexternal torque is acting butnow
we cannc)t use energy conservation as collisions not perfectly
elastic.. Here we use the defmition ofcoefficient of restitution
that it is the ratio of velocityof separationafter collisionto the
velocity ofapproach before collision. In this case it is used as"

/co-v
e ~

or ...(5.108)

Solving theequation-(5.104) and(5.108), wegettheresults v
and CO. If this collision wereperfectly inelastic, we use e = 0,
which comes from equation-(5.108), v=Leo, as no separation
occurs inperfectly inelastic collision. Here it isimportant tobe
noted that the ball and rod will be separate even if inelastic
collision takes place because ball is in translational motion and
rodis inrotational motion. Figure 5.87 explains the situation.

V =Zco

Figure 5.87
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a

Figure 5.88

Now we consider one more case when ball sticks to the end of

the rod and will rotate along with the rod. It is a specific type of
inelastic collision as ball sticks to rod. Here again we can neither
use energy conservation nor the coefficient of restitution
equation. Only angular momentum conservation equation is
sufficient for solving the problem as one of our previous
variables reduces, the linear velocity of the ball. Consider
figure-5.88. Ball'androd will start togetherin rotationwith an
initial angular velocity 00. Thus we write the angular momentum
conservation equation as

muL = /co

muL =
^ r2^

\-mL CO

[Here7=M.I. ofrodplus ball]

...(5.109)

Here moment ofinertia ofthe system is taken combined that of
rod plus ball as both are in rotational motion with angular
velocity co after collision. Equation-(5.109) will give us the
angular velocity co of the system.

Now we discuss another case when rod is not hinged at an
end. Consider the collision shown in figure-5.89. Here rod ^5
is placed ona smooth surface which isfreeto moveonit anda
ball moving witha velocity u strikes elastically at a pointP of
the rod at a distance d from the rod's centre as shown in figure.

O

Figure 5.89

As no external force is acting on the system, here we can also
conserve linear momentum along with angular momentum.

When the ball strikes the rod, the instantaneous axis ofrotation

is taken at the centre of the rod hence the equation of angular
momentum conservation is written about the centre ofthe rod.

Rigid Bodies and Rotafioriai Motion

If aftercollision, ballmoves with speed Vj and centre of rod
moves with speed and due to angular impulse of collision
onrod, it also rotates anticlockwise withsome angular velocity,
let it be co, thenaccording to angular momentum conservation
we have

mud=mv^d+I(ii

or mud=mv^d+
ML

2\

12 )
CO ...(5.110)

From linear momentum conservation, we have

mu~ WV] + MV2 ...(5.111)

If collision is elastic, kinetic energy of system must remain
conserved before and after collision. Thus'we have .

1 •, 1 2 I , I (ML^
co^ ...(5.112)

Equations-(5.110), (5.111) and (5.112) gives the unknown
parameters after collisions Vj, V2 and co. If this collision is not
elastic, we use coefficient of restitution instead of energy
conservation equation-(5.112), as

(vj + day) - V]
e = ...(5.113)

Here V2 +c/ co is the linear speed ofpointP after collision as rod
moves translationally with velocity V2 androtates with angular
velocity co and Vj isthe final velocity ofthe ball after collision.
For inelastic collision, e can be taken as zero.

# Illustrative Example5.32

A small disc and a thin uniform rod oflength L, whose mass is
T) times greater than the mass of the disc, lie on a smooth
horizontal plane. Thediscisset inmotion, inhorizontal direction
and perpendicular to the rod, with velocity v, after which it
elastically collides withthe endoftherod.Findthevelocity of
the disc and the angularvelocityof the rod after the collision.
At what value ofr; will the velocity ofthe disc after the collision
be equal to zero ? Reverse the direction ?

Solution

The situation is shown in figure-5.90. If mass of disc is m, then
mass of rod = ti/w, If Vj and be the velocity ofthe disc and
rod after.collision, using linear momentum conservation, we
have

mv - mvj + riwv2
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Figure 5.90
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dW=FRdQ

or dW=xdQ

If the wheel rotates from an angle 0j to an angle 02, the total
work done by the torque is

"^2

1 ...(5.116)

or V= Vi + T1V2 •(5.114) jf torque is constant during rotation than we can also use

Ifafter collision, rod starts rotating with angular speed co, using
conservation of angular momentum, we have

L
mv— =

12

L
co + wvj —

or

or

1
V= — riZco + Vj

6(V-V;)
CO

r[L
...(5.115)

As,collision is elastic, using kinetic energy conservation, we
get ,

1 2 1 2 1 2 1 2- OTV =-WV,+ -ri^v^+ 2

or

Solving for we get

4-ti
V, = V

4 + 7]

(v-v,)'

Here we can see that iszero if t) =4 and Vj will benegative
when T) >4.

5.10 Work and Power in Rotational Motion

When someone pedal a bicycle, work is done in moving it.
There areseveral examples ingeneral life like this when energy
is ^pent inrotating work. Such asa rotating motor drives water
from a tank to theseveral floors of abuilding or a rotating car
engine drives thecar. Thiswork canbeexplained using torque
and angular displacement.

For example,suppose a force F is acting tangentialat the rim of
a pivoted wheel. Let the wheel rotate through an angle c/0 in
time dt, the work done by the force is given asF. ds, where ds
is the displacement produced by the force F and it is givenas
ds = R c/0, thus we have

r=T(02-0j)-TA0 ...(5.117)

The equation-(5.116) is the rotational analog of the relation

^"71 P'ds, for the work done byavariable force in translational
displacement.

If force applied is not tangential but at an angle to the radial
direction ithasanaxial orradial component which would dono
workbecause the displacement of thepointof application has
onlya tangential component. An axial or radialcomponent of
force would alsomake nocontribution to thetorque about the
axis ofrotation, thus above equations-(5.ri6) and (5.117) are
valid for any force no matter in which direction the force is
acting.

Whena torque doesworkon a rotating rigidbody, thekinetic
energy changes byanamount equal tothework done according
to the workenergy theorem. The agent who is doingworkon
the rotating body is giving energy to it, the amount of energy
supplied or work done on it per second is known as the
rotational power. If in time dt, work done is dW,we have

dW cB

dt
= T

dt

Here dWIdt is the rate of doingwork, or powerP, and dQIdt is
the angularvelocity co of the rotating body, so

F = tco ...(5.II8)

The above relation is the rotational analog of the relation
F = F. V for translational motion.

Practice Exercise 5.5

(i) A solidwoodendoor 1mwideand2 mhighis hingedalong
one side and has a total mass of 50 kg. Initially open and at
rest, the door is struck at its centreby a handfulof stickymud
ofmass 0.5kgtravelling at 12m/sjust beforeimpact. Findthe
final angular velocity of the door.

[^rad/s]
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(ii) A thin uniform square plate with side / and mass Afcan
rotate freely about a stationary vertical axis coinciding with
one of its sides. A small ball ofmass m flying with velocity v at
right angles to the plate strikes elastically to the centre of it.
Findthevelocity oftheballv' aftertheimpact andthehorizontal
component of the force which the axis will exerton theplate
after the impact.

3m-4M
2.,2llMm'-v

^3m +4M ' l(2m +4my

(ili) A smalldiscofmassmslidesdowna smooth hill of height
hwithout initialvelocityand getsontoa plankof massA/lying
on the horizontal plane at the base of the hill as shown in
figure-5.91. Dueto friction between the discandtheplankthe
disc slows down and, beginning with a certain moment, moves
in one piece with the plank. Find the total work performedby
the friction forces in this process.

[-

Figure 5.91

mMgh

M + m

Kigid Bodiesiand Rotational Motion 1

(iv) A man of mass stands on the edge of a horizontal
uniform disc of mass ^2 and radius R which is capable of
rotating freely about a stationary vertical axis passing through
its centre. The man walks along the edge of the disc through
angle 6 relative to the disc and then stops. Find the angle
through which the disc turned the time the man stopped.

2/71)6

2ffJ] + 7712

(v) A uniform rodAB of length2/ and mass 2mis suspended
freely atA andhangs vertically at restwhena particleof mass
m is fired horizontallywith speed v to strike the rod at its mid
point. If theparticle isbrought to restbythe impact, fmd; (a)
the impulsive reaction?XA, (b) the initial angular speedof the
rod, and(c) the maximum anglethe rod makeswiththevertical
in the subsequent motion.

[mvIA, 3v/8/, cos"'|l- |̂]

(vi) A metre stick is held verticallywith one end on the floor
and is then allowed to fall. Find the speed of the other end
whenit hits the floor, assuming that the end of the floordoes
not slip. Take g = 10 m/s .

[yfiO m/s]
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Discussion Question
Q5-1 Can a single force applied to a body change both its
translational androtationalmotion? Explain.

Q5-2 A meter stick, halfof which is wood and the other half

steel, ispivoted at thewooden endanda force is applied to the
steel end. Next, it is pivoted at the steel end and the same force

is applied at thewooden end. Does one get the same angular
acceleration in each case ? Explain.

Q5-3 Howaswimmerjumping form a height isable to increase
the number ofloops made in the air ? '

Q5-4 The melting of the polar ice capshs supposed to be a
possible cause of the variation of the earth's time period of
rotation.'Explain. • . • - •

Q5-5 The angular velocity of the earth's rotation, it is
2 Tc rad/day, in whichreferenceframewe are thinkingof?

Q5-6 When anelectrical motor isturned on,it takes longer to
come up to final speed if there is a grinding wheel attached to

the, shaft. Why ?

Q5-7 Does a body rotating about a fixed axis have to be
perfectly rigid for all points on the body to have the same
angular velocity andthe sameangular acceleration ? Explain.

Q5-8 Ifyourolltoweggs onanincline plane, it ispossible to
tell which one is raw and which one is boiled. How ?

Q5-9 If you stop a spinningraw egg for the shortest instant
you can and thenrelease it, the eggwill start spinningagain.If
you do the same to a hard boiled egg, it will remain stopped.
Explain it.

Q5-10 A helicopter has a large main rotor that rotates in a
horizontal plane and provides lift. There is also a small rotor on
the tail that rotates in a vertical plane. What is the purpose of
the tail rotor ?

Q5-11 Abodyis in purerollingon a surface. Is it necessarily
being acted upon by an external torque ?

Q5-12 Whyit is moredifficultto revolvea stonebytyingit to
a longer string than by tying it to a shorter string ?

Q5-13 A thin wheel can stay upright on its rim for a
considerable velocity,while it falls from its upright position at
the slightest disturbance, when stationary. Explain.

Q5-14 If there are two discs of equal masses and thickness
are made from differentmaterials (differentdensities), which
disc, will have the larger moment of inertia about the central
axis.

Q5-15 A cylindrical container filled with cheese and another
identical can filledwithbeer both roll downan incline plane.
How different their linear and angular accelerations.

Q5-16 A person sits near the edge of a circular platform
revolving-with a uniform angular-speed. What will be the
changeinthe motionof theplatform? Whatwillhappenwhen
the person starts moving from the edge towards the centre of
the platform ? . , ,, , .

Q5-17 The harder you hit the brakes while driving forward,
the more the front end ofyour car will move down and the rear
end move up. Why 7 What happens .when, accelerating
forward? • -

Q5-18 A car's speedometerread the speed of car. Will there
be a correction in speedometer if tyres become old (snowed
tyres).

Q5-19 When car is moving on a horizontal icy floor, if its
brakesare locked,wheels stopsrotatingand startsliding.What
happens to rotational kinetic energy ?

Q5-20 A rear wheel drive car accelerates quickly from rest,
and the driver observes.that the car noses up. Why does it do
that ? Would a front wheel drive car do that ?

Q5-21 A disc rotates with constant angular velocity. Does a
point on its rim have a tangential acceleration or a radial
acceleration ? Are these accelerations constant ? '

Q5-22 A disc is fnst spinned and then placed gently on a
rough floor with its surface horizontal. Will centre of mass of

disc advance in some direction ? Explain.

Q5"23 A cylinder ofmass Afand radius R can rotate about its
axis ofsymmetry. Can mass inside the cylinder can be distributed
such that the moment of inertia of it become more than MR^.

Q5-24 A disc ofmetal is melted and recasted in the form ofa

solid sphere. 'What will happen to the moment ofinertia about
a vertical axis passing through the centre ? What will happen if
it is recasted in the form ofa thin ring.

Q5-25 A wheel is rolling without slipping on a horizontal
surface. In an inertial frame ofreference in which the surface is
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at rest, is there any point on the wheel that has a velocity that
ispurely vertical ? Isthere any point that has ahorizontal velocity
component opposite to the velocity of the centre of mass ?
Explain. Whatwould be the results if wheel is slipping with
rolling ?

Q5-26 If the atmosphere suddenly condensed into a solid
mass and formed a thin layer on the siuface ofthe earth, what
effect would it have on the time ofrotation ofthe earth about it

axis?

Q5-27 A point particle travels in a straight line at constant
speed. The closest it comes to the origin of coordinates is a
distance /. With respect to this origin, does the particle have
nonzero angular momentum ? As the particle moves along its
straight line path, does its angular momentum with respect to
origin change.

Q5-28 An electric grinding wheel rotates for some time after
the power is turned off, but an electric drilling machine stops
after few seconds of turning off the power. Why ?

Rigid Bodies and:Rotational Motion

Q5-29 A cylindricalcan rotates at constantangularvelocity
about a vertical axis. There is no friction and no external torque.

At the bottom of can there a thick layer of ice, which rotates
with the can. Suppose the ice melts, but none of the water
escapesfi-om the can. Is the angularvelocitynow greaterthan,
the same as, or less than the original velocity ? Explain.

Q5-30 A student stands on a table rotating with an angular
speed CO while holding two equal dumbbells at arm's length.
Withoutmovinganything else,the twodumbbells aredropped.
What changes willbe there in motion, if any ? What wouldbe
the changesif he bringthe dumbbells to keep in touchwithhis
chest by folding his arms ? Explain.

Q5-31 In previous question, ifthe student standing on a table
(at rest) free to rotate about its central axis holding a rotating
disc with smooth handles attached to its central axis ofrotation.

Initially he keep the axis of disc vertical such as the disc is
rotating in a horizontal plane. What happens if he tilt the axis
of rotating disc by 90® to make the disc to rotate in vertical
plane. Explain the concept in the problems.
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ConceptualMCQsSingle Option Correct
5-1 Acylinder rolls up an inclinedplane, reaches some height,
and then rolls down (without slipping throughout these
motions). The direction ofthe frictional force acting on the
cylinder are:
(A) Uptheincline whileascending anddown theincline while

descending. .
(B) Up the incline while ascending aswell asdescending.
(Q Down theincline while ascending and up theincline while

descending.
p) Down the incline while ascending as well as descending.

5-2 Let/j and be the moments of inertia of two bodies of
identical geometrical shape, thefirstmade ofaluminium andthe
secondofiron then fora given axis of rotation ;
(A)/i</2
(B) h=h
(Q l,>h
P) Relation between /j and depends on the actual shapes

of the bodies.

5-3 A string ofnegligible thickness is wrapped several tinies
around a cylinderkept on a rough horizontal surface. A man
standing at a distance I from the cylinderholds one end of the
string and pulls the cylinder towards him. There isnoslipping
anywhere. Thelength ofthestring passed through thehandof
the man while the cylinder reaches his hands is:

(A) /

(Q 3/

^7^77^77777777777777777^^.

Figure 5.92

P) 2/

P) 4/

5-4 If there is no external force acting on a non rigid body,
which of the followingquantities must remain constant ?
(A) Angular momentum p) Linear momentum
(Q Kinetic energy p) Moment ofinertia

5-5 Ahollow sphere andasolidsphere having samemass and
sameradiiare rolleddowna rough inclinedplane:
(A) The hollow sphere reaches the bottom first
p) Thesolid sphere reaches the bottom with greater speed
(Q Thesolid sphere reaches thebottom with greater kinetic

energy

p) The two spheres will reach the bottom with same linear
momentum

5-6 When a steady torque acts on a rotating rigid body, the
body:
(A) Gets linear acceleration only
P) Getsan angular acceleration
(Q Continues to rotate as a steady rate
P) None of these

5-7 Awheel ofradius 20 cm ispushed to move it on a rough
horizontal surface. It is found to move through a distance of
60cmontheroad during thetime it completes one revolution
about the centre. Assume that the linear and the angular
accelerations are uniform. Thefrictional force acting on the
wheel by the surface is :
(A) Along the velocityof the wheel
P) Oppositetothe velocityof the wheel
(Q Perpendicularto the velocityof the wheel
P) Zero

5-8 Thedensity ofa rodgradually decreases from oneendto
the other. It is pivoted at an end so that it can move about a
vertical axis through the pivot. Ahorizontal force F isapplied
on the free end in the direction perpendicular to the rod. The
quantities, that donot depend onwhich end ofthe rod ispivoted,
are:

(A) Angular acceleration
p) Angular velocity when therodcompletes one rotation
(Q Angular momentum when therodcompletes one rotation
P) Torque ofthe applied force

5-9 Aman stands inthe middle ofa rotating table which hasan
angular velocity co. He is holdingtwo equal masses at arms
lengtii ineach hand. Without moving his arms hejust drops the
two masses. How will betheangular speed oftable getchanged?
(A) It will be greater than CO
P) It will be less than q
(Q It will not change
p) The increase ordecrease will be decided by the quantity of

the masses dropped.

5-10 Iftwo circular discs ofthesameweight andthickness are
made from metals of different densities, which discswill have
the larger moment ofinertia about its central axis ?
(A) Cannot be predicted
p) Discwith larger density
(Q Disc with smaller density
p) Both have same moment ofinertia

5-11 In theprevious question, thesmallest kinetic energy at
the bottom ofthe inclinewillbeachieved by:
(A) The solid sphere
P) The hollow sphere
(Q The disc
P) All willachievesamekineticenergy
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5-12 Abody isrotating uniformly about avertical axis fixed in
an inertial frame. The resultant force on a particle ofthe body
not on the axis is :

(A) Vertical
(B) Horizontal andskewwiththe axis
(Q Horizontal and intersecting the axis
P) None of these .

5-13 A circular table rotates about a vertical axis with a constant

angular speed co. A circular panrests ontherotating table and
rotates'along withthe table. Thebottom of the pan is covered
with a uniformthick layer of ice whichalso rotateswidi the pan.
The ice startsmelting. The angularspeedof the rotatingtable ;
(A) Remains the same

(B) Decreases

(Q Increases

p) May increases or decreases depending upon thethickness
ofice layer

5-14 A uniform rod is kept vertically on a horizontal smooth
surface at a point O. If it is rotatedslightlyandreleased,it falls
dovm on the horizontal surface. The lower end will remain:

(A) At O

P) At a distance less than //2 from O
(Q At a distance HI from O
p) At a distance larger than //2 from0

5-15 Aperson sitting firmly overa rotating stoolhashis arms
stretched. Ifhe folds his arms, his angular momentum about the

axis ofrotation:

(A) Increases P) Decreases
(Q Remains unchanged p) Doubles

5-16 A solid sphereand a hollowsphereare identicalin mass
and radius. The ratio oftheir moment ofinertia about a diameter

(A) lA>h
(B) h=h
(Q lA<h
P) Depends on the actual values of t and r

5-19 AplankPisplaced onasolid cylinder S,which rolls ona
horizontal surface. The two are of equal mass. There is no
slipping atany ofthe surfaces incontact. The ratio ofthe kinetic
energyof P to the kinetic energyof 5" is :

IS :

(A) 5:3

(Q 1:2

P) .1:1

P) 3:5

5-17 Consider four bodies-a ring, a cube, a disc and a sphere.

All the bodies have the same diameter, equal to the length of
the cube on each edge.All rotate about their axes through their
respective centres of mass. Which one has the largest moment
ofinertia?

(A) Ring P) Cube
(Q Disc P) Sphere

5-18 A circular disc A ofradius r is made from an iron plate of
thickness t and another circular disc B ofradius 4 r is made from

another iron plate of thickness r/4. The relation between the
moments ofinertia and is:

(A)
(B)

(Q

P)

1:1

2:1

8:3

11:1 tttttpttttPttttt?.
Figure 5.93

5-20 The locus of all the points on theA-7 plane, about which
the momentof inertiaof therod alongan axisparallel toz axis is
same as that about O is [The rod is lying in AZplane]:

Y

'X

Figure 5.94

(A) Straight line
(Q Parabola

P) Circle
P) Ellipse

5-21 A particle moves witha constant velocity parallel to the
A-axis. Its angular momentumwith respect to the origin:
(A) Is constant p) Remains constant
(Q• Goes on increasing P) Goes on decreasing

5-22 A body is rotating non uniformly about a vertical axis
fixed in an inertial frame. The resultant force on a particle ofthe
body not on the axis is :
(A) Vertical
P) Horizontal and skew with Ae axis
(Q Horizontal and intersecting the axis
P) None of these

5-23 Two uniform solid sphereshaving unequal masses and
unequal radii are released from rest from the same height on a
rough incline. Ifthe spheres roll without slipping :
(A) The heavier sphere reaches the bottom first
p) The bigger sphere reaches the bottom first
(C) The two spheres reach the bottom together
P) The information givenis not sufficient to tell whichsphere

will reach the bottom first

5-24 A sphere canroll withoutslippingon a surface inclinedat
an angle 0 if the fiiction coefficient is more than (2/7)g sin 0.
Suppose the friction coefficient is (l/7)g sin 0. If a sphere is
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released from rest onthis incline then which of the following
are possible situations:

(A) It will stay at rest •
(B) It will make pure translational motion

(Q It will translate and rotate about the centre

(D) The angularmomentumof the spheres about its centre will
remain constant

5-25 Out of two eggs, both equal in weight and identical in
shape and size, one is raw and the other is boiled. The ratio

between the moments of inertia of raw to boiled one, about a
central axis, will be:

(A) Equal to one (B) Greater than one
(Q Less than one (D) Less than half

5-26 The angular velocity of the engine (and hence of the

wheel) ofa scooterisproportional to thepetrolinputper second.
The scooter is moving on a frictionless road with uniform

velocity. If the petrol input in increased by 10% the linear
•velocity of the scooter is increased by :

(A) 50% (B) 10%

(Q. 20% (D) 0%

5-27 Only under gravity and some initial impulse a sphere
cannot roll without sliding on :

(A) A smooth horizontal surface

(B) A smooth inclined surface

(Q A rough horizontal surface
(D) A rough inclined surface

5-28 Aclosed cylindrical tubecontaining some water (not filling
the entire tube) lies in a horizontal plane. If the tube is rotated
about a perpendicular bisector, the moment of inertia ofwater

about the axis:

(A) Increases

(B) Decreases

(C) Remains constant

(D) Increases if the rotation is clockwise and decreases if it is

in anticlockwise

5-29 Let and be moments of inertia ofa body about two
axes .4 and 5 respectively. The axis^ passes through the centre

of mass of the body but B does not: .

(A)

(B) If</^, the axesare parallel
(Q Ifthe axes are parallel,

P) If theaxesarenotparallel,/^ >7^

5-30 A circular platform is free to rotate in a horizontal plane
about a vertical axis passing through its centre. A tortoise is
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sitting attheedge ofthe platform. Now, the platform isgiven an
angular velocity cOq. When thetortoise moves along a chord of
the platform witha constant velocity (w.r.t. the platform), the
angularvelocityof theplatforma)(/) willvarywithtimet as :

co(0 (»(/>

(A) (B)

co(0 e)(/)

(Q P)

5-31 A triangleplate of uniform thicknessanddensity is made
to rotate about an axis perpendicular to the plane of the paper
and (a) passing through A. and (b) passing through B, by the
application of the sameforce,FatC (midpoint ofAB)as shown
in the figure-5.95. The angular acceleration in both the cases

are and respectively, then :

(A) a^ = a^
(Q a.>af

Figure 5.95

(B) aA<as

P) aA= as = 0

5-32 A satellite is revolving round the earth. If the universal
gravitational constant(G) was decreasing imiformly with time
for the satellite, the quantity that still remains constant is :
(A) Weight p) Radius
(Q Tangential speed P) Angularmomentum

5-33 A body is rollingwithoutslippingon a horizontal plane.
If the rotational energy of the body is 40% of the total kinetic

energy,.then the body might be :
(A) Cylinder p) Hollow sphere
(Q Solidcylinder p) Ring

5-34 A person is sitting near the edge of a rotating platform.
When he walks towards the centre, then :
(A) Moment of inertia of system increases
P) Angular velocity of platform decreases
(C) Angular velocity of platform increases
P) An^lar velocityof platformremains unchanged
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5-35 A pencil is placedverticallyon a table top with its point
endup and its stickyeraser enddown.As it fallsover fromthis
unstable position, its point of contact with the
table remains stationary during its fall, the
tangential acceleration of its tip.
(A) decreasing continuously
(B) .exceeds g at some instant
(Q becomes g just before hitting the table

. . . Figure 5.96
P) IS constant

5-36 A disc of radius R is spunto an angular speedco^ about
its axis and then imparted a horizontal velocity of magnitude

(HqR
(at t = 0) with its plane remaining vertical. The coefficient

of friction between the disc and the plane is p. The sense of
rotation and direction of its linear speed are shown in the

figure-5.97. Choosethe correctstatement. Thediscwill retumto
its initial position:

^77777777777777777777777.

Figure 5.97

(A) ifthe value of|i< 0.5

(B) irrespective ofthe value of p (ji > 0)
(Q ifthe value ofO.5 < p< 1

P) ifp>l

Rigid Bodies and Rotational Motion ^

5-37 A rod of mass M and length L is placed on a smooth
horizontal table and is hit by a ball moving horizontally and
perpendicular to lengthofrodandsticksto it.Thenconservation
ofangularmomentumcan be applied:
(A) About any point on the rod

p) About a point at the centre of the rod
(Q About end point of the rod
p) None

5-38 Ablockofmasswis

held stationary against a

rough wall by applying a
force F as shown in

figure-5.98. Which one of

the following statements is

incorrect ?

(A) frictionalforce/=wg

P) normal reaction

(Q F will not produce a torque

p) N will not produce any torque

I
-2fl-

Figure 5.98

5-39 Ifnet external torque, about a point, acting on the system

is zero, then we can surely say:

(A) Kinetic energy of the system remains constant

P) Mechanical energy of the system remains constant
(Q Torque oflntemal forces is zero

P) Momentum of systemwill remain constant
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NumericalMCQsSingle Option Correct
5-1 The moment ofinertia ofcylinder ofradius a, mass A/and
height h about an axis parallel to the axis of the cylinder and
distant b from its centre is :

(A) + • (B) +

(Q \M(c? +b') (D) jM
3 12

5-2 AB and CD are two identical rods each of length L and
mass Mjoined to form a cross. Find the M.I. of the system

about a bisector of the angle between the rods {XY):

c

\

\
N

0

\

N
\

\

(A)

(C)

ML-

12

MD

D

Figure 5.99

(B)
ML^

(D)
AMD

5-3 A solid uniform disk ofmass m rolls without slipping down
an inclined plane with an acceleration a. The frictional force on
the disk due to surface of the plane is :

(A) Ima

(Q ma

(B) -ma

P) -^ma

5-4 A solid sphere of mass m and radius R is moving with

velocity ofcentre ofmass v / and angular velocity about centre

of mass cl) /. If the coefficient of friction between the sphere
and ground is |i, the frictional force vector is (consider v = co/?):

Figure 5.100

(A) pmg(i+A) CB) «(£+/)

(Q P)

5-5 A discofmassMand radiusR isrollingwithangular speed
CO on a horizontal plane. The magnitude ofangular momentum

of the disc about a point on ground along the line ofmotion of
disc is:

(A) (1/2) Afflict) P)
(Q {y2)MR^Gi P) IMR^di

5-6 Figure-5.101showsa smallwheel fixed coaxiallyon a bigger
one ofdouble the radius. The system rotates about the common

axis. The strings supporting A and B do not slip on the wheels.
Ifx andy be the distances travelled by ^4 and B in the same time
interval, then;

(A) x = 2y

(Q

Figure 5.101

P) x=y
P) None of these

5-7 The centre ofa wheel rolling on plane surface moves with
a speed Vq. Aparticle on the rim of the wheel at the same levelas
the centre will be moving at speed:

(A) Zero p) Vq

(Q V2vo p) 2vo

5-8 Figure-5.102 shows a smooth inclined plane fixed in a car
accelerating on a horizontal road. The angle ofincline 0 is related
to the acceleration a ofthe car as a = g tan 0. Ifthe sphere is set

in pure rolling on the incline:

Figure 5.102
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(A) It will continue pure rolling
(B) It will slip down the plane

(Q Its linear velocity will increase
p) Its linear velocity will decrease

5-9 A points is located on the rim ofa wheel ofradius R which

rolls without slipping along a horizontal surface with velocity v.
The total distance travelled by the point A between successive

moments at which it touches the surface is :

(A) 4R _ (B) 2R

(Q SR P) -JSR

5-10 A hollow straight tube of length 21and mass m can tum
freely about its centre on a smooth horizontal table. Another

smooth uniform rod of same length and mass is fitted into the
tube so that their centres coincide. The system is set in motion
withan initialangularvelocitycOg. Find the angularvelocityof
the tube at the instant when the rod slips out of the tube :

(A)-^

(Q ^

COr

(B) ^

COr

P) -f

5-11 The moment of inertia of the pulley system as shown in
thefigure-5.103 is4kgm^. The radii ofbigger and smallerpulleys
2 m and 1 m respectively. The angular acceleration ofthe pulley
system is: (take = 10 m/s^)

(A) 2.1 rad/s^
(Q 1.2rad/s2

4 kg

5 kg

Figure 5.103

P) 4.2rad/s2
P) O.brad/s^

5-12 A uniformladder of length 5 m is placed against the wall
as shown in the figure-5.104. If coefficient of fiiction p is the
same for both the walls, what is the minimumvalue ofp for it not
to slip ?

/4m

... I

Figure 5.104

Rigid Bodies and Rotational Motion

(A) (B)

(Q M=3 (D) ^=7

5-13 Two rings of the same radius and mass are placed such

that their centres are at a common point and their planes are

perpendicular to each other. The moment ofinertia ofthe system
about an axis passing through the centre and perpendicular to
the plane of one of the rings is.

(mass ofthe ring = w, and radius = r):

(A)

(0 •

P)

P) 2mr^

5-14 A body is uniformly rotating about an axis fixed in an
internal fi:ame of reference. Let A he a unit vector along the
axis of rotation and B be the unit vector along the resultant
force on a particle P ofthe body away fi^om the axis. The value

of A.B is:

(A)!' ^ P)-l
(G) 0 p) None of these

5-15 The moment of inertia of a uniform semicircular wire of

mass Mand radius r about a line perpendicular to the plane of
the wire through the centre is :

(A) Mr^ P) 1/2(M^)
(Q 1/4(M^) P) 2/5(M^)

5-16 A uniform rod of mass m and length I makes a constant
angle 0 with an axis ofrotation, which passes through one end
ofthe rod. Its moment of inertia about the axis will be :

3

,2

(A)

(Q
mP

sin^ 0

(B)

,(D)

ml-

3

inll
3

sin 0

cos'

5-17 A particle of mass m and charge Q is attached to a string
of length /.-It is whirled in a vertical circle in the region of an
electric field E as shown in the figure-5.105. What is the speed
given to the particle at the point B, so that tension in the string

when the particle is at A is ten times the weight ofthe particle ?

Figure 5.105
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(A) ^ (B)

(Q
QEl

m
P) J5

m

5-18. A particle is attached by a light string of length 3a to a
fixed point and describes a horizontal circle of radius a with

uniform angular velocity co. If, when the particle is moving in
this manner, is suddenly stopped and then let go, find its velocity

when the string is vertical in its subsequent motion :

(A) [2ga(3-2V2)]'° (B) IgQ-lS)

(Q ga0-l42) (D)
Iga

3-2V2

5-19" A uniform circular disc placed on a rough horizontal
surface has initially a velocity Vq and an angular velocity coq as
shown in the figure-5.106. The disc comes to rest after moving

some distance in the direction of motion. Then

(A) j

(Q

ZV777Z^7777777777,

Figure 5.106

(B) 1

P) 2

V.
is

5-20 A cubical block of mass M and edge a slides down a

rotigh inclined plane of inclination 0 with a uniform velocity.
The torque ofthe normal force on the block about its centre has
a magnitude:

(A) Zero (B) Mga
(Q MgasinB.. P) l/2(A/ga sin0)

5-21 A hoop ofradius r weights m kg. It rolls-without sliding

along a horizontal floor so that its centre of mass has a speed v
m/s. How much work has to be done to stop it?

(A)

(Q

• (B) mv^

1 2
P)

335-,

5-22 A uniform rod AB of length / rotating with an angular

velocity co while its centre moves with alinear velocity v̂ ^.
Ifthe end A ofthe rod is suddenly fixed, the angular velocity of
the rod will be;

(A) 4C0

(C) f

A U

Figure 5.107

P)
CO

P)

5-23 A homogeneous cylinder ofmass A/and radius r is pulled
on a horizontal plane by a horizontal force F acting through its

centre of mass. Assuming rolling without slipping, find the

angular acceleration ofthe cylinder;

(A)

(Q

IF

3Mr

F

3Mr

P)

P)

3F

IMr

F

IMr

5-24 A disc of massWq rotates freelyabouta fixedhorizontal
axis through its centre. A thin cotton pad is fixed to its rim,
which can absorb water. The mass of water dripping onto the

pad is n per second: After what time will the angular velocity of

the disc get reduced to half of its initial value ?

(A)
2Wf

(Q

Figure 5.108

P)

P)

3wo

2|i

5-25 A particle of mass m is projected with a velocity u at an
angle of0 with horizontal. The angular momentum ofthe particle
about the highest point of its trajectory is equal to :



g36

(A)

(Q

w^^sm^9cos9

mu^ sin^ 9cos9

2^.

(B)

(D)

Imu^ sin^ 8cos0

3g

"x "y

2mu sin 9 cos 6

3g

5-26 A body is in pure rotation. The linear speed v ofa particle,
the distance r ofthe particle from the axis and the angular speed
CO ofthe body are related as co = v/r. Thus :

1(A) cooc —

(Q co=0

(B) coocr

(D) CO is independent of r.

5-27 Oneendofa uniformrodofmassmandlength/ isclamped.
The rod lies on a smooth horizontal surface and rotates on it

about the clamped end at a uniform angular velocity co. The
force exerted by the clamp on the rod has a horizontal
component:

(A) m(i?l (B) Zero
(Q mg ' P) (1/2) mco^/

5-28 A manpushesa cylindrical drumthroughaboard of length
/ as shown in figure-5.109. The drum rolls forward on the ground

adistance of ^. There is no slipping at any instant. During the
process of pushing the board the distance moved by the man

on the ground is :

y^TTTTTTTTTTTZ/

_L I

Figure 5.109

(A) y (B) f

(Q / P)
3/

5-29 A smooth uniform rod of length, L and mass M has two
identical beads of negligible size, each of mass m, which can
slide freely along the rod. Initially, the. two beads A and B are at

the centre ofthe rod and the system is rotating with an angular
velocity cog about an axis perpendicuto to the rod and passing
through the midpoint of the rod.

( *
I
1 1

H i/2 L/2 H

Figure 5.110

Rigid Bodies and Rotational Motidhy

There is no external force when the beads reach the ends ofthe

rod. The angular velocity of the system is :

(A) COg

(C) COg

M

M + 6m M + 6m

P) Zero

5-30 A sphere and circular disc of same mass and radius are
allowed to roll down an inclined plane from the same height

without slipping. Find the ratio of times taken by these two to
come to the bottom ofincline :

(A) Vl4 : Vis

P) V2 ;1

P) 15:14

P) 7:9

5-31 A uniform disc ofmass M— 2.50 kg and radius/? = 0.20 m
is mounted on an axle supported on fixed frictionless bearings.
A light cord wrapped around the rim is pulled with a force 5 N.

On the same system of pulley and string, instead of pulling it
down, a body ofweight 5 N is suspended. If the first process is
termed A and the second B, the tangential acceleration ofpoint
P will be:

5N

(Pull)
[A]

?ng= 5N

[£]

Figure 5.111

(A) Equal in the processes A and B.
p) Greater in process A than in B.

(Q Greaterinprocess5thaniny4.
p) Independent of the two processes.

5-32 Two identical discs are moving with the same kinetic
energy. One rolls and the other slides. The ratio oftheir speeds

•>

is:

(A) 1:1

(Q 2:3

(B)

P)

V2 : S
1:2

5-33 A bit of mud stuck to a bicycle's front wheel of radius r
detaches and is flung horizontally forward when it is at the top
ofthe wheel. The bicycle is moving forward at a speed v and it
is rolling without slipping. The horizontal distance travelled by
the mud after detaching from the wheel is:

(A) yjlrv^/g

(Q

P)

P) ^jl6rv^ Ig ,
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5-34 Acylinder isreleased from rest from the top ofanincline
plane of inclination 60® where friction coefficient varies with

2-3jcdistance xas p= ^ Find the distance travelled by the
cylinder on incline before it starts slipping:

(A) 1/3 m (B) 1/V3m

(Q 3m (D) |̂3m

5-35 Portion of^5 ofthe wedge shown infigure-5.112 isrough
andBCissmooth. Asolidcylinder rolls without slipping from^i
toB.Theratioof translational kinetic energyto rotational kinetic
energy, when the cylinder reaches point C is ;

A

(A) 3/4
(Q -7/5

AB^BC

Figure 5.112

(B) 5

P) 8/3

5-36 Aballis thrown down a lawn insucha waythatit initially
slides with a speed Vq without rolling. It gradually picks up
rotation motion. Find the speed ofthe ball at which there will be
rolling without slipping:

(A) f vo (B) fvo

(Q f>'o (D) jVo

5-37 A uniform sphere of mass m and radius r rolls without
slippingdowna inclinedplane, inclinedat an angle: 45® to the
horizontal. Find the magnitude offrictional coefficient at which
slipping is absent:

(A) P) 7

(Q (D)

5-38 The mass of earth is increasing at the rate of 1 part in
5 X10^^ per day due to the acceleration ofmeteors falling
normally on the surface of earth evenly everywhere. Find the
corresponding change ofperiod ofrotation ofearth, taking the
earth to be a sphere of tmiform density;
(A) 8X10-^^hr/day P) 5x iQ-^V/day
(Q 3XiQ-i^hr/day P) 4x IQ-^^hr/day

•'•••I-
5-39 A pendulum consists of a wooden bob of mass m and
length /.Abullet ofmass mj is fired towards thependulum with

aspeed v^. The bullet emerges out with avelocity ^ and the
bob just completes the motion along avertical circle. Then Vj is

(A) P)
Wi

(Q I -W P) f

5-40 A hollow sphere ofouter radius R is allowed to roll down
onan incline without slipping and it reaches a speed Vq at the-
bottom oftheincline. Theincline isthenmade smoothbywaxing
and the sphere is allowedto slide withoutrollingand now the

speed attained is What is the radius of gyration of the

sphere about an axis passing through its centre ?

(A) a/j R P) ^

(Q ~ P) .t/3

5-41 A thin uniform heavy rod of length I hangs from a
horizontal axis passing through one end. The initial angular
velocity0 thatmustbe imparted to it to rotateit through90°is :

(A) VJ77

(Q V2i77

O

Figure 5.113

CB) 1/3^77

(D) VeiTy

5-42 A hollowsphereofradiusR andmassmis fullyfilled with
water ofmass m. It is rolled down a horizontal plane such that
its centre of mass moves with a velocity v. If it purely rolls :
(A) Kinetic energy of the sphere is 5/6mv^ •
p) Kinetic energy of the sphere is 4/5 mv^
(Q Angular momentum of the sphere about a fixed point on

ground is 8/3 mvR

P) Angularmomentum of the sphere about a fixed point on
ground is 14/5 mvR
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5-43 Let jP be a force acting on a particle having position
vector F. Let T be the torque of this force about the origin,
then :

(B)(A) r •T = 0 and F •x = 0

(Q F •x 0 and F •X= 0

•X = 0 and F •X 9^ 0

(D) F-X 9^ 0 and F-x 0

5-44 A body having its centre of mass at the origin has three
ofitsparticles (a,0,0), (0,a, 0), (070;^7). Themoments ofinertia
ofthe body about the Xand Yaxes are 0.20 kg-m^ each. The
moment ofinertia about the Z-axis: ^

(A) Is0.20kg-m2
(B) Is0.40kg-m2

(Q •Is0.20V2kg-m2
(D) Cannot be deduced with this information

5-45 Where must the cue hit a billiard ball so that it rolls without

sliding from the start ifR is the radius of the ball ?

2(A) At aheight y Rabove centre.

(B) At a height equal to the radius from table
(Q At a height equal to 2R from the table

(D) At aheight equal to y from table.

5-46 A thin circular ring of mass M and radius r is rotating
about its axis with an angular speed co. Two particles having
mass m each are now attached at diametrically opposite points
ofring. The angular speed of the ring will become;

(A)

(Q

(0 A/

M + m

(0(M - 2m)
M + 2m

(B)

(D)

(oM

M + 2m

ay(M + 2m)

M

5-47 A sphere ofmass m is given some angular velocity about
a horizontal .axis through its centre, and gently placed on a

plank of massm. The coefficient of frictionbetweenthe two is
p. The plank rests on a smooth horizontal surface. The initial
acceleration of the sphere relative to the plank will be :

(A) Zero

(Q 7/5 Pg

''////////////////////A

Figure 5.114

(B) pg

P) 2pg

Rigid Bodies and:Rotational Motion

5-48 Aparticle ofmass 10kg is moving witha uniform speed
of6m/sec, in;c-y planealongtheline3y= 4x+10 themagnitude
ofits angular momentum about the origin in kg - m^/s is :
(A) Zero P) 80

(Q 30V2 P) 120

5-49 A fly wheel rotates aboutan axis. Due to friction at the
axis, itexperiences angular retardation proportional toitsangular
velocity. If its angular velocity falls to half the value while it
makes n revolutions, how many more revolutions will it make
before coming to rest ?

(A) 2n , P) «
(Q n/2 P) rt/3

5-50 Ifthe distance ofthe moon from earth is and the period
of revolutionis T^, then the mass of the earth is :

(A)

(Q

4^
GT^

4^
GT^

P)

P)

4^
GT^

gtI

5-51 A body ofmass m slides down smooth incline and reaches
the bottom with a velocity v. If the same mass were in the form
of a ring which rolls down similar rough incline, the velocity of
the ring at bottom would have been :

V2 V(A) V

(Q v/^/2

P)

P) V275.V

5-52 A flywheel rotating about a fixed axis has a kinetic energy
of360 joules when its angularspeed is 30 rad/sec. The moment
of inertia ofthe wheel about the axis ofrotation is :

(A) 0.6 kg Xmetre

(Q O.Skgxmetre^
P) O.lSkgxmetre^
P) O.VSkgxmetie^

5-53 A wheel initially at rest, is rotated with a uniform angular
acceleration. The wheelrotates throughan angle0^ in firstone
second and through an additional angle ©2 in the next one
second. The ratio 02/9] is :
(A) 4 P) 2
(Q 3 - P) 1

5-54 A thin uniform circular disc of mass M and radius R is

rotating in a horizontal plane about an axis passing through its
centre and perpendicular to the plane with angular velocity co.
Another disc of same mass but half the radius is gently placed
over it coaxially. The angular speed ofthe composite disc will
be:

(A) 5 (0/4 P) 4co/5 .
(Q 2 0^5 p) 5co/2
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5-55 Arodofmass Mandlength / issuspended freely from its
endand it canoscillate in thevertical planeaboutthepointof
suspension. It ispulled to one side andthen released. Itpasses
through theequilibrium position withangular speedco. What is
the kinetic energy while passing through the mean position ?
(A) Mf-a? (B)
(Q (P) Mf(s?l\2

5-56 A tube of length L is filled completely with an-
incompressible liquid of mass Mznd closed at both the ends.

The tube is then rotated in a horizontal plane about one of its
endwithauniformangularvelocityco. The forceexertedby the
liquid at the other end is :

(A) 0) MgP-L

(Q
Map-L

(D)

5-57 We have two spheres, one of which is hollow and the
other solid. They have identical masses and moment of inertia

about their respectively diameters. The ratio of their radius is

given by:

(A) 5:7 (B) 3; 5

(C) V3 : Vs (D) V3 : V?

5-58 A Stick of length L and mass M lies on a fnctionless

horizontal surface on which it is free to move in any way. Aball
of mass m moving with speed v collides elastically with the
stick as shown in figure-5.115. Ifafter the collision ball comes to

rest, then what should be the mass of the ball ?

M

(A) m = 2M

(Q m = M2

Figure 5.115

(B) m = M

(p) m = M/4

i

5-59 A uniform circular disc of mass 2m and radius R placed
freely on a horizontal smooth surface as shown in the figure-
5.116. Aparticle ofmass m is connected to the circumference of

the disc with a massless string. Now an impulse Jis applied on

the particle in the directions shown by dotted line. The

acceleration ofcentre ofmass of the disc just after application

ofimpulseis(If/= 10N-sec.,m= VlOkg and.^ =25cm.):

(A) 1 m/s^
(Q 3m/s2

2R

Figure 5.116

(B) 2 m/s^
(D) 4m/s^
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5-60 Moment of inertia ofa uniform hexagonal plateaboutan
axisLUis T as shownin the figure-5.117. The momentof inertia
(about axis XX") of an equilateral uniform triangularplate of
thickness doublethatof thehexagonal plate is (Ratio of specific

P' oxgravity — = 3):
Ph

(A) I
(Q /

P

(a)

X

//
1/

/"
X"

(b)

Figure 5.117

(D) Zero

Paragraphfor Questions 61 & 62

A simplified model of a bicycle of mass M has two tires that
each comes into contact with the ground at a point. The wheel
baseof thisbicycleis JV, and thecentreof massC ofthebicycle
is located midway between the tires and a height h above the
ground. The bicycle is moving to the right, but slowingdown at
a constant acceleration a. Air resistance may be ignored.
Assuming that the coefficient of sliding friction between each
tyre and the ground is \x and that both tyres are skidding (sliding
without rotating). Express youranswer in termsofw, h,Mand g.

h w H

Figure 5.118
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5-61 What is the maximumvalue of |i so that both tires remain
in contact with the ground :
(A) Wjlh (B) hllW
(Q IhfW P) Wlh

5-62 What is the maximumvalue ofa so that both tyresremain
in contact with the ground ?

(A)

(Q

Wg

hg
2W

(B)
2h

P) 2Wg

5-63 A rod of mass m and length 2R can rotate about an axis
passing through O in vertical plane. A disc ofmass m and radius
RI2 is hinged to theotherendP of therodandcanfreely rotate
about P. When disc is at lowest point both rod and disc has
angular velocity co. If rodrotates bymaximum angle0 = 60"with
downward vertical, then co interms ofRand g will be(all hinges
are smooth)

Q [7

Figure 5.119

<« P)
3g

\23R

p) none of these

5-64 Three identical cylinders of radiusR are in contact. Each
cylinder isrotating withangular velocity co. Athinbeltismoving
without sliding on the cylinders. Calculate the magnitude of
velocity ofpointP withrespect to Q.PandQ are two points of
belt whichare in contactwith the cylinder.

(A) 2Ra

(C) R(i3/2

Figure 5.120

p) Rco

P) R<i)y/3

Rigid Bodies and Rotational Motion^

Paragraphfor Question Nos. 65 to 67

Ifno external force is acting on the system, net linear momentum

of the system is conserved. If system is acted upon by some
externalforce,thecomponentof momentum ofthesystem,along
which no external force is present or their vector sum is zero, is

conserved. If a sharp blow is given to a body its linear
momentum changes immediately. Change in angular momentum
not only depends on the magnitude of the blow but also on

point of application. In the case of symmetrical body we take
the axis of rotation through center of the body. A wedge of
mass 4m is placed at rest on a smooth horizontal surface. A

uniformsolid sphereof massmandradiusr is placedat rest on
the flat portion of the wedge at the point Q as shown in the
figure. A sharphorizontal impulse P is givento the sphereat a
pointbelow h = OArfrom thecenterof the sphere.The radius of
curvature of the curved portion ofthe wedge is R. Coefficient
offriction to the left side of point 0 is p and to the right side of
pointQiszero. Fora bodytorollonasurface without slipping,
there should be no relative velocity between the points of
contact.

(A)

(Q

2P^

5m^g

Irn^g

Q 4m

^777777777777777777777777777777:^77777777^7/7.

Figure 5.121

5-65 The maximum height to which the center ofmass of the
spherewill climbon the curvedportion of the wedgeis :

(B) Srn^g

(D) none of these

5-66 Kinetic energy ofthesystem when sphere isatthehighest
point is :

(A)
lOw

(B)
5m

(Q
lOw

(D)
5m
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5-67 Speed ofthe wedge when sphere reaches the flat portion
again:

34t

5m
(A)

• BP

(B)
3P

5m

£
5-68 Aparticle is revolving in acircularpath as shown in figure
in the horizontal plane such that the angular velocity of the
particle about the point O is constant and is equal to I rad/s.
Distance ofthe particle from Oisgiven by ^ pfwhere
and p are constant. The speed ofthe particle, as a function of
time is:

(A)

(Q

Figure 5.122

(B) (Ro-m

P) P

5-69 A particle is projected horizontally with velocity

Vq = ^2ga along the smooth inside surface ofa fixed hollow

hemisphereof inner radius 'a' at the levelofthe centre '0\ The
subsequent motion of the particle is confined between the
horizontal planes one through the centre and the other at a
depth h. Find the value oih :

(A) ~a (B)
V3~l

(D)

(A) COS"

(Q sin.

'///////////////////////////y/z/A

Figure 5.123

R

R

(B) tan,-iil
R

(p) COS ^—
^ 2R

5-71 Auniform ring ofmass mand radius Ris in uniform pure
rolling motion onahorizontal surface. The velocity ofthe centre
ofring is Vq. The kinetic energy ofthe segment^Cfi is:

(A)

(Q

' '•yy/y/y/yy/yy/y/zz/yzy/zyy/z
c

2 71

Figure 5.124

mVq my}
(B) —~+—^

(D) mV^

5-72 Let I be the moment ofinertia ofauniform square plate
about an axis AB that passes though its centre and isparallel to
two ofits sides. CD isaline inthe plane ofthe plate that passes
through the centre of the plate and makes anangle 0 withy45.
The moment of inertia of the plate about the axis CD is then
equal to:

-D

Figure 5.125

5-70 The wheel ofradius Rrolls without slipping onhorizontal
rough surface, and its centre O has an horizontal acceleration

in forward direction. A point P on the wheel is a distancer
from Oand angular position 0 from horizontal. For the given
values ofa^, R andr, determine theangle 0 forwhich pointP
has no acceleration in this position.

(A) /

(Q /sin20
(B) /cos20
P) /cos2(0/2)
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5-73 A rectangular blockhas a square basemeasuring a^a,
and itsheight ish.Itmoves onahorizontal surface inadirection
perpendicular to one ofthe edges ofthe base. The coefficient
of friction is \i. It will topple if (choose the most appropriate
option)

(A) \i>a/2h (B) \i>2a/h
(C) ii>a/h (D) \x>hla

s
5-74 A cubicalblockof mass — kg andedge20 cmis placed

on a rough horizontal surface as shown in thefigure-5.126. A
force of IN is applied at one end of the block and the block
remains stationary. Thenormal force exerted bythe surface on
the block acts (g= 10 m/s^)

Zz77777)7777777777777777/^

Figure 5.126

(A) through thecentre of mass of the block
(B) through point A

(Q through point B
p) through thepoint at a distance 5cmfromA

5-75 Arope ofmass'm' is looped in acircle of radius Rand ^
rotated with aconstant angular velocity about itsaxis ingravity -A
free space. Find the tension in the rope ? ^
(A) T=mR(iiQ

(Q T-
mRncnQ

2k

(B) 2m/?7t(o^

(D) AmRnd)^

Rigid Bodies arid RotaTional Motion =

Paragraphfor Question Nos. 76 to 77

Two identical blocks areplaced onasmooth horizontal surface,
connected bya light string oflength 11. String touches a fixed
smooth pulley at its mid-point initially. Which is attached to
two smooth vertical walls asshown infigure-5.127. Blocks is
given a speed perpendicular to string as shown indiagram.
B strikes the pulley and stops.

B

////////////////////zy

Figure 5.127

5-76 Speedof blockB when it hitsthepulley is :

(A) ^ (B)

(Q V, (D) yoJ-r .

5-77 SpeedofAwhen it hits thewall is:

V3
(B)

(O Vn CD) h
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AdvanceMCQs with One orMore Options Correct
5-1 Asphere, adisc and a ring ofthe same mass butofdifferent
density and radii are allowed to roll down on an inclined plane
without slipping simultaneously, through the same height, then:
(A) The body ofgreater.density will reach thebottom earliest
(B) The body of least densitywill reachthe bottomearliest
(Q The sphere will reach the bottom earlier ,'
P) The ring will reach the bottom with the least linear

momentum.

5-2 The axis ofrotation ofapurely rotating body:
(A) Must pass through the centre of mass
(B) May pass through the centre of mass
(Q Must pass through a particle of the body
p) May pass through a particle of the body

5-3 Inrear-wheel drive cars, theengine rotates therearwheels
and the front wheels rotate only because the cars moves. If
sucha car accelerates on a horizontalroad, the friction:
(A) Oh the rear wheels is in the forward direction

p) On the front wheels is in the backward direction
(Q Ontherearwheels haslarger magnitude than the friction

on the front wheels

P) On the car is in the backward direction

5-4 In thefigure-5.128 areshownthe linesof actionandmoment
arms oftwoforces abouttheorigin O.Imagining theseforces to
beacting onarigid body pivoted at0, all vectors shown being
in the plane of the figure, the magnitude and direction of the
resultant torque will be :

Figure 5.128

(A) {F2r2 sin02 7 sin0^) outofthe plane ofthe page.
P) (-^1^1 sin 0, - ^2^2 sin 82) out ofthe plane ofthe page.
(C) (^2^2 sin02 - Fp-j sinOj) into the plane of the page.
P) Zero.

Figure 5.129

5-6 Asphere is rolled on arough horizontal surface. Itgradually
slowsdownand stops.The force of frictiontries to :
(A) Decrease thelinear velocity
P) Increase the linear velocity
(Q Increase the linear momentum

p) Decrease the angular momentum

5-7 A sphere is rotating about a diameter atuniform angular
speedthenwhich of the following options is/arecorrect:
(A) The particles on the surface ofthe sphere do not have any

linear acceleration

P) The particles on the diametermentionedabove do not have
any linear acceleration

(C) Different particles on the surface have different angular
speeds '

P) All the particles onthe surface have the same linear speed.

5-8 A smooth sphere A is moving on a frictionless horizontal
plane with angular speed co and centre ofmass atvelocity v. It
collides elastically and head onwith an identical sphere B at
rest. Neglect friction everywhere. After the collision, their angular
speeds are co^ and co^, respectively. Then :
(A) o)^<(05 p)
(C) (o^ =(o p) (0^ = 0

5-9 Aparticle moves on astraight line with auniform velocity.
Its angular momentum

(A) Is alwayszero
p) Is zero abouta pointon the straight line >
(C) Isnot zero about apoint away from the straight line
P) About any givenpoint remains constant

5-10 A thin imiform rod of mass mand length I ishanging
freely from its topmost point and is free to rotate about its
upper end. When it is at rest, it receives an impulse J at its
lowest point normal to its length. Immediately after:
(A) The angular momentum of the rod is J/ •
p) Angular velocity of therod is 3J/m/
(C) TheK.E. oftherodis3J^/2m
P) The linearvelocityof themidpointof the rod is 3J/2m.

5-11 Two identical semicircular discs of mass 'w' each and
radius 'F' are placed in theXY (horizontal) plane andthe YZ
(vertical) plane, respectively. Theyaresoplacedthattheyhave
theircommon diameter along"the 7-axis. Then, the moment of
inertia (In) ofthe system about the appropriate axis isgiven by
(I^ refers tomoment ofinertia about axis «-where nisX, Y, Z)

(A) ly= -mB?- P) /„= ~mR^

5-5 Consider awheel ofa bicycle rolling
on a level road at a linearspeed vq :
(A) The speed ofthe particle A is zero
p) The speedof5, CandD areequalto

^0
(Q The speedof C is 2vq
P) The speed of B is greater than the

speed of O.

(Q I2= -mR^ P) /^=/,= /2
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5-12 A uniform ringplacedon a roughhorizontal surface is
given a sharp impulse as shown in the figure-5.130. As a
consequence, itacquires a linearvelocity of2m/s. Ifcoefficient
of frictionbetweenthe ring and the horizontalsurfaceis 0.4 :

777777777777777^:7:^77777777/.
Figure 5.130

(A) RingwillstartpurerollingaflerO.25s
(B) Whenringwillstartpurerolling its.velocity is 1m/s
(Q After0.5s from impulse its velocity is 1m/s.
(D) After0.125 s from impulse itsvelocity is 1m/s.

5-13 The density of rod gradually changes from one end to
the other. It is pivoted at one of the end so that it can rotate
about a vertical axis throughthe pivot.A horizontalforceF is
applied onthefree endina direction perpendicular to therod.
Thequantities, thatdepend onaxis ofrotation (inthis situation)
are: '

(A) Angular acceleration
(B) Total kinetic energy of the rod, when the rod completes

one revolution

(Q Angular momentum when therodcompletes onerevolution
(D) Angular velocity of rod

5-14 A weightless rigid rod AB of length /
connects twoequalmassesmoneparticle is fixed
at the end B and the other at the middle of the

rod as shown in the figure-5.131. The rod can
rotate in the vertical plane freely around the hinge
point/4.
Choose the correct option(s).
(A) Theminimum horizontal velocity required to be given to

the particle B so as to make the rod go around in the

completevertical circle is
24g/

B

Figure 5.131

(B) The minimum horizontal velocity required to be givento
the particle B so as to make the rod go around in the

complete vertical circle is
24g/

(Q The ratio of compressive force in the rods AC and BC is
2 : 1 when the masses are at highest point.

P) The ratio of compressive force in the rods AC and BC is
3 : 1 when the masses are at highest point.

Rigid Bodies and Rotatlpni^ WolShi.

5-15 Figure shows a horizontal rod AB which is free torotate
about two smooth bearing system. Two identical uniform rods
eachof mass mare attachedto lodAB symmetrically aboutthe
centre ofmass O ofthe rod AB.All the dimensions are given in
the figure-5.132. The system is rotating with constant angular
velocity co in such a way that the upper rod iscoming outward
from theplane of thepaper in theposition shown. Gravity can
be assumed to be absent in the experiment, then choose the
correct option(s).

-i- --t
0 It

1 '
iL

A
m

« L

Figure 5.132

(A) Thehinge reaction atAontherodAB is downward
(B) The hinge reaction at B on therodAB is upward
(Q Thehingereaction at B on the rodAB is do^ward
P) The angular momentum of the system about point O is
NOT along the xo&AB.

///////////////z

5-16 A string is wrapped over a uniform
cylinder, as shown in diagram (side view).
When cylinder is released, string unwraps
without any slipping and cylinder comes , ^ \
down. Which of the following is true ?
(A) Work done by Tension force on the V, ^

cylinder iszero Figure 5.133
(B) Work done by the Tension is negative
(C) Ratio of rotational kinetic energy and

1
translational kinetic energy is -

P) Ratio of rotational kinetic energy to translational kinetic
energy is 2
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UnsolvedNumericalProblemsforPreparation ofNSEP, INPhO&IPhO
For detailedpreparation oflNPhO andIPhOstudents can refer advance studymaterial on www.physicsgalaxy.com

5-1 TwomassesMand m are connected by a light string going
over a pulley of radius r. The pulley is free to rotate about its
axis which is kept horizontal. The moment of inertia of the
pulley about the axis is 1. The system is released from rest.
Find the angular momentum of the system when the mass m
has descended through a height h. The string does not slip
over the pulley.

Ans. [ A/ + m+- r^gh

5-2 A ball ofradius /?= 10 cm rolls without slipping down an
inclined plane so that its centre moves with constant

acceleration 2.5 cm/s^. After atime of2 sec from the beginning
of its motion, its position is as shown in figure-5.134. Find

'//////////////////,

Figure 5.134

(a) the velocities ofpoint.4, B and O.

(b) the acceleration of these points.

Ans. [10 cm/s, 7.1 cm/s, 0, 5.6 cm/s^, 2.5 cm/s^, 2.5 cm/s^]

5-3 A body ofradius r and mass m is rolling horizontally without
slipping with speed v. It then rolls up a hill to a maximum height
/?. IfA= 3 v^/4 g, what might thebody be? What is the body's
moment ofinertia.

Ans.. \_Rlf2 ]

5-4 A conical pendulum is formed bya thinrodoflength /.and
mass m, hinged at the upper end, rotates uniformly about a
vertical axis passing through its upper end, with angular velocity
CO. Find the angle 9 between the rod and the vertical.

Ans. [0 = cos 3g

2(0^/

5-5 A wheel ofradius R rolls without slipping along the x axis
with constantspeed v^. Find the total distance coveredby the
point on the rim of the wheel during one complete revolution
ofthe wheel.

Ans. [8/?]

5-6 A spool (consider it as a double disc system joined by a
short tube at their cetitre) is placed on horizontal surface as
shown in figure-5.13 5. A light string wound several times over
the short connecting tube leaves it tangentially and passes
over light pulley. A weight of mass m is attached to the end of
the string. The radius of the connecting tube is r and mass of
the spool is M and radius is R. Find the acceleration of the

falling mass m. Neglect the mass of the connecting tube and
slipping of the spool.

Figure 5.135

Ans. ['
2mg

2m + 3M|
R-r

5-7 A thin uniform rod AB of mass m and length I is rigidly
attached at its midpoint to a rigid rotation axis 00' as shown in
figure-5.136. The axis is set into rotation with constant angular
velocity co. Find the resultant moment of the centrifiigal force
about the point C where the rod is attached to the axis. The.

inclination ofthe ro6.AB to the axis ofrotation 00' is 0.

Ans. [ /"VQ

2V2e

Ans. sin20]

5-8 A particle ofmass m is projected at / = 0 from a point P on
the groundwith speed Vq at an angle of 45® to the horizontal.
Find the magnitude and direction ofthe angular momentum of
the particleat time tr= v^Jg.

A~- Q,
VTTT?

Figure 5.136



(346

5-9 What is the angular momentum ofthe seconds hand on a
clock about an axis through the centre of the clockface if the
clock hand has a length of 25 cm and amass of 15 gm ?

Ans. [0.0314 J-s]

5-10 A solid uniform sphere, with radius R = 0.2 m and mass
M= 50 kg, is at rest in an inertialreference frame in deep space.
A bullet with mass w = 20 gm and a velocity v = 400 m/s strikes
the sphere along the line shown in figufe-5.137, and rapidly
comes to rest within the sphere at point P. Determine the
subsequent motion of the sphere and the embedded bullet.

Figure 5.137

Ans. [v = 0.16 m/s, co = 1.0 rad/sec]

5-11 In a spring gun, a spring of force constant 200 N/m is
compressed 0.15 m. When fired, 80% of the elastic potential
energy stored in the spring is eventually converted into kinetic
energyof a 0.1 kg uniformball that is rollingwithoutslipping at
the base of a ramp. The ball continues to roll without slipping
up the ramp with 90% of the kinetic energy at the bottom
converted into an increase in gravitational potential energy at
the instant it stops.

(a) What is the speed of the ball's centre of mass at the base
of the ramp ?

(b) At this position, what is the speed of a point at the top of
the ball?

(c) What maximum vertical height up the ramp does the ball
move?

Ans. [(a) 5 m/sec (b) 10 m/s (c) 1.575 m]

5-12 A divermakes2.5 complete revolutions on thewayfrom
a 10 m high platform to the water below. Assiuning zero initial
vertical velocity, calculate the average angular velocityduring
a dive.

Ans. [11 rad/s]

5-13 (a) Compute the torque developed by an automotive
engine whose output is 180 kW at an angular velocity of
4000rev/min. (b)A drumofnegligiblemass,0.5m indiameter, is
attachedto the motorshaft, and thepower output of the motor
is used to raise a weight hanging from a rope wrapped around
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the drum. How large a weight can be lifted ? Assume constant
speed (c) With what speed will the weight rise ?

Ans. [(a) 430 N-m (b) 172 kg (c) 104.65 m/s]

5-14 A stick of length / lies on horizontal table. It has a mass
Mand is free to move in any way on the table. Aball ofmass m,
moving perpendicularly to the stick at a distance d from its centre
with speed vcollides elastically with it as shown in figure-5.138.
What quantities are conserved in the collision ? What must be
the mass of the ball so that it remains at rest immediately after
collision.

Figure 5.138

Ans. [
\2d'^+P

5-15 A small steel sphere ofmass m and radius r rolls without
slipping on the fiictionless surface of a large hemisphere of
radius R{R » r) whose axis ofsymmetry is vertical. It starts at
the top from the rest, (a) What is the kinetic energy at the
bottom ? (b) What fraction is the rotational kinetic energy of
the total kinetic energy at the bottom ? (b) What fraction is the
rotational kinetic energy of the total kinetic energy ? (c) What
fraction is the translational kinetic energy of the total kinetic
energy ? (d) Calculate the normal force that the small sphere
will exert on.the hemisphere at its bottom. How the results will
be affected if r is not very sjnall as compared to R.

Ans. [mg{R-y), 2/7, 5/7, 17mg/7]

5-16 The carbide tips ofthe cutting teeth of a circular saw are
9.2 cm from the axis of rotation, (a) The no-load speed of the
saw,when it is not cutting anything, is 5000 rev/min. Why is its
no-load power output negligible ? (b) While cutting lumber,
the angular speed of the saw slows to 2500 rev/min, and the
power output is 2.1 hp. What is the tangential force that the
wood exerts on the carbide tips.

Ans. [65 N]

5-17 A uniform rod ofmass m and length / rests on a smooth
horizontal surface. One of the ends of the rod is struck in'a

horizontal direction at right angles to the rod. As a result the
rod obtains velocity Vq. Find the forcewithwhich onehalf of
the rod will act on the other in the process ofmotion.

9 mvQAns. [j-
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5-18 A smoothuniformrodABof massMandlength/ rotates
freely with anangular velocity co^ inahorizontal plane about a
stationary vertical axis passing through its endu4. Asmall sleeve

of mass m starts sliding along the rod from the point A. Find
the velocity V ofthe sleeve relative to the rod at the moment it

reaches the other end B.

Ans. [
(oJ

1+^
M

]

5-19 Theflywheel of a largemotorin a factoryhasmass30kg
and moment of inertia 67.5 kg-m^ about its rotation axis. The
motor develops a constant torque of600 N-m, and the flywheel

starts from rest, (a) What is the angular acceleration of the

flywheel ? (b) What is its angular velocity after making 4

revolutions ? (c) How much work is done by the motor during

the first 4 revolutions ? (d) What is the average power output

of the motor during the first 4 revolutions ?

Ans. [(a) 8.88 rad/s^ (b) 21.2 rad/sec (c) 6.325 kW]

5-20 Figure-5.139 shows three identical kiting spools at rest

on a rough horizontal ground initially. In each case the string is

pulled in the direction shown in figure. In each case it is given
that spool rolls without slipping. In what direction will each

spool will move and with what acceleration. Moment ofinertia

of each spool is 7 and radius of inner tube is r and that ofouter

disc isR.

77P777, V777777777777777777777Z:777777^^

Figure 5.139

5-21 A closedsystem consists of twoparticles of masses my
and which move at right angles to each other with velocities

V| and Vj. Find: . -

(a) The momentum ofeach particle and

(b) The total kinetic energy of the two particles

In the reference frame fixed to the centre of mass of the two

particles.

Ans. [n +V2 , (vf+vl)]

5-22 Two uniform thin rods and 5 oflength 0.6 m each and

ofmasses 0.01 kg and 0.02 kg respectively are rigidly joined,

end to end. The combination is pivoted at the lighter end P as

shown in the figure-5.140 such that it can freely rotate about

347^

the point P in a vertical plane. A small object ofmass 0.05 kg,
moving horizontally this the lower end ofthe combination and

sticks to it. What should be the velocity of the object so that
the system could just be raised to the horizontal position ?

Ans. [6.3 m/s]

m

O*

Figure 5.140

5-23 A insect ofmass m stands on a horizontal disc platform

of moment of inertia 1 which is at rest. What is the angular

velocity of the disc platform when the insect goes along a

circle of radius r, concentric with the disc, with velocity v

relative to the disc.

Ans. ['
1 + mr^

3

5-24 A uniform rod ^5 of mass Mis placed in contact.with a
second rod BC ofmass m = M/2 on a horizontal smooth table at

right angles to each other as shown in figure-5.141. Find the
initial velocity ofBC and kinetic energy generated in it if an

impulse 7 is imparted to

C

Ans; [2//3m, 5p/3m].

A B

Figure 5.141

5-25 A uniform thin rigid rod of mass M and length L is

standing vertically along y-axis on a smooth horizontal surface,

with its lower end at the origin (0, 0). A slight disturbance at

t = 0 causes the lower end to slip on the smooth surface along

the positive x-axis, and the rod falling.

(i) .What is the path followed by the centre ofmass ofthe rod

during its fall ?

(ii) Find the equation of the trajectory of a point on the rod

located at a distance r from the lower end. What is the shape of

the path of this point.

Ans. [Along y-axis,
—-r

1]
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5-26 A carpet ofmass Mmade ofinextensible material is rolled
along its length in the form of a cylinder ofradius R and is kept
on a rough floor. The carpet starts unrolling without sliding on
the floor when a negligible push is given to it. Calculate the
horizontal velocity of the axis of the cylindrical part of the
carpet when its radius reduces to R/2.

Ans. [

5-27 A smallsphere of radiusR isheldagainst the innersurface
of a larger sphere of radius 6R as shown in figure-5.142. The
masse of large and small spheres are 4A/'andM, respectively.
This arrangement is placed on a horizontal table. There is no
friction between any surfaces of contact. The small sphere is
now released.Find the coordinatesof the centre of the larger
sphere when the smallest sphere reaches the other extreme
position.

4M

V7777^^7^^^P^777777/
Figure 5.142

Ans. [(I + 1R\ 0]

5-28 A verticallyorienteduniformrod of massMand length/
can rotate about its upper end. A horizontally flying of mass m
strikes the lower end of the rod and gets stuck into it. As a
result, the rod swings through an angle a. Assuming m « M.
Find:

(a) The velocity of the flying bullet,

(b) The momentum increment in the system "bullet + rod"
during impact; what causes the change of that momentum.

/w V 3 2 V 6 2

5-29 A metre stick lies on a ffictionless horizontal table. It has

a mass Mand is free to move in any way on the table. A small
body ofmass m moving with speed v, collides elastically with
the stick. What must be the value of m if it is to remain at rest

after the collision ?

. , ,

Ans. r ^ 1

5-30 A uniformsolidcylinderof radiusRroll'sovera horizontal
plane passing into an inclined plane forming an angle a with
the horizontal as shown in figure-5.143. Find the maximumvalue
ofthe velocity v which still permits the cylinder to roll onto the
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inclined plane section without a jump. The sliding is assumed
to be absent.

777777777777777777777,

Figure S.I43

Ans. [JjgR (7cos«-4) ]

5-31 A smallspherical marbleof massmandradiusr is rolling
without slipping on a rough track with speed v. The track further
is in the shape of a vertical circle of radius R as shown in
figure-5.144. With what minimum linear speed the marble is
rolling so that it completely goes round the circle on the circular
part oftrack.

777::^h77777777?V7777777777Z

Figure 5.144

Ans.

5-32 A horizontal rotating disc placed on a rough surface has
an angular speed of 8 rad/s when it is lowered on the surface.
After 3 seconds, it is observed to have an angular speed of
2.6 rad/s. How many revolutions it made from the time of
lowering on the surface until it stops ? Assume the pressure
on the surface due to disc is uniform on its area.

Ans. [2.83]

5-33 Athinhorizontal uniform rodAB ofmass mandlength/
can rotate fi"eely about a vertical axis passing through its end

.At a certain moment the end B starts experiencinga constant
forceF which is alwaysperpendicularto the originalposition
of the stationaryrod and directed in the horizontalplane. Find
the angular velocity of the rod as a function of its rotation

angle (p counted relative to the initial position.

. . 6F sin(p
Ans- ]

5-34 A discofcircumference 5" standsvertically ona horizontal
surface as shown in figure-5.145, A horizontal force P acts on
thecentreof the disc.Halfof thecircumference {ABC) is rough
and the friction is sufficientto prevent slippingwhen the disc
rolls along X¥. The other halfof the circumference {ADC) is
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smooth. Thedisc starts from restwhen P begins toactandthe
point Cis at thebottom. Find the distance moved bythe disc
along xy when it completes one rotation.

A

Ans. [19S/16]

^ 777777777^^77^777777777? y

Figure 5.145

5-35 Ablock ofmass Wj =2kgslides along afirictionless table
witha speedof 10m/s. Directly infront of it, andmoving inthe
same direction isablock ofmass W2 ^ 5kgmoving at3m/s. A
massless spring with a spring constant 11.2 N/cm is attached
to as shown in figure-5.146. When the block collide, what
is the maximum compressionof the spring ? Assumethat the
spring does not bend.

-eoooooooooooooa- m
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Figure 5.146

Ans. [0.25 m]

5-36 Auniform rodof length la is heldwith oneendresting
on a smoothhorizontaltablemakingananglea withthe vertical.
Showthatwhenthe rod is released, its angular velocity when
it makes an angle 0 with the vertical is given by

co=
6g-{cosa-cos0)

(1+ 3sin a)

5-37 A hollowsphereof radiusr is rotatingabouta horizontal
axis at some angular speed cOp. It is gently lowered to ground
and the coefficientof friction betweensphere and the ground
is p. Howfardoesthespheremovebeforeit startspurerolling?

2.2. 2 cogr ,

5-38 DiscsA and.5 are mounted on a shaftXYand may be
connected or disconnected by a coupling Z as shown in
figure-5.147. The moment ofinertia ofdisc A about the shaft is

half that of disc B. The moments ofinertia ofthe shaft and the

coupling are negligible. Initially^ is disconnected and rotated
at an angular velocity co. It is now coupled to disc B using
couplings.It is found that 5000 J of thermalenergyis developed
in the coupling when the connection is made. What was the

original kinetic energy ofthe disc /f.

Figure 5.147

Ans. [7500 J]

5-39 A spoolwiththreadwound on it, of mass w, rests on a
roughhorizontalsurfaceas shownin figure-5.148. Its moment
ofinertia relative toits own axis isequal to 1=ymR^, where yis
a numerical factor, and/?is theoutside radiusof thespool. The
radius of the wound thread layer is equal to r. The spool is
pulled without sliding by the thread with a constant force
F directed at an angle 0 to the horizontal. Find : (a) The
projectionof the acceleration vectorof the spoolontheX-axis,
and (b) the work performed by the force F during the first t
seconds after the beginning of motion.

Ans. [

y7777777777777777777777777777777777/

^j^cosG-^
m(l + Y) 27«(1+ y)

Fh

Figure 5.148

5-40 A small body of mass m tied to an inextensible thread
moves over a smooth horizontal plane. The other end of the
thread is passed through a hole and drawn with a constant
velocity v. Find the tension ofthe thread as the function ofthe
distance r ofwfrom the hole ifatr=r^, the angular velocity of
thethread is equal to oJq.

Ans.[^]

5-41 A ballof massmmoving withvelocity experiences a
head on elasticcollisionwith one of the spheresof a stationary
rigid dumbbellas shownin figure-5.149. The
mass of each sphere equals mil, and the

distance between them is /. Disregarding the
size of the spheres, find the angular
momentum ofthe dumbbell in the reference

frame moving translationally and fixed to the
centre of mass of the dumbbell.

w/vr, , Figure 5.149Ans. [^]

Vq mil
-O

O
mil
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5-42 Aspoolhasa mass of2 kg,aninner radius R^ = 3 cm,and
an outer radius R2 =5cm, the radius ofgyration about the axis
of the spoolisif= 4 cm. Aconstant horizontal force of 5 N is
applied to the free end of a massless thread that is wrapped
around the inner cylinderofthe spool as shownin figure-5.150.
If the spool rolls without slipping, calculate the linear
acceleration alongthehorizontalsurface. Whatis theminimum
coefficient of static friction required to prevent slipping ?

F=5Nt

Figure 5.150

Ans. [a = 2.439 m/s^ = 0.0062]

5-43 A homogeneous disc of weight Wand radius R rotates
aboutthe verticalaxis OZ, the initialangularvelocitybeing cOq.
During the motion, the brake block A is pressed to the disc,
with a radial force N for seconds and the disc comes to rest

because of friction. Find the coefficient offriction.

Ans. [
WRcoq

2gNtQ

5-44 A uniform ball ofradius R rolls without slipping between

two rails such that the horizontal distance is ^/between the two

contactpoint of the rails to the ball, (a) Show that at any instant,
velocity of centre of mass is given as

R'- —

Discuss the above expressionin the limitsd= 0 and d= 2 R. (b)
For a uniform ball starting from rest and descending a vertical
distance h while rolling without slipping down a ramp,

10gh
, Ifthe ramp is replaced with two rails, show that

IQgh

5 + -

4^'

Neglect friction in above cases.

5-45 A uniform disc of mass m and radius R is projected
horizontally with velocity on a rough horizontal floor so that
it starts with a purely sliding motion at r = 0. After seconds it
acquires a purely rolling motion.

(a) Calculate the velocity of the centre of mass of the disc

atV

(b) Assuming the coefficient of friction to be p., calculate to.
Also calculate the work done by the frictional force as a function
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of time and the total work done by it over a time t much longer
than ?Q.

Ans. [Vp/S, i myigtilv^ - 3\igt]

5-46 A uniform rod AB ofmass 2 kg and length / - 100 cm is
placed on a sharp support O such thatAO = a = 40 cm and
OB = b = 60 cm.A springof force constant k - 600 N/m is
attached to end B as shown in figure-5.151. To keep the rod
horizontal,its endA is tiedwitha threadsuchthat the springis
elongated hyy = 1cm.Calculate thereaction of support onthe
rod when the thread is burnt.

0
Al

h
IB

Figure 5.151

Ans. [20 N]

5-47 A smallball is suspendedfroma point O by a light thread
of length I. Then the ball is drawn aside so that the thread
deviates through an angle 0 from the vertical and set in motion
in a horizontal direction at right angles to the vertical plane in
which the thread is located. What is the initial velocity that has

to be impartedto the ball so that it could deviate through the
maximum angle n/l in the process of motion ?

Ans. [^2gl secO ]

5-48 An object rotates about a fixed axis, such that a
reference line on the object makes an angle 0=ae '̂ with its
starting position at time t. Find for a particle on object at a
distance r from the axis of rotation, the tangential, the radial
and the total acceleration of the point.

Ans. [a, =ab^re'", =a^b^re '̂" , Oj. =ab^e' 1+ ]

5-49 A rectangular rigid fixed block has a long horizontal edge.
A solid homogeneous cylinderof radiusR is placed horizontally
at test with its length parallel to the edge such that the axis of
the cylinderand the edge of the block are in the samevertical
plane as shown in figure-5.152. There is sufficient friction
present at the edge so that a very small displacement causes
the cylinder to roll of the edge without slipping. Determine

ZV77777777,

Figure 5.152
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(a) The angle 6 through which the cylinder rotates before it
leaves contact with the edge.

(b) The speed of the centre of mass of the cylinder before
leaving contact with the edge, and

(c) The ratio ofthe translational to rotational kinetic energies
ofthe cylinderwhen its centre of mass is in horizontal line with
the edge.

Ans. [cos"

5-50 A392Nwheel comes offamoving truckandrollswithout
slipping along ahighway. Atthebottom ofa hillit isrotating at
50 rad/s. The radius of the wheel is 0.6 m, and'its moment of
inertiaaboutits rotationaxisis 0.8MR^. Frictiondoes3000J of
workon the wheel as it rolls up the hill to a stop a height h
above the bottom of the hill. Calculate h.

^ns.[29.1 m]

5-5,1 A grindstonein the formof a solid cylinderhas a radius
of 0.2 m and a mass of 30 kg. (a) What constant torque will
bring it fromrest to an angularvelocity of250 rev/min in 10s ?
(b) Through what angle has it turned during that time ?
(c) Calculatethe work done by the torque.

Ans.'[1.57 N-m, 20.8 rev, 206 Jj

5-52 A constant net torque equal to 20 N-m is exerted on a
pivoted wheel for8 sec, during which timetheangular velocity
of the wheel increases from zero to 100 re/min. The external

torque is then removed and the wheel is brought to rest by
friction in its bearings in 70 sec. Compute (a) the moment of
inertia of the wheel about the rotation axis, (b) the friction
torque (c) the total no.of revolutionsmadeby thewheel in the
70 sec time interval.'

Ans. [15.3 kg-m^ 2.29 N-m, 58.3 rev]

5-53 In the arrangement
shown in figure-5.153 a
weight A possesses mass
m, a pulley B possesses
mass M Also known are

the moment of inertia I of

the pulley relative to its
axis and the radii of the

pulley R and 2 R. The mass
of the threads is

negligible. Find the
acceleration of the

weight A after the system is set free.

Ans. [
3{M + ^m)g

2^

Figure 5.153

5-54 A solid spherical ball of radius 30 cm and mass Mis
connected to a pointAonwall with a thread andfreely rotate
about its central axiswith angular velocity60 rad/sec. If the
ball isresting onthe vertical face ofawall, what time will elapse
before it comes to rest ? The coefficient of friction between
wall and ball is 0.25 and inclination ofthread to vertical is 15®.

Ans. [10.13 sec]

5-55 A thin uniform rod of mass mand length / rotates with
the constant angular velocity co about the vertical axis passing
through the rod's suspension point O. In doing so, the rod
describes a conical surface with a halfseparated angle 0. Find
the angle 0 as well as the magnitude and direction of the
reaction force at the point O.

Ans. [cos"
4 COS9

V9 +7cos^9

5-56 A rod of mass w and length / is held vertically on a
smooth horizontal floor. Nowit is released fromthisposition,
find the speed of its centre of mass when it makes an angle 0
with the vertical.

•JSglsm^cosQ
Vl +3sin^0

Ans. [ •

5-57 Considera cylinderof
mass Mand radius R lying
on a rough horizontal plane.
It has a plank lying on its
top as shown in

figure-5.154. A force F is

applied on the plank such
that the plank moves and
causes the cylinder to roll.
The plank always remains horizontal. There is no slipping at
anypoint of contact. Calculatethe accelerationof the cylinder
and the frictional forces at the two contacts.

. AF cos 6 "iMF cos 9 MF cos 9

3M-l-8m' ' 3M-i-8m

5-58 A uniform rod of length/ '/////////////////////////////^
and mass M is suspended on
two vertical inextensible strings
as shown in figure-5.155.

Calculate tension T in the left

string at the instant, when right
string snaps.

Ans. [ ]

V7777777777Z7777777777777777.

Figure 5.154

Figure 5.155
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5-59 The mechanism shown in figure-5.156 is used to raise a
woodenbox of mass50 kg.Astringiswrappedarounda cylinder
that turns on an axle. The cylinder has radius 0.25 m and moment
of inertia 0.92 kg-m^ about the axle. What magnitude of the
force F applied tangentially to the rotating crank handle is
requiredto raise theboxwithanacceleration of 0.80m/s .Here
we canneglectthe momentof inertia of theaxle and the crank.

0.12 m

'///////. ///////,

Figure 5.156

Ans. [1100 N]

5-60 A uniform spherical shell ofmass M and radius R rotates
about a vertical axis on frictionless bearings as shown in
figure-5.157. A massless cord passes around the equator of the
shell, over a pulley of rotational inertia 1 and radius r, and is
attached to a small object of mass m falling under gravity.
Neglect all frictions find the speed of the object after it has
fallen a distance h from rest ?

Ans. [
Igh

V+ V
/mF

7777777777777777777/.

Figure 5.157

Rigid Bodies and Rbtatidnal MotjonT

5-61 Showthat if a rod held at anangle0 to thehorizontaland
released, its lower end will not slip the friction coefficient
between rod and groimd is

3sin0cos8

l + 3sin^0

5-62 Two wooden disc, one with radius 2 cm and mass 1 kg
and the other with radius 4 cm and mass 2 kg, are welded
together coaxially and mounted on a frictionless axisthrough
their common centre. A light string is wrapped around the edge
of the smaller disc, and a 3 kg block is suspended from the free
end of the string. What is the accelerationof the block after it
is released ? Repeat the aboveprocess if the string is wrapped
around the edge of the larger disc.

Ans. [4 m/s^, 7.27 m/s^]

5-63 A horizontal wooden disc ofmass 8 kg and diameter Im

is pivoted on frictionless bearing about a vertical axis through
its centre.Weput a toy traintrack model in the disc. The track
has a negligible mass and average diameter 0.95 ra. The mass
of model train is 1.2 kg which can run with a battery. When we
switch on the engine the train moves anticlockwise, soon
attaining a constant speed of 0.6 m/s with respect to the track.
Find the magnitude and direction ofthe angularvelocity ofthe
disc relative to the earth.

Ans. [0.27 rad/s]

5-64 A 50 kg runner runs around the edge of a turntable
mounted on frictionless bearings. With respect to earth the
velocity ofrunner is 2 m/s. The turntable is rotating in opposite
direction with an angular velocity ofmagnitude 0.2 rad/s with
respect to earth. The radius of turntable is 4 m, and its moment
ofinertia is 1000 kg-m^. Find the final angular velocity ofthe
system if runner comes to rest relative to turntable.

Ans. [0.022 rad/sec].
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FEW WORDS FOR STUDENTS

In mechanics we have studied the interaction ofphysical bodies
and theprinciples governing their motions and conservation laws^
In this chapter weproceed to examine gravitationalforces and the
motion resultingfrom theseforces which includes uniform circular
motion. An in-depth understanding ofgravitation allows us to
explain the motion of theplanets in universe and that ofartificial
satellites.
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6.12 Satellite Motion andAngular Momentum Conservation

6.13 Kepler ^s Laws ofPlanetaryMotion

6.14 Projection ofSatellites and Spaceships FromEarth

6.15 Communication Satellites
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Mood

Earth
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Newton observed thatanobject, anapple, when released near
the earth surface is accelerated towards the earth. As
acceleration is caused byanunbalanced force, there must bea
force pulling objects towards the earth. If someone throws a
projectile with some initial velocity, then instead ofthat object
moving offinto space inastraight line, itiscontinuously acted
on by aforce pulling itback to earth. Ifwe throw the projectile
with greater velocity then the path of projectile would be
different as well and its range is also increased with initial
velocity. Ifthe projection velocity isfurther increased until at
some initial velocity, the body would nothitthe earth atallbut
would go right around it inanorbit. But atany point along its
path the projectile would still have a force acting on itpulling
it toward the surface of earth.

Newton was led to the conclusion that the same force that
causes the apple to fall to the earth also causes the moon tobe
pulled to the earth. Thus the moon moves inits orbit about the
earth because it is pulled toward the earth. But if there is a
force between the moon and the earth, why not a force between
thesunandthe earth or why not a force between the sunand
the other plants ?Newton proposed that the same force, named
gravitational force which acts onobjects near the earth surface
also acts on all the heavenly bodies. He proposed that there
was a force of gravitation between each andevery mass inthe
universe.

6.1 Newton's Law of Universal Gravitation

All physical bodies are subject to the action of the forces of
mutual gravitational attraction. The basic law describing the
gravitational forces was stated bySirIssac Newton and it is
called Newton's Law ofUniversal gravitation.

The lawis statedas: "Between any twoparticles ofmassesmj
and m2 atseparation rfrom each other there exist attractive
forces and Fg^ (as shown in figure-6.1) directedfrom
one body tothe other andequal inmagnitude which isdirectly
proportional to the product of the masses of the bodies and
inversely proportionalto the square of the distance between
the two Thus we can write

""•"'•G?avitationJ

Ifthe bodies are not very small sized, we can notdirectly apply
the expression in equation-(6.1) to find their natural gravitational
attraction. In this case weusethefollowing procedure to find
thesame. Thebodies areinitially splitintosmall partsora large
number ofpoint masses. Now using equation-(6.1) the force of
attraction exerted on a particle of one body by a particle of
another body can be obtained. Now we add all forces
vectorially which are exerted byall independent particles of
second body on the particle offirst body. Finally the resultants
ofthese forces is summed overallparticles ofthefirstbodyto
obtain the net force experienced by the bodies, fn general we
useintegration for basic sumrnation ofthese forces. •

Lets consider anexample tounderstand the same. Figure-6.2(a)
showsa uniformrod ofmassMof length/ andwe wishto find
the gravitational attraction on this rod due to apoint particle of
mass mplaced ata distance r from one of its ends as shown.

To find this we consider a small element of width dx on the rod
asshown infigure-6.2(b) ata distancesfi:om thepointmass m,
the mass of this element can be given as

J ^ A(3m= — dx

(a)

Figure 6.2

...(6.2)

M

Now we can find the gravitational attraction ondm due to the
point mass musing Newton's law of universal gravitation.
Thus we have the force on dm as

dF=
Gmdm

^AB • ^BA ^
m,mm ...(6.1) or

Gm M ,
dF= Y~ ^

IX

Where Gis calleduniversal gravitational constant. The lawof
gravitation canbeapplied to thebodies whose dimensions are
small as compared to theseparation between thetwo orwhen
bodies can be treated as point particles.

Figure 6.1

To find the net force on rod we integratethe above expression
in proper limits as

r+L

or F=
GMm r 1 1

I r + l
...(6.3)
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Here expression in equation-(6.3) gives net interaction force
between the given point mass and the rod. In such a manner

by using integration we can find interaction force between
more extended bodies.

In ordinary laboratory experiments the attractive force between
the bodies is very small in comparison to their weights and
therefore it cannot be observed. Even through some more

precise experiments allow us to demonstrate the presence of
gravitational force. The first laboratory experiment for direct
measurement ofthe force ofgravitation was carried out by H.

Cavendish in 1978 with the use of a torsional balance figure-
6.3 shows the basic setup ofCavendish experiment. Two equal
masses m are placed at the end of a relatively light rod A, the

middle point of the rod is suspended from a sufficiently long
thread. At the mid point of rod a small mirror K is fixed. The

change in direction of the light ray reflected from the mirror as
the rod turns can be directly observed and measured. The
deflection of the ray makes it possible to determine the angle

of twist of the string from which the rod is suspended and to
compute the corresponding forces producing the twist. Two
big lead balls of mass Mare brought close to the suspended
rod from different sides. The force ofattraction exerted by big

balls on the small one form a couple which rotates the rod until
the moment of couple of gravitational forces is balanced by

the torsional moment of the thread. The couple of torsional
forces can be calculated by the known parameters such as
torsional constant of the thread and the angle of turn of the

reflected light ray. Varying the distances between the masses
m and M, Cavendish determined the dependence of the force
of gravitational attraction on the distance the results of this

experiment confirmed the validity of Newton's Law of
gravitation.

Figure 6.3
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The results ofCavendish experiments were checked many times
by several scientists by various modifications of the

experiments. The results of precise measurements give the
following value pf gravitational constant.

0 = 6.674 xlO-i'N-m2/kg2

Let us take some example on Newton's Law ofgravitation.

# Illustrative Example 6.1

Three particles.^, B and C, each ofmass m, are placed in a line
with AS = BC = d. Find the gravitational force on a fourth

particle P ofsame mass, placed at a distance d from the particle
B on the perpendicular bisector of the line AC as shown in
figure-6.4

^ «
A d B d C

Figure 6.4

Solution

The forces acting on P are shown in figure-6.5.

P

Figure 6.5

The force at P due to A along PA is

F,=
Gm' G m' Gm'

{APf {Sdf 2d'̂
The force at P due to C along PC is

Gm' Gm' Gm'
F^ =^ (CPf (y/ldf 2d^

The force at P due to B is

^2 along
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The resultantof and willbe alongPB, canbe given as

F=F. + F, cos 45° + Fr cos 45°
s ' ^

2Gm^ Gm Gm

f- 2V2 d'̂ 2V2

Gm'
or d^ [2 |̂2 2V2

Gm'
along PB

# Illustrative Example 6.2

Find the force ofattraction on a particle of
mass m placed at the centre of a quarter
ring of mass m and radius R as shown in
figure-6.6.

Solution Figure 6.6

Asthe quarter ring isnot apoint mass, we consider anelement
of widthd^ on it as shown" in figure-6.7. The mass dmof this
element is

, 2m
dm= —I

K

dF cos 6

Figure 6.7

Now the force between m and dm is

Gmdm
dF =

R'

...(6.4)

dF sin 0

[Toward dm on massmplacedat C]

2Gm'

%R^
dQ

Gravitaliotvl

7t/2_ J 2Gm
and

2Gw'
dQ ~ —ZT

It/?'

dF sin 0 =

Thus net force on m is

/"Zt ZT 2-j2Gm'F=^jFx +FY - ^2

# Illustrative Example 6.3

nR'
sin'

Two balls of mass m each are hungside by side by two long
threads ofequal length /. If the distance between upper ends is
r, show that the distance r',between the centres of the ball is
given by

gr'^{r-r') = 2lGm

Solution

The situation is shown in figure-6.8.

•/////y////////////////////////////

Figure 6.8

Following forceact on eachball

(i) Weight ofthe ball wg indownward direction

(ii) Tension in thread Talongstring

(iii) Force ofGravitational attraction towards each other

m m

F=G^

Here for equilibrium ofballs we have

Gm^
r^in 0 = —^

This force has two components inXand Ydirections; thus net
force on w in A and y direction are

r cos 0 = mg

...(6.5)

...(6.6)

...(6.7)

...(6.8)

F. = dF cos I

Jt/2

2Gm'

nR^
cos 0 c/0 =

2Gm^

fR}

Dividing equation-(6.5) and (6.6), we get

or

InAfCP

tan 0 =
Gm^

ji
mgr

r-r'

21
tan 0 =



From equation-(6.7) and (6.8)

Gnp-r-r

I mgr

or {r~r') = 2lGm
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Practice Exercise 6.1

(i) Two spherical balls ofmass 10 kg each are placed 10 cm
apart. Find the gravitational force of attraction between them.

[6.674xI0-''N]

(it) Two particles of equal mass go round a circle ofradius R
under the action of their mutual gravitational attraction. Find
the speed of each particle.

(ill) Four particles of equal masses Mmove along a circle of
radius R under the action oftheir mutual gravitational attraction.
Find the speed ofeach particle.

GM

R - 4

(iv) A mass Mis split into two parts m and (M- m), which are
then separated by a certain distance. What ratio {mIM) maximises
the gravitational force between the parts.

til

(v) In a double star, two stars (one of mass m and the other of

2,m) distance d apart rotate about their common centre ofmass.
Deduce an expression for the period of revolution. Show that
the ratio of their angular momenta about the centre of mass is
the same as the ratio of their kinetic energies.

[471,1-^ ]

6,2 Gravitational and Inertial Mass

In previous chapters of mechanics we've discussed and we
know that the mass of an object is the proportionality factor

3571

betweenthenet forceexertedon theobjectand its acceleration
or in other words it is Newton's'second law of motion stated

analytically as

'ZF = ma

We've alsodiscussed that themassof an object is thatproperty
(inertia) of object which causes it to resist a change in its
velocity (state of motion). This is why we call the mass as
inertial mass. For example a car is running on a flat highway
and due to brake failure driver is not able to control it and on

highwaya child is playing in front of the uncontrolledcar.Now
you must stop the car externally before it crashes the child. In
this case the force required to stop the car within the available
distance depends on inertial mass of the car.

In previous section of the chapter we've discussed Newton's
law of universal gravitation. The magnitude of gravitational
force on an object of mass_w due to another object of mass M
is given as

F=
GMm

In this expression the mass ofthe object is that property ofthe
object which causes it to be attracted to another object by the
gravitational force. Due to this reason the mass that appears in
Ne'wton's law of universal gravitation is often called the
gravitational mass. When you are waiting for a train on a railway
platform holding a bag of books, you exert a force on this bag.
This force which you exert while holding the bag depends on
the gravitational mass of the bag of books.

The difficulty you encounter in stopping the running car on
highway has nothing to do with its gravitational mass. On the
other hand the effort you expend in holding the bag of books
has nothing to do with the inertial mass of the bag.

Thus on one hand mass ofan object is a measure ofan objects
resistance to a change of velocity and on the other hand, it is
a measure of gravitational attraction to other objects in its

surroundings. In a simple language we can say that the mass
used in Newton's second law ofmotion (in expression F= ma)
is the inertial mass of object and the mass used in Newton's

lawof gravitation (InexpressionF- ^ gravitational

mass of object.

Now the point of discussion is that why are two different
properties of matter and both are called "mass". Several
experiments are done which show that the two, gravitational
and inertial mass of an object are proportional to each other.
One such experiment is the measurement of acceleration of

different objects during free fall. We have already discussed
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and we know that during free fall, all forces on an object are
negligible except the force of gravity.The net force during free
fall on an object is the gravitational force due to the earth. Let
us consider a cricket ball in free fall near the earth's surface. If

on releasing the ball falls with an acceleration a and and
be its inertial and gravitational masses, we have

GMgUiQ _

r:
= m,a

Solving we get

a =
m,

...(6.9)

Here the factor
GM.

is independent of the object whose
cr

motion wearedescribing, but and depend ontheobject.
As we know for all freely falling objects the acceleration is
sameandequal tog thuswemusthavea=g.lt impliesthat the
ratio mustbe independent of theobject.In otherwords
we cansaythat ttig mustbe proportional to for eachobject.
Therewe maychoose the units in sucha manner that theyare
made equal. The value of G evaluated in such a manner that

from the results, using proper units, we get

GM,

r}
...(6.10)

Thus mj= nig. We can also say that for an object numerical
value of inertial mass is the same as the gravitational mass, is
an experimental statement. Thevalidity of statement depends
onthe accuracy of the experiments. Thephysical significance
of thisproportionality lawforgravitational and inertialmasses
turnsout to be ofprimaryimportance in the relativity theory. In
relativity thisisknown asequivalence lawforthegravitational
andinertial mass ofa body. Thisequivalence principle makes it
possible to get the conclusionthat for a very small region it is
possible to choose such an accelerated reference frame in which

there is gravitational field.

6.3 Gravitational Field

We can state by Newton's universal law of gravitation that
every mass M produces, in the region around it, a physical
situation in which, whenever any other mass is placed, force
actson it, is called gravitational field. Thisfieldis recognized
by the force that the mass M exerts another mass, such as m,
brought into the region.

6.3.1 Strength ofGravitational Field

We define gravitational field strength at anypoint in spaceto
be the gravitational force per unit mass on a test mass (mass
brought intothefield forexperimental observation). Thusfora
point in space if a testmass m^, experiences a force F, then at

Gravitaliort

that point in space gravitational field strength which is denoted
by 8, is given as

_ F
8 = -—

Wq
...(6.11)

Gravitational field strength f is a vector quantity and has
same direction as that of the force on the test mass in field.

Generally magnitude of test mass is very small so that its
gravitational field does not modify the field that is being
measured. Student should also note that gravitational field
strength is just the acceleration that a unit mass would

experience at that point in space.

6.3.2 Gravitational Field Strength of a Point Mass

As per our previous discussion we can state that every point
mass alsoproduces a gravitational field in its surrounding. To
findthe gravitational field strengthdue to a pointmass,we put
a test mass at a point P at distance x from a point mass m
thenforce on Wq is givenas

Gmma
F = ...(6.12)

Figure 6.9

Now if at point P, gravitational field strength due to w is g
then it is given as

njr

Gm
2 ...(6.13)

'0 x"

The expression in equation-(6.13) gives the gravitational field
strength at a point due to a point mass.

Student should note that the expression in equation-(6.I3) is
only applicable for gravitational field strength due to point
masses. It should not be used for extended bodies. However

the expression can be integrated to get the gravitational field
strength produced by the extended masses.

6.3.3Gravitational Field Strength due to a Ring

Case-I: At the centre of ring

To find gravitational field strength at the centre of a ring of
mass Mand radius R, we consider an elemental mass dm on it

as shownin figure-6.10. Letdg be the gravitational fieldat the
centre of ring C due to the element dm.
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Here we can simply state that another element of same mass

exactly opposite to dm on other half of ring will produce an

equal gravitational field at C in opposite direction. Thus due to
all the elements on ring, the riet gravitational fieldat centre C
will be vectorially nullified and hence net gravitational field
strength at C will be 0.

Figure 6.10

On the basis of above description, we can find gravitational
field at the centre ofring, if a small part of ring is removed as
shown in figure-6.11. Here we can state that at C net
gravitational field strength is zero by symmetry if ring were
complete. So if a small part is placed back at the gap the net
field will again become zero in this case. Thus the gravitational
field strengtliat centre due to this ring must be exactly equal to
that produced by the removed part but in opposite direction
so as to nullify it when placed in gap.

Here the mass of removed part can be given as

- M
m =

2nR

[Ifx is very small and ring is uniform]

Figure 6.11

Thus gravitational field strengthat centre due to this ring is
given as

Gm GMx
Sc

R' I-kR"

Here direction ofg, at centre is toward the gap.
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Case-II: At a point on the axis of ring

Figure-6.12 shows a ring of mass Mand radius i? placed in YZ
plane withcentreat origin.Here wewishto findthe gravitational
field strength at a point P on its axis at a distance x from its
centre.

To find this we consider an element of length dl on ring as
shown in figure-6.12. The mass dm ofthis element can be given
as

M
dm =

2nR
dl ...(6.14)

Let the gravitational fieldstrengthatpointP dueto file element
dm is dg then it is given as

, Gdm
dg= , 2 . „2

or

(x' + R^)

GM dx

2tzR{x^ +R^)

This elemental gravitational field strength dg has two
rectangular components, one along the axis of ring dg cos 0
andotherperpendicular to theaxisof ring,dg sin0.Here when
we integratethe resultfor the completering, dg sin0 component
will be cancelled outby symmetryand dg cos 0 willbe summed
up to give the net gravitational field strength at P.

Figure 6.12

Thus here net gravitational field strength at P is given as

luR

GM dx
X

or

g= jt/gcos0 - J
0

x

2nRix^+R^)

GMx
2nR

2KR(x^-i-Ry^
dl
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A

M

ggl

dx

GMx
2x3/22nR{x^+R')

GMx

[2nK\

(a)

(^2-^^2)3/2 -(6.15)

6.3.4Gravitational Field Strength due to a Rod

Case-I: At an axial point

Figure-6.13 shows a rodAB ofmass A/and length L.Here we
wish to find the gravitational field strength due to rod at a
point P situated at a distance r from one end of the rod.

Figure-6.13(b) shows the analysis of the procedure for it. We
consider an element of width dx on rod at a distance x from P.
The mass of this elementdm is given as

dm = -^ dx

-c

(b)

Figure 6.13

Now due to this dm, thegravitational field strength at point P
is given as

Gdm
dg =

X

GM

Lx^
dx

Now due to complete rodthe total gravitational field strength
at point P is given by

or

or

g

r+j

1

g =

r+L

{GM

J Lx^
r

GM r r
r+Z.

L X
r

GM "l 1

•

Case-n: At an equatorial point

r r + L ...(6.16)

Figure-6.14 shows a rod of mass Mand length L and due to
this rod we wish to find the net gravitational field at apoint P
onitsequator (perpendicular bisector) asshown infigure-6.14.

Gravitation

dg COS 0

M ,\dx

Figure 6.14

For this again we consider an element ofwidth at a distance
Xfrom the centre ofrod as shown. The mass ofthis element dx
is given as

dm - -j- dx
Now let dg be the gravitational field strength at P due to the
elementof mass ff/w then is given as

Gdm
dg

(x'+r')

GM dx
or

L(x^+r^)

We resolve dg intwo rectangular components dgsin9 and dg
cos 0, here on integration dg sin 0 gets cancelled out due to
symmetry and dg cos 0 will be summed up. Thus the net
gravitational field at point P is givenas

-y2
_ r , o f GMdx r

or

Here we put

and

We get

or

or

or

= J dx

/2

X = r tan 0

dx=r sec^ 0 d^

GMr rrsec^0rf0
Sn = L

GM

Lr

GM

GM

Lr

I- y sec^ 0

j'cos0(f0

Ij. [sin 0]

Ax^ + r' -1/
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or

or

GM

Lr

2GM

'4d-+ 4r

L

+ 4r

...(6.17)

6.3.5 Gravitational Field due to a CircularArc

Figure-6.15 shows a circular arc ABofmass M,which subtend
on angle^ at its centre 0 and we wishto.findthe gravitational
field produced by the arc at its centre.

For this we consider on element on arc at an angular
displacement 0 from its angle bisector and ofangular width dQ
as shown in figure-6.15. The mass dm ofthis element ofwidth
RdQ is given as

dm =-^ c/0
«P

•yB

cos

Figure 6.15

Ifdg be the gravitational field strength at O due to the element
dm then we have

dg =
Gdm

Now we resolve dg in two rectangular components, dg cos 0
along its angle bisector and another dg sin 0 perpendicular to
its angle bisector. Here again we can state that on integration
dg sin 0 will cancel out due to symmetry and dg cos 0 will be
summed up. Thus net gravitational field strength at O due to
complete arc will be,given as

gc=j«'̂ cos0= J -^^cose

or

/2

GM
cos 0 dQ

or
GM

^R^ <t./2[sin0]t

IGM sin I

6.3.6Gravitational Field Strength due to a Sphere

Care-I: Hollow sphere

Figure-6.16 showsa hollowsphereofmassMand radius7?. If
we think about the gravitational field in its surrounding, the
direction must be along the arrows shown in its surrounding.
Every mass placed in its surrounding must experience the
gravitational force toward the centre ofthe shell. Thus we can
state that it is because of its symmetrical geometrical shape
and its uniform mass distribution.

\ ' 'A > I /

Figure 6.16

Thus we can state that for the

case of a hollow spherical
shell we consider its whole

mass is concentrated at its

centre and for outside points
it behaves like a point mass.

Thus the gravitational field
strength at different points

due to a hollow spherical shell
can be given as shown in

figure-6.17.

Figure 6.17
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...(6.18)
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shown in figure-6.20. Say its mass is m, on the surface ofwhichFor outer points ^ [Behaving as apoint mass] ^ p gravitational field,

For points on surface [Behaving as a point mass]
R

For inner points g- = 0 [As no mass is enclosed within it]

If we plot a variation graph for values ofg with distance from
centre, it is shown in figure-6.18.

Figure 6.18

Case-II: Solid sphere

In case ofa solid sphere also the direction of g at the nearby

points is radially inward as shown in figure-6.19. So here also
we can consider it to be a point mass for outer,points.

/ / ; i \

Figure 6.19

In this case also the expression for gravitational field strength

for outer and surface point remains same. Thus we have

For outer point . g

For point on surface g

GM

x'

GM

R^

For points inside the sphere now g is nonzero as there is mass

content inside. To calculate g at interior points at a distance x

from its centre, we consider an inner sphere of radius x as

strength. The mass m is given as

M 4

inR^ 3
—Kx^= ^ ,...(6.19)

Figure 6.20

Now we can say that the given solid sphere is divided in two
parts. One is an inner solid sphere of radius x and other is the
outer shell ofirmer radius x and outer radius R. Here at point P
gravitational field exist only due to the inner sphere as due to
outer shell, we've discussed in previous section that, no
gravitational field exist at interior points due to outer shell.

Thus net gravitational field strength atP can be obtained by
considering the inner sphere of radius x as a point mass at the
centre. So ^avitational field at P can be gives as

GMc_ Gm
Si„- ^2

R~
...(6.20)

In this case the graph ofvariation of,gas a function ofdistance

from centre of sphere is shown in figure-6.21.

Figure 6.21

6.3.7 Gravitational Field Strength due to a Long Thread

Figure-6.22 shows a long thread oflinear mass density Xkg/m
and we wish to find the gravitational field strength at a point P
situated at a distance r from the thread.' Here we can state that

the direction of gravitational field strength must be radially
inward to the thread. For this as shown in figure we consider
an element ofwidth dx on thread at a distance x from point O.
The mass dm of this element is given as

dm=Xdx ...(6.21)
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^ dgcos 0

A, kg/m

Figure 6.22

If dg be the gravitational field straight at point P due to the
element dm, then dg can be given as

GXdx, Gdm
' .2 . ..2\ / .2 . 2-,{x (x +r )

Here also from figure-6.22 we can see that dg can be resolved
in rectangular components dg sin 0 and dg cos 0 where on
integration dg sin 0 will be cancelled but and dg cos 0 will be
summed up. Thus net gravitational field strength at P can be
given as

,=̂ dg
+C0

COS0

GXdx

+<o

j" ^= GXr
2^3/2

Here we substitute

and

x = r tan 0

dx=r sec^ 0 d0

Changing the limits

and

x = -cc => 0 = -7c/2

x = + oo => 0=+7t/2

2
rsec 0Now we get gp=GXr J
P sec^ 0

/ A

^ |cos0^^0

r

2GX

[sin 0]^n/2

...(6.22)

6.3.8 Gravitational Field Strength Due to a Long Solid
Cylinder •

In case of a cylinder of uniform densitywe can qualitatively
state that due to symmetry the direction ofgravitational field
strength must be again in radially inward direction directed to

the axis of cylinder. If we wish to find the value of g at an

outside pointP^,dueto symmetry we canconsider thatwhole
mass ofcylinder is concentrated uniformly on its axis and for
outer points it will behave like a thread whose linear mass
density can be given as

X=p. 1 . nR^ ...(6.23)

[Mass of unit length]

Thusfor an outerpointP^ the gravitational fieldstrength can
be given as

2GX

g
2G pnR'

Now for an interior point at a distance
X from the axis of cylinder, we can
consider an inner cylinder ofradius x as
shown in figure-6.23. The net

gravitational field at pointP, will only
be due to this inner cylinder of radius x
as due to the outer hollow cylinder, there
will benogravitational field atpointPj.
Now ifX'be the linear mass density of
the inner cylinder ofradius x then X'can
be given as

X' =p.1.7k2' ...(6.25)

Now the gravitational field strength at

point P, can be given as

2GX'
^in

_ 2G.p7D:
X

= 2 Gpjtx

...(6.24)

I !

Figure 6.23

...(6.26)
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Now we consider some examples to understand gravitational
field strength in detail.

# Illustrative Example 6.4

Aring of radiusR is madefroma thinwireofradiusr. If p is the
density ofthe material ofwire then what will be the gravitational
force exerted by the ring on the material particle of mass m
placed on the axis ofjing at a distance x from its centre. Show

thattheforce will bemaximum whenx=RJ-'Jl andthemaximum
value of force will be given as

_ 4tz^G r^p m
max

Solution

The mass of ring can be given as

M= p 7C (27c/?)

F rn

Figure 6.24

We know the gravitational field due to the ring at a distance x
can be given as

or

GMx

{x'+R'f

Thushereforce on mass mplacedat pointP canbe givenas

GMmx

(x'+R'y^='"Sp= ,2 , M/2

F=
IGpiPr^mx
(x'+R'Y" ...(6.27)

IfF is to be maximum, we have

dF

dx
= 0

or =liPcP-pmR
(F2 +x^-3x2(/?2+;,2y/2

{R^+x^ = 0

or + 3x^ = 0

Gravitation

or
R'

or x =

R

Substituting this value ofx in equation-(6.27), we get

F =
max

4?! Gr pm

{Zf'̂ R

# Illustrative Example 6.5

Find the distance of a point from the earth's centre where the
resultant gravitational field due to the earth and the moon is

zero. Themass of theearthis6.0 x 10 '̂̂ kgandthatofthemoon
is 7.4 X10^^ kg. The distancebetweenthe earth and the moon
is4.0xl05km.

Solution

The point must be on the line joining the centres of the earth
and the moon and in between them. Let the distance of this

pointfromearth isx then gravitational field at thispoint due to
earth is

24GM, Gx6xI0'^kg

The gravitational field due to the moon at this point is

• Gx7.4x1022

or

or

or

S„,=

Sg Sn

6x10^"

(4.0xl05-jr)2 (4.0xl0^-x)^

These fields are in opposite directions. For the resultant field-
to be zero

22
7.4x10

(4.0xl0^-x)'

4.0x10^-X V7.4x10
6x1024

<12 = 9

x = 3.6xl05km

# Illustrative Example 6.6

A uniform ring of mass m and radius a is placed directly above
a uniformsphereof massA/and of equal radius.The centreof
the ring is at a distance VSo from the centre of the sphere.
Findthe gravitational force exerted by thesphereon the ring.

Solution

The gravitational field at any point on the ring due to the
sphere is equal to the field due to a single particle of mass M
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placed at the centre of the sphere. Thus, the force on the ring
due to the sphere is also equal to the force on it by a particle of
mass A/placed at this point. By Newton's third law it is equal
to the force on the particle by the ring. Now the gravitational

field due to the ring atadistance i/=VJ on its axis isgiven as

VJ Gm
g =

Gmd

(a' +d'f Sa^

Figure 6.25

The force on sphere of mass Mplaced here is

F=Mg

-JlGMm

# Illustrative Example 6.7

Thedensity insidea solidsphere ofradiusa is given by p = Pq
air where p^ is"the density at the surface and r denotes the
distance from thebentre. Find the gravitational field due to this
sphere at a distance x from its centre.

Solution

To find the gravitational field at a point situated at a distance x
from centre we consider elemental spherical shells of radius r
and width as shown in figure-6.26. The mass of this shell is

dm = p- Ani^dr

^Po 7

= 47t Pq ar dr

Figure 6.26
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Now due to this shell gravitational field at point P is dg thendg
is given as

, Gdm

AnGpQardr

Now net gravitational field at point P will be due to all the
elemental shells within radius 0 to x, which is given as

g

4KpQGardr
3.

0

V J

47cpoflG
Y =2npQaG

lo

# Illustrative Example 6.8

A sphericalhollowcavity is made in a lead sphere of radiusR
such that its surface touches the outside surface of the lead

sphere and passes through its centre. The mass of the lead
sphere beforehollowing wasM. Whatis theforce ofattraction
that thisspherewould exerton a particleof mass mwhich lies
at a distance d from the centre ofthe lead sphere on the straight
linejoiningthe centres of thesphereandthehollow cavity (as
shown in figure-6.27)

Figure 6.27

Solution

To calculate the force of attraction on the point mass m we
should calculate the force due to the solid sphere and subtract
from this the force which the mass of the hollowed cavity

would have exerted on w, i.e.,

GmM GmM'
F=

y

From figure-6.27 y = [d-iRJ2)]

Here Mand Af can be given as

M=
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and

So

4 M

^=3^2JP =T
_ GmM Gw(M/8)

' ~ [d-(RJ2)f
F=

GMm I--
1

8[l-(J2/2iO]

^Illustrative Example 6.9

A uniform solid sphere of mass Mand radius a is surrounded
symmetrically bya uniform thin spherical shell ofequal mass

and radius 2a. Find the gravitational field at adistance (a) ^a
from the centre, (b) ^7 from the centre.

Solution

The situationis shownin figure-6.28.

Figure 6.28

The point P, is at adistance | a from the centre and is at a
distance ^ a from the centre. As is inside the cavity ofthe
thinsphericalshell,the fieldhere due to shell iszero. The field
due to the solid sphere is

S =
GM AGM

9 a'

This is also the resultant field. The direction is towards the
centre. The point is outside the sphere as well as the shell.
Bothmaybe replaced by single particles of the same mass at
the centre. The field due to each ofthem is

GM 4GM

25 a'

SGMTheresultant fieldisg = 2g'= towards thecentre.
25^7'

Gravitation

# Illustrative Example 6,10

Two small dense stars rotate about their common centre of
mass,as a binarysystemwiththeperiodof 1 yearforeach.One
star double ofthe mass of the other and the mass of the lighter
one is of 1/3 the mass of the sun, given the distance between
the earth and the sun is R.

If the distancebetweentwo starts is r, then obtain the relation
between r and R.

Solution

The situationis shownin figure-6.29. LetMbe the massof sun
and r be the distance between the two stars. The distance of
two stars from the centre ofthe mass ofthe system r, and are
given as

and

,=M.
3

2r/3

r,=r
/«2 _ 2
+ /«2 3

r^ = r
m-)

Wi +/«2

rl3

Figure 6.29

The gravitational force on isgiven by

F =
GWjW2 2 GM^

9 >.2

3/

As for circular motion of we have

Where co isthe angular speed ofthe either star, solving we get

GM

If Tbe the timeperiodofrevolution, then

CO

or r= -3/2 ...(6.28)

Weknow the time periods of revolution of earth around sun is
given as
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T^ =
GM

...(6.29)

According to the problem equating equation-(6.28) and (6.29),
we get

r = R

Practice Exercise 6.2

(i) two concentric spherical shells have masses M,, and
radii i?,, Rj {R-^ <-flj)- What is the force exerted by this system
on aparticle ofmass ifitis placed at adistance (i?j +R'̂ 12
from the centre ?

AGM\m

(ii) Ifthe distance between the centres ofEarth and Moon is D
and mass of Earth is 81 times that of Moon. At whatdistance
from the centre ofEarth gravitational field will bezero ?

[9Z)/10]

(iii) A solid sphere of mass m
and radius r is placedlnside a
hollow thin spherical shell of
mass M and radius R as shown

infigure-6.30. Aparticle ofmass
m' isplaced onthelinejoining
the two centres at a distance x

fromthe point of contactof the
sphere and the shell. Find the
magnitude of the resultant
gravitational force on this -
particle due to the sphere and

[(a)
Gnim\x-r)

(b)
Gmm'

{x-rf
(c)

Figure 6.30

the shell if(a) rCc<2r,(b) 2r<x<2R and (c) x>2R.
GMm' Gmm'

{x-Rr ix-f-y

367

Find the net gravitational force acting onthe point mass.

60°

Figure 6.31

r^i

(vli) Asmall point mass mis to be thrown with such aspeed at
a distance x from the axis of a long cylinder of radius R and
density p, so that mstarts revolving around the cylinder in a
circular orbit of radius x with centre on the axis of cylinder.
Findthe speed withwhich point mass is thrown.

[ RyjlGpn ]

(viil) Figure-6.32 shows two uniform rods ofmass A/and length
/ placed on two perpendicular lines. Asmall point mass mis
placed on the point ofintersection ofthe two lines. Find the
netgravitational force experienced by m.

M

1/2

"t"
I//2

M

Qy) Thegiavitationalfieldinaregionisgivenby(2i +2;)N/kg.
What is the work done byanexternal agent inslowly shifting
aparticle ofmass 10 kg from origin to point (5,4).

[- 180 J]

(v) Inside auniform sphere ofdensity p there is a spherical
cavity whose, centre is at a distance / from the centre of the
sphere. Find the strength ofthe gravitational field inside the
cavity.

[f cp;j

(vi) Asmall point mass mis placed atthe centre ofcurvature
ofacircular arcofradius Rand mass 3masshown infigure-6.31.

Figure 6.32

AyflGMm

31'

6.-4 Gravitational Lines of Forces

Gravitational field canalso berepresented bylines offorce. A
line of force is drawn in such a way that at each point the
direction of field is tangent to line that passes through the
point. Thus tangent to any point on a line offorce gives the
direction ofgravitational field at that point. By convention
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lines of force are drawn in such a way that their density is
proportional to the strength of field. Figure-6.33 shows the
field of a point mass in its surrounding. We cansee that the
lines offorce areradially inward giving direction offield andas
we go closer to the mass the density of lines is more which
shows that field strength is increasing.

Gravitationj

atapoint inspace isalong the tangent ofthe respective line of
force. Figure-6.35 shows the configuration ofgravitational field
lines for the Earth and the Moon. Student should verify
themselves about shape of these lines at different points jn
Space

Figure 6.33

Figure-6.34 shows the configuration offield lines for asystem
of two equal masses separated bya given distance.

Figure 6.34

Here we can see that there isno point where any two lines of
force intersects or meet. The reason is obvious that at one
point in space there can never be two directions ofgravitational
fields. Students should note one more point that a line offorce
gives the direction ofnet gravitational field in the region. As
shown in figure-6.35 ifwe consider a point P, there exist two
gravitational field strengths and g^ at P in different
directions due to the two independent masses. Here we can
see that the resultant gravitational field at P, gp is along the
tangent ofthe line offorce passing through P.Thus inasystem
of two or moreparticles, gravitational lines of force aredrawn
in such away that the net gravitational field strength direction

Earth

Figure 6^35

Studentshouldanalyzethemselves that the dotted linesshown
infigure-6.33 and6.35 shows the equipotential surfaces forthe
net field ofregion.
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6.5 Gravitational Field Strength of Earth

We can consider earth to be a very large sphere ofmass M
andradius R^. Gravitational field strength due to earth is also
regarded as acceleration due to gravity or gravitational
acceleration. Now we find the values of at different points
due to earth.

6.5.1 Value ofg on Earth's Surface

If gj be the gravitational field strength at a point A on the
surface of earth, then it can be easily obtained by using the
result ofasolid sphere. Thus for earth, value ofg can be given
as

GM.
S.,=

Rt
...(6.30)
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Figure 6.36

6.5.2 Value of ^ at a Height^ Above the Earth's Surface

Ifwe wish to find the value ofg at a point P as shown in figure-
6.37 at a height h above the Earth's surface.Then the value can
be obtained as

GM

Sh

or

(Re+ f^r

GM.

R. "I

...(6.31)

y ...(6.32)

Figure 6.37

If point P is very close to Earth's surface then for h we
can rewrite the expression in equation-(6.32) as

-2

=g.|l-fj -(S-SS)
[Using binomial approximation]

6.5.3 Value of g at a Depth h Below the Earth's Surface

Ifwe find the value ofg inside the volume of earth at a depth/?
below the earth's surface at point P as shown in figure-6.38,
then we can use the result ofg inside a solid sphere as

g
'GM,x

R]

Figure 6.38

'Here x, the distance of point from centre of earth is given as

x^R^-h

GM,{R,-H)
Thus we have Sh

R:
...(6.34)

From equation-(6.30), (6.32) and (6.34) we can say that the
value ofg at earth's surface is maximumand as we move above
the earth's surface or we go below the surface of earth, the
value of g decreases.

6.5.4 Effect ofEarth's Rotation on Value ofg

Let us consider a body of mass w placed on Earth's surface at
a latitude Xas shown in figure-6.39 This mass experiences a
force ftig^ towards the centre of earth and a centrifugal force
wco^ R sin Xrelative to Earth's surface as shown in figure. IfN

e e °

is the normal contact force on mass then for equilibrium of
body we have

or

N+moy^R^ sin^T, =mg^

JV = mg ~ mo^Re sin^ X

N

'tnat^RgSinX

equator

Figure 6.39

Here we can see that the normal contact force on body is less
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then mg^ on Earth's surface,. At a point on Earth surface we
don't feel this centrifugal force but actually it acts on us and
due to this the effective weight of mass is decreased. If we
consider g^g^as the effective value ofg on earth surface at a
latitude X then we can write

Gravitation

# Illustrative Example 6.11

Calculate the mass and density of the earth. Given that
gravitational constant G= 6.67 x iQ-ii Nm^/kg^ theradius of
theearth = 6.37 x 10^mandg=9.8 m/s^.

Solution

or

^Sejf= sin^ X

... (6.35) The acceleration due to gravity onearth surface is given as

GM.From equation-(6.35) we can find the value ofeffective gravity
at poles and equatorial points on Earth as

At poles X—0

At equator ^= y ^equator = =^.78 m/s^

Thus we can see that the body ifplaced atpoles ofEarth, itwill
onlyhave a spin, not circular motion so there is no reduction in
value ofg atpoles due to rotation ofearth. Thus atpoles value
ofg onEarth surface ismaximum and atequator itisminimum.
But an average we take 9.8 m/s^, the value ofg everywhere on
earth's surface.

6.5.5 Effect ofShape ofEarth onValue ofg

Till now we've considered that earth isspherical inits shape
but this is not actually true. Due to some geological and
astronomical reasons, the shape of earth is not exact
spherical. It is ellipsoidal asshown infigure-6.40.

•

Figure 6.40

As we've discussed that the value of g at a point on earth
surface depends on radius ofEarth. As we can see from figure-
6.40 that at poles radius ofEarth is small compared to that at
equatorial points. It is observed that the approximate
difference in earth's radius at different points on equator
and poles is 21 to34km.Duetothisthedifference in
value ofg at poles and equatorial points is approximately
Sp~Se- 0-02 to 0.04 m/s^, which isvery small. So for numerical
calculations, generally, we ignore this factor while taking the
value g and we assume Earth spherical inshape.

S,=
Rt

or

,6x2w_ gsRe 9.8x(6.37x10^)
^ 6.67xl0->'

= 6x1024kg

If p be the density of earth, then

M= y Xp

3M 3x(6xlO '̂̂ )
or

4nR

= 5.5XlO^kg/m^
4x3.14x(6.37xl0^)^

# Illustrative Example 6.12

Ifthe radius ofthe earth were toshrink byone percent, its mass
remaining the same. What would happen to the acceleration
due to gravity on the earth's surface.

Solution

Consider the case of a body of mass m placed on the earth's
surface (mass of theearth A/and radius R). Ifg is acceleration
due to gravity, then we know that

g.
GM,

Rl
...(6.36)

Now, when the radius is reduced by 1%,i.e., radius becomes
0.99 /?, letacceleration duetogravity beg', then

GM
g'=

(p.99Ry

From equation-(6.36) and (6.37), weget

or

£
g {Q.99Rf (0.99)^

R'

1

0.99

or g'=1.02g

Thus, the value ofg is increased by 2%.

...(6.37)

1
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# Illustrative Example 6.13

At what rate should the earth rotate so that the apparent g at

the equator becomes zero ? What will be the length of the day

in this situation ?

Solution

At earth's equator effective value of gravity is

g =g -aP-Re>eq oj e

Ifequator to be zero, we have

g-GPR=0

or
_ Is

Thus length of the day will be

T=^ =2n ^
ffl \Ss

= 2x3.14 =5074.77;

= 84.57 min.

# Illustrative Example 6.14

Calculate theacceleration due togr^ity at'the surface ofMars
if its diameter is 6760 kraTand mass one-tenth that ofearth. The

diameter ofearth is 12742 km and acceleration due to gravity

on earth is 9.8 m/s^.

Solution

We know that

So
Sm_

gE

— =0.35 or g^=9.8x0.35=3.48m/s2
Se

(GM\
[r^ )

M M

M,

# Illustrative Example 6.15

=(1) fl2742Y
[RmJ lloJ U760j

Two equal masses m and m are hung from a balance whose
scalepansdifferin vertical heightby h. Calculate the error in
weighing, if any, in terms ofdensity ofearth p.

37'

Solution

m

^ L

h

1
m

J-4—1_

V^2

Figure 6.41

As with height varies as

than W2 and

or

or

g' =
g

[l+h/Rf

Andinaccordance with figure-6.4\,h^>h2,sofV^ willbe lesser

,2h
R

ITj - ITj = mg2 - mgj= 2mg \-h.
R R

Asg =-^^ and (^1-/12) =^
R

2mhG ^4 „3 ^ 8 ^ ,
^2"1,3^ Pj =3

As M=-|-7r^^p

# Illustrative Example 6.16

Calculatethe apparentweightof a bodyof massw at a latitude
Xwhen it is moving with speed v on the surface of the earth
from west to east at the same latitude.

Solution

If W be the apparent weight of body at latitude Xthen from
figure-6.42, we have

I cosX

equator

mas^R^os'K

Figure 6.42

W= mg- mapR cos^ X ...(6.38)
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When body moves at speed v from west to east relative to
earth, its net angular speed © can be given as

or

co = o+
e RcosX

[We earth's angular velocity]

Now from equation-(6.38) we have

fV=mg-m

W=mg-m

C0.+
® RcosX

R cos^X

2co„v
(ol+ + •

R^coslX RcosX
Rcos^X

= mg- wco? Rcos^ A, - - 2wa)„ vcosX

mg 1-

"7 7
(nzRcos X 2a)„vcosA

g

Gravitatidh

(v) A tunnel is dug along a chord of the earth at a
perpendicular distance RJ2from the earth's centre. The wall of
the tunnel may be assumed to be frictionless. Find the force
exerted by the wall on a particle of mass m when it is at a
distance x from the centre of the tunnel.

^ GMgtn ^

(vQ Findtheheightovertheearth's surfaceatwhichtheweight
of a body becomes half of its value at the surface.

[(V2 -1) times the radius ofthe earth]

(vii)A body is weighed by a spring balance to be 1.000 kg at
the north pole. How much will it weight at the equator ?Account
for the earth's rotation only. Take = 9.830 m/s^. and

=6400 km.

[Neglecting as being very small] [0.9966 kg]
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Practice Exercise 6.3

(!) Earth's mass is 80 times that ofthe moon and their diameters
are 12800 and 3200 kms respectively. What is the value ofg at
themoon? g on earth= 980cm/s^.

[196 cm/s^]

(li) The diameter ofa planet is four times that ofthe earth. Find
the time period of a pendulum on the planet, if it is a second
pendulum on the earth. Take the'mean density of the planet
equal to that of the earth,

[1 s]

(iii) Imagine a new planet having the same density as that of
Earth but it is 3 times bigger than the Earth in size. If the

acceleration due to gravity on the surface ofEarth is g then find

acceleration due to gravity on the surface of the new planet.

[3g]

(iv) Weight of a body of mass m decreases by 1% when it is

raised to height h above the^Earth's surface. Ifthe body is taken
to a depth in a mine, then by what percentage its weight will
increase/decrease.

[decrease by 0.5%]

(viii) A body is suspended on a springbalance in a ship sailing
along the equator with a speed v. Show that the scale reading
will be very close to ITq (1 ± 2 (ov/g) where co is the angular
speedof the earthand Wq is the scalereading when the shipis
at rest. Explain also the significance ofplus or minus sign.

6.6 Gravitational Potential Energy

We've already discussed that potential energy of a system is
defined as work done in assembling a system. The gravitational
potential energy of a systemis defined, in two ways. These are

(i) Interaction Energy

(ii) SelfBnergy

6.6.1 Interaction Energy

This energy exist in a system ofparticles due to the interaction
forces between the particles of system. Analytically this term
is defined as the work done against the interaction of system

forces in assembling the given configuration of particles. To
mderstand this we take a simple example ofinteraction energy
of two points masses.

Fiugre-6.43(a) showsa systemof twopoint massesm^ and m^.
placed at a distance r apart in space. Here ifwe wish to find the
interaction potential energy of the two masses, this must be
the work done in bringing the two masses from infinity (zero
interactionstate) to this configuration. For this we first fix Wj
at its position and bring slowly from infinity to its location.
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Ifin the processm, is at a distance:ii: fromm, thenforce on it is

GWjW2 '
F=- ...(6.39)

(a)

©-
F dx

(b)

Figure 6.43

Thisforce is applied bythegravitational fieldofw, on^2. If it
is further displaced bya distance dxtoward Wj thenworkdone
by the field is

dW=F-'^

Gm^m2 ,
^ ax

Now in bringing from infinity to a position at a distance r
from ffij the total work done by the field is

Gmttn-)W=^dW~\^dx

= -Gw,W2

W= +
GW]W2

Thus during the process field of system has done

amount ofwork. This workis positive because the displacement
ofbody is in the direction of force. . : •

Initially when the separation between and was very
large (at infinity) there was no interaction between them. We
conversely say that as a reference when there is no interaction
the interaction energy of the system is zero and during the
process systemforces(gravitational forces)are doingwork so^
system energy will decrease and becomes negative (as .initial
energy was zero). As a consequence we can state that in general
if system forces are attractive, in assembling a system of
particles work will be done by the systein and it will spend
energy in assembling itself. Thus finally the interaction energy

of system will be negative. On the other hand if in a given
system of particles, the system forces are repulsive, then in
assembling a system some external forces have to do work
against the system forces and in this case some work must be
done by external forces on the system hence finally the
interaction energy of the system of particles must be positive.

...(6.40)

Gm^m2
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In above example as work is done by the gravitational forces of
the system of two masses, the interaction energy of system
must be negative and it can be given as

^12 = -
Gm,mI'"2 ...(6.41)

As gravitational forces are always attractive, the gravitational
potential energy is always taken negative.

6.6.2 Interaction Energy of a System of Particles

If in a system there are more then two particles then we can
find the interaction energy ofparticles in pairs using equation-"

(6.41) and finally sum up all the results to get the total energy
of the system. For example in a system of N particles with
masses separated from each other by a distance

^12' '"n ••• '*12 separation between and and
so on. . ' •

In the above case the total interaction energy of system is
given as •

N N '

»=i J=1 V

I .

...(6.42)

In this expression the factor y is taken because the interaction
energy for each possible pair of system is taken twice during
summation as for masses mj and

^ Gmjm3 -Gm^pt^
fr3 '31

Now to understand the applications of interaction energy we
take few examples.

# Illustrative Example 6.17

Three particles each ofmass m are
placed at the corners of an
equilateral triangle of side d as
shown in figure-6.44. Calculate

(a) the potential energy of the
system, (b) work done on this
system if the side of the'triangle

is changed from d to 2d.

Solution

A rf-

Flgure 6.44

• UB
m'

(a) As in case of two-particle systempotential energy is given
by (-Gwj/«2^^)» so

G. G,2+ ^23 + Gjj

or G = -3
Gmm 3Gm'



(b) When d is changed to 2d, .

jj _ 3Gm^
f ~2r

Thus work done in changing in potential energy is given as

W=U,-U.=
' 2d

# Illustrative Example 6.18

Solution

Let the speed of^ is v when the speedof B is 3.6 cm/hour =
10"^ m/s. The particles move in opposite directions. Hence
according to momentum conservation, we have

WjVi=OT2V2

(11^xv =(2)x(10-5)

or v = 2xl0~^m/s

Two particles w, and areinitially at restat infinite distance.
Find their relative velocity of approach due to gravitational
attraction when their separation is d.

Solution

Initiallywhen the separation was large there was nointeraction
energy and when they gets closer the system gravitational-
energy decreases andthe kinetic energy increases^

When separation between the two particles is d, then according
to energy conservation we have

Potential energy ofpair

GW|W2

Initialpotentialenergy

(6.67x107'VD (2)
1

=-13.34 X 10-11J

Let the separationat the given instant is d. Then

-13.34;x 10-1' +013.34x10"" |̂ ^^^.5^2

By solving we geti/=0.31m

1 9,1 9 Gm,m-)2Wiv2+- W2v2 ^=0 ...(6.43)

As no other force ispresent we have according to momentum
conservation

W,Vj = w.,v,

Fromequation-(6.43) and(6.44)

1 2^ 1 '"l '9—OTjV, + — V? =
2 m.

2GmX

Gmmr"2

2G
or V, = d{m^ + W2)

Andfi-om equation-(6.44)

d{m^ +W2)

2G

2 V^fWi+Wj) ^

Thus approach velocity is givenas

^ /2G(ffi, +ffl2)

# Illustrative Example 6.19

...(6.44)

Two particles Aand Bofmass 1kg and 2kg respectively are
kept Imapart andarereleased tomove under mutual attraction.
Find thespeed of^ when thatof5 is 3.6cm/houh What is the
separationbetweenthe particles at this instant?
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6.6.3 Self Energy

It is the energy possessed by a body due to the interaction
forces insidethe body. This canbe definedas theworkdone in
assembling all the particles ofa body hia definite shape and
size orit isthe work done increating abody. Again we can say
if the forces inside the body are attractive, work done in
assembling is by the body itself and self energy ofthe body
will benegative andif theforces inside thebody arerepulsive
then some extemal work will bedone inassembling the body
and its selfenergy will bepositive. As gravitational selfenergy
ofanobject is concerned obviously it is always negative due
toattractive forces. Lets take some basic and standard example
to xmderstand this concept.

We first find the gravitational selfenergy ofahollow sphere of
mass A/andradius i?,asshown infigure-6.45. Toassemble this
we assume that we bring several mass elements" dm step by
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step from infinity to a spherical
surface ofradius R with centre

O. Every dm is uniformly
distributed on this surface.

Now we consider an

intermediate situation when

mass ofsurface becomes m and

a further dm is brought from

infinity to the surface thus we
can write the work done in Figure 6.45
bringing this elemental mass dm from infinity to a distance R
from O as

Gmdm
dfV=

R
...(6.45)

Here we can assume in a hollow sphere mass m is behaving as
it is concentrated at O for outer points.'

Now total work done in increasing the mass from 0 to Mean be
obtained by integrating theexpression inequation-(6.45) within
proper limits as

Gmdmw=ldw- j.
0

R

GM^
2R

...(6.46)

Here expression in equation-(6.46) is the work done in
assembling the hollow sphere in space. As this work is done
by the gravitational attractive forces of the body,this work is
doneby itself in assembling thus gravitational self energyof a
hollow sphere of mass M and radius R is given as

U =-^^self 2R ...(6.47)

from CO

dm

Figure 6.46

Students should keep the above result in mind as a standard
result ofgravitational selfenergy of ahollowsphere. Thesame
amountof energy or work is required to split a hollow sphere
ofmass Mand radius R into constituent particles and separating
theseparticles to infmity (Theprocess reverseof assembling).

375:1

We take one more similar standard^example for gravitational
selfenergy ofa solid sphere ofmass Mand radius i?. Again for
it we'll create (assemble) a solid sphere in space. For this we
bring several mass elements dm from infinity and start
assembling at a point O in such way that the size of the
assembled mass increases gradually layer by layer.

Now consider an intermediate situation when the radius of

assembled matter increased to x and the mass becomes w if a

further mass dm is brought from infinity to its surface which
increases the radius of sphere by dx then work done in this
process is

Gmdm
dW= ...(6.48)

If p be the density of sphere P =
M

then we have

w=pX-j nx^

and dm = p X4n jfP'dx

Now from equation-(6.48)

dW=
G(p jd:^) (p Arzx^dx)

or
16

dW= Gp^ dx

Now we can find the total work done in assembling this sphere
to a radiusR by integrating the above expressionwithin proper
limits as

K

=fn'Gp'

= jc^ Gp^ R^

M
As we know the density of sphere is givenasp = -—^, we^nR'
have

W=^7^G 3M

4tiR' • 5 R
...(6.49)

Thus we get the abovework is done by gravitational forces in
assembling a solid sphere of mass Mand radius R. Thus the
self energy of the sphere is given as



The above expression in equation-(6.50) is also a standard
resultwhichyoucanusedirectly innumerical problems. Similar
to theprevious casehere alsowe canstatethat, themagnitude
ofselfenergy is theamount of energy required tosplita solid
sphere into its constituent particles and separating them to
infinity. . .

— ^Gravitation..

its gravitational field. If we wish to find the gravitational
potential at a point P situated at a distance r from it as shown
in figure-6.47, we place a test mass at F and we find the-
interaction energy of Wq with thefield ofm, which isgiven as^

Gmmr,
. ...(6.54)
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6,7 Gravitational Potential

The gravitational potential at a point in gravitational field is
the ^avitational potential energy per unit mass placed atthat
point in gravitational field. Thus at a certain point in
gravitational field, a mass hasapotential energy Uthenthe
gravitational potential at thatpoint is givenas

Figure 6.47

Now the gravitational potential at P due to m can be written as

...(6.55)
y_ U_ Gm

Mr

The expression ofgravitational potential inequation-(6.55) isa
standard result due to a point mass which can be used as an
elemental form tofindothercomplex results, we'll see later.

U
V= — (6 51) thing can also be obtained by using equation-(6.53)

/

orifata point ingravitational field gravitational potential Fis
known then the interaction potential energy ofapoint mass Wq
at that point in the field is given as

as

Vp=\g\dx

U^m^V ...(6.52) or Vp-
^[Gm_

J
dx

Interaction energy of a point mass in a field is defined as
work done inbringing that mass from infinity tothat point. In
the same fashion we can define gravitational potential at a
point in field, alternatively as "Work done in bringing a unit
massfrom infinity to thatpointagainst gravitationalforces."

When a unit mass isbrought toa point in a gravitational field,
force ontheunitmass is ^ atapointinthefield. Thus thework
done in bringing this unit mass from infinity to a point P in
gravitational field orgravitational potential atpoint P isgiven
as

r

Vp =-\g-dx ...(6.53)

Here negative sign shows that Vp is the negative ofwork done
bygravitation field or it is the external required work for the
purpose against gravitational forces. " ' ' ' *'

6.7.1 Gravitational Potential due to a Point Mass

We know that in the surrounding of a point mass it produces

F„ = -

X

Gm

6.7.2 Gravitational Potentialdueto a Ring

Case -I:At the centre of ring

Earlier we've discussed that at

the centre of a ring net
gravitational field is zero as the
ring elements facing each other
on opposite sides cancel the

gravitational field ofeach other.

But in gravitational potential
the situation is not like this as it

is a sealer quantity and here the
distance of centre from each

element dm on ring -
circumference,is equal to R, thus every element dm produces
an.equal gravitational potential at C, given as • r

Gdm '' • '

...(6.56)

Figure 6.48

dV—
R
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Now due to the whole ring the gravitational potential at its
centre C is given as

V.

Case-II:At a point on the axis of ring

Figure-6.49 shows a ring of mass Mand radius R placed in^z
plane with its centre at origin. Here we wish to find the
gravitational potential at a point P on the axis, of the ring at a

distance x from its centre.

Figure 6.49

For this we consider an element ofmass dm at a point on ring

as shown in figure-6.49. Now due to this elemental mass dm if
dV is the potential at point P then it is given as

Gdm
dV=-

Now as being a sealer, due to all the elements ofring, potential
at point P will just be added up algebraically. Thus we can

simply integrate the expression in equation-(6.58) for the,
complete ring as • •

Gdm
V.

•' •' y/x^+R'

...(6.58)
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tv=u,-u.

Figure 6.50

Thus work done in displacing a body in gravitational field can

be given as , • •

Work done = mass ofbody x gravitational potential difference

of the terminal points.

Here as gravitational force is conservative the work done does

not depend on the path along which body is being displaced
in gravitational field. , • , . . '

Now we consider some examples to understand the concepts
of gravitational energy and gravitational potential.

6.7.4 Relation in Gravitational field and Gravitational Potential

In region ofgravitational field we can define field as gradient
ofpotential in the same way we relate force and potential energy

in conservative force fields.

l=-grad K=-^ad K . ,

For one dimensional variation of field we use

dr

When is the gravitational field strength along the direction
of r . '

GM

x^+R'
... (6.59) For three dimensional variation in field we use

6.7.3'Work done in Displacement of a Body in Gravitational

Field .

When a body is displaced in a gravitational field, its interaction

energy with the gravitational field changes and the work done
is equal to the change in interaction energy ofthe body during
its displacement.

If a body of mass w.is displaced'in a gravitational field from
point to B, then work done by external agent can be given as

Y

g. = -
5F ; dV dV "
—1+ j + —k
dx dy dz

6.7.5 Gravitational Potential due to a Sphere

Case-I :Hollow sphere

We've already discussed that for outer points a sphere can be
considered as a point mass at its centre C. Thus for an outer

point P as shown in figure-6.51, situated at a distancex from its

centre C, the gravitational potential can be written as
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^_GM
X

...(6.60)

0 x == R

GM

R V — const.

Figure 6.51

Similarly for a point on the outer surface of the sphere
gravitational potential can be written as

GM
V=-

R
...,(6.61)

Here above expressions inequations-(6.60) and(6.61) arewritten
directly from the standard results of gravitational potential
due to a point mass. By definition of gravitational potential
these are the magnitude of external work required to bring a
unit mass from infmity to the givenpoint in the gravitational
field of the hollow sphere.

If we talk about the interior of the shell, we know that there
existno gravitational fieldinsidethehollowspherethusif we
displace a mass insideit, no workis donein theprocess as no
force will actonit.Thus ifaunit mass isbrought from infinity

GI^to the surface ofthe shell, work required is - —^.Now ifwe
take thisunitmass from its surface toanyof its interior point,
no work is required as there is no gravitational field inside.
Thusateveryinternal pointthegravitational potential remains'
same and equal to that of the surface of the shell, given as

K=. = -
GM

R
...(6.62)

Ifweplotthevariation ofgravitational potential with distance
fromcentre of a hollowsphere wegetagraphshown infigure-
6.52 asfor different points inthe surrounding ofahollow sphere,
the gravitational potential is given as

V --
out

7 =.

GM

GM

R

...(6.63)

[For points

...(6.64)

[For points x = or on "the surface]

GM-

R
...(6.65)

[For points x<i?]

Figure 6.52

Case-Il: Solid sphere

We knowthat for outerpoints we canconsider the sphereas a
pointmassat its centre.Thusfora pointP situatedat a distance
Xfrom its centre, as shown in figure-6.53, the gravitational-
potential can be given as

GM
V =-

out ...(6.66)

Figure 6.53

Similarly for points on the surface of this sphere, the
gravitational potential is given as

GM
K = -

R
...(6.67)

Theabove two results are same as thatofa hollow sphere but
thesame isnottrue foraninteriorpoints asforahollow sphere
there is no gravitational fieldpresent inside, thus no work is
done in displacing a mass inside it but for a solid sphere
gravitational field strength at an interior pointat a distance x
from its centre is given as

Sin
GMx

R^
...(6.68)

Thus according to definition of potential at an interior point'
the gravitational potential at a distance x from the centre of a
solid sphere ofradius R be given as

K=-

rt X

iSaut'̂ -^jSin;^

. J JR^



_gm_^gm
R 2R^ ^ ^

...(6.69)

Now if weplot the variationof gravitational potentialwith the
distancefromcentreof die spherethen weget thegraphshown
in figure-6.54, and the values of gravitational potential for
different points in thesurrounding of the solidsphere givenas

3GM

Figure 6.54

V ^ ™
out ;c

V=-
GM

Gravitational potential at centre

...(6.70)

[For points x>R]

^ ...(6.71)

[For points on surface a:= ^]

...(6.72)

[For interior points a: < i?]

,, 3 GM .

^c=-2~^ [ForA: =0] ...(6.73)
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6.8 Gravitational PotentialEnergy ofa Bodyon Earth

6.8.1 On Earth's Surface

When a body of mass m is situated on earth surface, where
gravitational potential due to earth is given as

R,

Assuming earth asa uniform sphere ofradius R^ and mass M^.
Thus gravitational potential energy ofthe body ofmass m due

to its interactionwith earth's field is given as

GMjn

=-mg^R^...i6.75)

6.8.2 Above the Surface ofEarth

If we find gravitational potential due to earth at a height h
above the earth's surface, it is given as

^gh— (R^ +h)
Thus the gravitational interaction energy of a small bodyof
mass w at a height h above the earth's smface is

U =

gh

GMjn

R. + h

[As ...(6.76)

6.8.3 Inside the Earth's Core

Ri

The gravitational potential inside the earth's core at a distance
Xfrom the centre is given as

GM.
F . =-•gm 2i?: ...(6.77)

Thusgravitational interaction energy of a small bodyof mass
w at a distancea: from the centre of earth is given as

U =mV .
g gin

GMjn . »

# Illustrative Example 6.20

Findworkdone in shifting a bodyof mass m froma height h
above the earth's surface to a height 2h above the earth's
surface.

Solution

The gravitational potential at a height h and 2h above the earth
surface is given as

y V =

If a body of mass m is shifted from h to 2h, work done in the
process is

" GM. GM.
W=m(K,-K) = m i^Rg + h + 2I2
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# Illustrative Example 6.21

A circular ring of mass Mand radius R is placed in YZ plane
with centre at origin. A particle ofmass m is released from rest
at a point x = 2R. Find the speed with which it will pass the

centre ofring. - . .

Solution

2R

m

T

Figure 6.55

As shown in figure-6.55, first we find potential at^ due to the
ring, it is given as

r __

^jR^+i2Rf
Now potential at origin O due to ring is

V=-^
0 R

i •

When m moyes from A to <9, work done on it due to gravitational

forces is

W=m{V^-V^) = m
GM . GM

+ •

45R ^

GMm Ti-i
R 41

This work done by gravitational forces on m must be equal to
the increase in kinetic energy of the mass w, thus we have

1
wv2 =

VJ-i
4~5

GMm

or V =

2(45-1)GM
-JSR

1/2

Alternative Method:

This problem can also be solved simply by using energy

conservation. There initially when m was at rest at point A. The
total energy of system is only gravitational potential energy

given as

Gravitatiofi

QMm

Finally when m passes through O, the total energy ofsystem is

1 7. GMm
=2""^--Tr ;

As no external work is done on the system in this case, the
total energy of system must be conserved, thus according to
energy conservation we have

E^ =Ef

GMm 1 •> GMm

or v =

2(V5-1)GM'
-JSR

1/2

# Illustrative Example 6.22

Find the gravitational interaction energy of system consisting
of a disc of rhass M, radius R and a small mass m situated at a

distance Xfrom disc centre on its axis as shown in figure-6.56.

M

T
R

i

Solution

Figure 6.56

The gravitational potential energy of m with the disc can be
given as

U=mV ...(6.79)

Where Vis the gravitational potential due to disc at the point
where w is situated. This can be, obtained by integrating the

elementalriiigsto form the disc as shownin figure-6.57.

Figure 6.57
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Let us consider an elemental ring of radius y and width dy in
the disc as shown. Its mass dm can be given as

M ^ , 2My dy
dm- 5-x27iyay= ——

Now due to thisdm,gravitationalpotentialat pointP, a distance
Xaway from disc centre is given as

dV=-
Gdm IGMydy

Net potential at P is

or

V=jdV^-j 2G My dy

2GM \ ydy

V=-

2GM

2GM

R^
Vx^+y^ -X

Nowfrom equation-(6.79) thegravitational potential energy of"
system is given as

2GMm
U=mV=- .

R'
Vx^ +y^ -X

# Illustrative Example 6.23

A small mass m is transferred from the centre ofa hollow sphere
of massMto infinity. Find workdone in the process.Compare
this with the situation if instead of a hollow sphere, a solid
sphere of same mass were there.

Solution

We know at infinity, gravitational potential is takenzero. Thus
if K^be the gravitational potential atcentre ofhollow sphere
then external work required in the process is

or ••m\0
GM

R

GMm

GM
Here V^=- , thepotentialat thecentreofa hollowsphere

R

of mass M and radius R.

If a solidspherewerethere,we haveat its centre

c 2 R

Thus work required will be

W^m ' 2 i?
3 GMm

2 R
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We can see in second case more work is required for the process.

# Illustrative Example 6.24

Given a thin homogeneous disc of radius a arid mass Wj. A
small sphere ofmass ^2 is placed at a distance I from the disc
on its axis of symmetry. Initially both are motionless in free
space but they ultimately collide because of gravitational
attraction. Assuming a<<l, showthat the relativevelocityat
the time ofcollision is given by

Solution

The situation in shown in figure-6.58

H

Figure 6.58

Herewe first findthepotential dueto at theposition ofm2.
For this consideran elemental ring of radiusy andwidthdy as
shown in figure-6.58.

Let dm be the mass ofthe elemental ring considered here

m, 2m, y dy
dm = (2Kydy)x—j= »— .

na a

Weknow that the potential due to a circular ring ofradius rat a
distance / is given by"

2Gm^ydr

The totalpotential F at a distance I from the discis given by

y.=- j.
0

2G m 47^-1
a
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Thepotential energy of mass w, withthe system is

U,-m,V=-
2G nti m2

^+1^-1fa

Whenthe two collide the final potential energy becomes

Now U.=- [As I= 0]l/=_
/ a

If a «/theninitial potential energy ofsystem canbewritten as

Change in potential energy

Gm, my r.U. =-~ .j ^[As a<</]

= u,-u^

This change in potential energy of system must be equal to
gainin kinetic energy of the two masses thus, we have

1 2^ I 2 ...(6.80)

If Vj and V2 are the velocity ofWj and at the time oftheir
impact.

As their is no external force acting on system, according to
momentum conservation, we have

and

m, V, =m^v^
'1 '1 '"2 *^2

Nowfrom equation-(6.80) and(6.81) weget

r 'W, 11 , I ,1 ^.\mi + m2\a I
2G (2 1

2G 2 1
Vo=W,^\my+m2\a I

Relative velocity ofWj and Wj atthe time ofimpact is

V^ = Vi+V2

# Illustrative Example 6.25

...(6.81)

Figure-6.59 shows aring ofmass Mj and a sphere ofmass
separated by a distanceR. A small object of mass m is
displaced from A to B. Find the work done by gravitational
forces.

Grawtation:

Figure 6.59

Solution

In this case as shifting is from A to B, work done by the
gravitational forces is given as

W=m{V^-V^)

Where and aregravitational potentials atpoints AandB
respectively, which can be given as

and

GMj GM2
R 2R

3GM2 GMy
2R R

Thus work done by gravitational forces is

W=m

R

GMj GM2
R 2R

GM2 GM^
2R

GM
2B ^ 2 1)

# Illustrative Example 6.26

3 GM2 GM^
2 R 2R'

A solid sphere of mass m and radius r is initially placed at a
distance 5r from the centre of a point mass M as shown in
figure-6.60. Nowit is shiftedto a positionat a distance3r from
the point mass. During displacement, it is also uniformly
expanded toa radius 2 r sothat its density decreases uniformly
throughout its volume. Find the work required in this process.

M '

Figure 6.60
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Solution

Inthisprocess during displacement thesizeofanobjectis also
changing. This implies, we have to accountfor the self energy
of object also. There initial total energy of system is
U,_= SelfenergyofM+ Selfenergyofm+ Interaction energyof
mSc^M

•S +1-^^\ 5 r
GMm

TT
+ -

In final stage the radius of m becomes 2r and it is situated at a

distance 3r from Mas shown in figure-6.61.

Figure 6.61

Now final total energy ofsystem is given as

^ 3 ( GMm\
5 2r \ [• 3r J

Now external work required in the process is

W= Uf- u.

f, 3 Grn^ GMm
3r

3 Gm^ GMm (\ 1
10 r r ^3 5

^ Illustrative Example 6.27

o 3 Gm^ GMm\

A particle ofmass,OT was transferred from the centre ofthe base

of a uniformhemisphere of mass M and radius R to infinity.
What work was performed in the process by the gravitational
force exerted on the particle by the hemisphere ?

Solution

To find the initial energy of
system first we find

gravitational potential due
to hemisphere at its-centre'.
For this consider an

elemental hemispherical
o R

Figure 6.62

dm =
M

Ml-'
y.dr

-^r-dr
The potential dV at point O due to this strip

dV=-^

G
3Mr dr

R' 3GM

^ R'

Thus potential at O due to hemisphere is given by integrating
the above expression within proper limits as

rdr

383

shell of thickness dr at a distance r from the centre O of the

hemisphereas shownin figure-6.62.

Let dm be the mass ofthe elementary strip. Then

3 GM

2 R

Thus potential energy of mass m placed at point 0 is given as

U. = mV, •

3 GMm

2 R

We know potential energy ofmatinfinity U^- 0

The work done in transferring m from centre ofhemisphere to
infinity is given as

W= Uf-U.

. 3GMm'i_ 3 GMm
' 2' i? J 2 R

# Illustrative Example 6.28

On the pole of earth a body is imparted velocity Vq directed
vertically up. Knowing the radius of the earth and the free-fall

acceleration on its surface, find the height to which the body
will ascend. The air drag is to be neglected.

Solution

Let m and'M be the masses ofthe body and earth respectively.
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Kinetic energy of the body at the pole

Potential energy of the body at the pole

GMm
a = -

R

[Where R

RE. of the body at height h is

GMm

radius of the earth]

U^=- iR + h)

Using the conservation of energy, we have

1 o GMm GMm
or

or

or

or

or

R

v^ =

- (R + h)

IGMh

R{R+ h) '

IGMh

R}{\4hlR)

2gh

-I

v^ =2gh-^=hVQh

h =
vIr

2gR-y^

[As g -

2g^-v
R
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Practice Exercise 6.4

(i) Find the kinetic energy needed to project a body ofmass m
from the centre of a ring of mass Mand radius R so that it will
never come back. • .,

GMm ^
R

(it) How much work is done in circulating a small object of
mass m around a sphere ofmass w in a circle ofradius R.

[0]

Gravitation

(Hi) Distance between the centres of two stars is 10 ij. The

masses of these stars are Mand 16 Mand their radii a and 2a,

respectively. Abody ofmass m is fired straight from the surface
of the larger star towards the smaller one. What should be its
minimum initial speed to reach the surface ofthe smaller star ?
Obtain the expression in terms ofG, Mand a.

[| ]

(w) Find the gravitational potential due to a hemispherical
cup of mass Mand radius R, at its centre of curvature.

[-
GM

R

(v) Two particles each ofmass Mare fixed at positions (0, a)

and(0,-fl). Anotherparticleofmass is thrownfromorigin

along +zaxis so that itis just able to reach apoint (0,0, l-JZa).
Find the speed with which it was projected.

[2
GM

(vi) The gravitational field in a region is given by

8= (2i+ 3 7)N/kg. Show that no work is done by the

gravitational fieldwhena particleismoyedonthe line3;^+2x=5.

(vii)Find the gravitational potential energy of a system
consistingof a uniformrodAB of massM, length / and a point
mass m as shown in figure-6.63.

M

> —

Figure 6.63

6.9 Satellite and Planetary Motion

6.9.1 Motion of a Satellite in a Circular Orbit

To understand how a satellite continually moves in its orbit,
we considertheprojectionof a body horizontallyfromthe top
of a high mountain on earth as shown in figure-6.64. Here till
our discussion ends we neglect air friction. The distance the
projectile travels before hitting the grpund depends on the
launching speed. The greater the speed, the greater the
distance. The distancethe projectile travels before hittingthe
ground is also affected by the curvature of earth as shown in
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figure-6.64. This figure was given by newton in his explanation

oflaws ofgravitation. It shows different trajectories for different
launching speeds. As the launching speed is made greater, a
speed is reached where by the projectile's path follow the
curvature ofthe earth. This is the launching speed which places
the projectile in a circular orbit. Thus an object in circular orbit

may be regarded as falling, but as it falls its path is concentric
with the earth's spherical surface and the object maintains a

fixed distance fi^om the earth's centre. Since the motion may

continue indefinitely, we may say that the orbit is stable.

Figure 6.64

Let's find the speed of a satellite of mass w in a circular orbit
around, the earth. Consider a satellite revolving around the

•earth in a circular orbit ofradius r as shown in figure-6.65.

Earth

Figure 6.65

If its orbit is stable during its motion, the net gravitational
force on it must be balanced by the centrifugal force on it
relative to the rotating frame as

GM^m mv^

or V =

GM.
...(6.82)

Expression in equation-(6.82) gives the speed of a satellite in a
stable circular orbit ofradius r.

385

6.9.2 Energies of a Satellite in a Circular Orbit

When there is a satellite revolving in a stable circular orbit of

radius r around the earth, its speed is given by equation-{6.82).
During its motion the kinetic energy of the satellite can be

given as

2 2 r
...(6.83)

As gravitational force on satellite due to earth is the only force
it experiences during motion, it has gravitational interaction

energy in the field ofearth, which is given as

U=-
GMjn

...(6.84)

Thus the total energy ofa satellite in an orbit ofradius r can be
given as

Total energy E= Kinetic energy Potential Energy U

1 GMjn GMm

or
^ 1 GM^m

t
2 r

...(6.85)

Fromequation-(6.82), (6.83) and (6.84) we can see that

TE\ =\KE\ =-^\PE\ ...(6.86)

The above relation in magnitudes oftotal, kinetic and potential

energies of a satellite is very useftil in numerical problem so
students are advised to keep this relation in mind while handling
satellite problems related to energy.

Now to understand satellite and planetary motion in detail, we
take few example.

# Illustrative Example 6.29

Estimate the mass of the sun, assuming the orbit of the earth
round the sun to be a circle. The distance between the sun and

earthis 1.49 x 10 '̂ mandG= 6.66 x 10~^^Nm^/kg^.

Solution

Here the" revolving speed of earth can be given as

GM
[Orbital speed]

Where M is the mass of sun and r is the orbit radius of earth.

We know time period ofearth around sun is r= 365 days, thus
. we have

7=



i3a&:

or T=2-Kr
GM

or M= Gt2

1K3• 4x(3.14rx(1.49xl0")

(365 X24X 3600)^ X(6.66 X

• = 1.972 xl022kg > -

# Illustrative Example 6.30

If the earth be one-half of its present distance from the sun,
how many days will be in one year ?

Solution

If orbit of earth's radius is R, in previous example we've
discussed that time period is given as

r=27cr
271

...(6.87)

Ifradius changes to r'= y, new time period becomes

T= -P=r'̂ '2 '
4gm.

From equation-(6.87) and (6.88) we have

or

L.(l
r r'

3/2

,n3/2

T'=T\ —

14'^ 365=3651:^-1 =^days

# Illustrative Example 6.31

...(6.88)

An artificial satellite of the earth is to be established in the

equatorial plane of the earth and to an observer at the equator
is required that the satellite will move eastward, completing

iue round trip per day. Determine the distance of the satellite

i^'om the centre of the earth. The mass of the earth is

M=6.00 X10^"^ kgand its angular velocity cOq=7.30 x10~^rad/s.

Solution

.'locity of satellite in orbit ofradius r is

v =
GM

Its angular velocity is

V, \GM
CO— — -ll -J/T

r V

According to problem

' co = 2a)^j
Thus we have

or

2c0o =
GM
..3/2

vl/3

I GM\

"U<J

4x(7.3xl0r^)^

=2.66xl0^m

# Illustrative Example 6.32

(6.67xl0")x(6xl0^^)
1/3

A satellite revolving in a circular equatorial orbit of radius
r=2.Q0 X10"* kmfrom west toeastappear overacertainpointat
the equator every t = 11.6 hours. Using this data, calculate the

mass ofthe earth. The gravitational constant is supposed to be
known.

Solution

Here, the absolute angular velocity of satellite is given by

(o= a)^ + (0£

Whereco^, is the angularvelocityof earth,whichis fromwestto
east.

or (0=^ ~ [Where f=11.6 hr. and 24 hr.]

From Kepler's 111 law, we have

4^
co = .3/2

Thus we have

or

'JGM _2^, 271
;.3/2 - t^T

M=
G

47e^(2x1Q'̂ )^
"(6.67x10"^^)
=6.0 X1024 icg

1
+ •

1

11.6x3600 24x3600



# Illustrative Example 6.33

An artificialsatelliteisdescribinganequatorialorbitat 1600km
above the surface of the earth. Calculate its orbital speed and
the period ofrevolution. If the satellite is travelling in the same

direction as the rotation of the earth (i.e., fi-om west to east),
calculate the interval between two successive times at which it

will appear vertically overhead to an observer at a fixed point
on the equator. Radius ofearth = 6400 km.

Solution

We know that the period ofthe satellite is

Where r-6400 +1600 = 800km=8000 x loV

g = 9.8m/sec^ and i?= 6400xI0^m

Substituting values we get

r=2x3.14

= 7096 s

Further, orbital speed,

,3\3
(BOOOxlOO

9.8x(6400xl0V

v =
GM gR

i

1/2

or
9.8

.8000x10'

= 7083.5 m/s

X(6400x 103)

387-'

Calculate its angular momentum with respect to the centre of

the orbit in terms of the mass of the earth. '

Solution

The situation is shown in figure-6.66.

Satellite

Earth

Figure 6.66

The angular momentum ofthe satellite with respect to the centre
of orbit is given by

L= fx^mv

Where f the position vector ofsatellite with respect to the centre

of orbit and v is its velocity vector ofsatellite.

It case ofcircular orbit, the angle between Fand v is 90®. Hence

Z, = mvrsin90° = mvr ...(6.89)

The direction is perpendicular to the plane ofthe orbit.

We know orbital speed of satellite is

v =
GM ...(6.90)

Let t be the time interval between two successive moments at

which the satellite is overhead to an observer at a fixed position
on the equator. As both satellite and earth are moving in same
direction with angular speeds co^ and respectively, we can
write the time ofseparation as • From equation-(6.89) and (6.90), we get

Here

Thus we have

t =
2n

COc-COj

2;r j 271'
C0r= and 0)^ =

/ =

7096

86400x7096

86400-7096

= 7731 s"

86400

# Illustrative Example 6.34

A satellite of mass m is moving in a circular orbit of radius r.

or

r GML = m-xl r

,2 ^•»l/2L = (GMm^r)

# Illustrative Example 6.35

A satellite is launched into a circular orbit 1600 km above the

surface of the earth. Find the period ofrevolution, if the radius

ofthe earth R = 6400 km and the acceleration due to gravity is

9.8 m/s^.At what height fi-om the ground should it be launched
so that it may appear stationary over a point on he earth's

equator ?



^^1 =
27tr Ik

^ Vgm

2;c

Gravitation

^/2

ispf; ^ \ ^

Solution

We know that the orbital period of a satellite in an orbit of
radius r is

j'— j3/2

and
4^

Vgm

27C

Vgm
r= 3/2{R^-h) ...(6.91)

[As herer = R-'rh]

As second satellite is revolving in a radius (r- Ar). Know the
period interval (r^ - r2) isgiven by

2k

or •T=2ti-
{R +hf

gR'

Substituting the given values, we have

r=2x3.14x

= 7090 s = 6.97 hour

PA[As g=

[(6400 +1600)xl0^m]^
1/2

_(9.8w/5^)(6400x10^w)^_

The satellite will appear stationary in the sky if its period of
revolution round the earth is equal to period of revolution of
the earth round its own axis (24 hours). Let us find the height of
the satellite with this time period; Now from eqUation-(6.91),we
have

h =

or, h =

T^g R}
An

1/3

-R

(24 X3600)^ X(9.8) x(6400 xIQ^)^
4x(3.14)2

=4.23x 10''-0.64x lO'̂

= 3.59xl0'^ = 3.59xl0'^km

# Illustrative Example 6.36

1/3

-(6400x103)

Two Earth's satellites move in a common plane along circular
orbits. The orbital radius ofone satellite/- = 7000 km while that

of the other satellite is A r = 70 km less. What time interval

separates the periodic approaches ofthe satellites to each other
over the minimum distance ?

Solution

Now for first satellite which is revolving about the earth (mass

Mand radius r) the orbital speed is

T,-T.= I

2k pi2_pi2
4g~m-

271

Vgm
^/2

,3/2 (1
VgM v2 r

.-I.-If
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Practice Exercise 6.5

(1) Two satellites A and B of the same mass are orbiting the"
earth at altitudesR and 37? respectively,whereR is the radius of
the earth. Taking their orbits to be circular, obtain the ratios of
sun of their kinetic and magnitudes of potential energies.

.[1:2] , , ,

(ii) A satellite ofmass 1000 kg is supposed to orbit the earth
at a height of 2000 km above the earth's surface. Find (a) Its
speed in the orbit, (b) its kinetic energy, (c) the potential energy
of the earth-satellite system and (d) its time period. Mass of
theearth = 6x lO '̂̂ kg.

[(a) 6.986 km/s; (b) 2.44 x lO'" J; (c) - 4.88 x 10'" J; (d) 1.975 hrs]

(iii) A satellite is to revolve round the earth in a circle ofradius
8000 km. With what speed should this satellite be projected
into orbit ? What will be ±e time period ofits revolution? Take
g at the surface= 9.8 m/s^ andradius of the earth= 6400km.

V =
GM

...(6.92) [7.08 km/s, 118.26 minutes]

Let Tj and be the time period for first and second satellites
respectively. Then we know that

(iv) Assuming the radius ofthe earth to be 6400 km, calculate
the period of revolution of a satellite which is describing an
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equatorial orbit at 1400 km above the surface. Ifthe satellite is
travelling in the same direction as the rotation of the earth i.e.

West to East, what is the interval between two successive times

at which it will appear vertically overhead to an observer at a
fixedpoint on the equator? Takeg-= 10m/s^.

[2.038 hr] . .

(v) A satellite of mass 2 x 10^ kg has to be shifted fi-om an
orbit ofradius 2R to another ofradius 3i?, where R is the radius

ofthe earth. Calculate the minimum energy required. Take mass

ofearth = 6 x lO^kg, radiusofearth = 6.4 x lO^m.

[1.042 X lO'O J]

(vQ A double star is a system of two stars of different masses

moving around the centre of inertia of the system due to
gravitation. Find the distance between the components of the

double star, ifits total mass equals Mand the period ofrevolution

T

• Y T
gm\ —

Uir

K

(vii) If a planet is suddenly stopped in its orbit supposed to be
circular, show that itwould fall into the sun ina time (>/2 /8)
times the period of the planet's revolution.

(viii) A particle would take a time to move down a straight

tunnel from the surface ofearth to its centre. Ifg is assumed to
be constant, time would be Fii^d

6.10 Motion ofa Satellite in Elliptical Path

Wherever a satellite is in a circular or elliptical, path, these

orbits are called bounded orbits as satellite is moving in an

orbit bounded to earth. The bound nature of orbit means that

the kinetic energy of satellite is not enough at any point in the
orbit to take the satellite to infinity. In equation-(6.85) negative

total energy of a revolving satellite shows its boundness to
earth. Even when a body is in elliptical path around the earth,
its total energy must be negative. Lets first discuss'how a

satellite or a body can be in elliptical path.

Consider a body (satellite) ofmass /w in a circular path ofradius
r around the earth as shown in figure-6.67, we've discussed
that in circular path the net gravitational fi-ame on body is
exactly balancing the centrifugal force on it in radial direction
relative to a rotating frame with the body;

389'

' path-l

path-II

Figure 6.67

If suddenly the velocity ofbody decreases then the centrifugal

force on it becomes less then the gravitational force acting oh
it and due to this it can not continue in the circular orbit and

will come inward from the circular orbit due to unbalanced

forces. Mathematical analysis shows that this path-I along
which the body is now moving is an ellipse. The analytical
calculations of the laws for this path is beyond the scope of
this book. But students should keep in mind that ifvelocity of
a body at a distance r from earth's centre tangential to the

circular orbit is less than then its path will be elliptical

with earth centre at one of the foci ofthe ellipse.

Similarly if the speed ofbody exceeds

out ofthe circular path due to unbalancing of forces again but
this time >F^. Due to this ifspeed ofbody is not increased
by such a value that its kinetic energy can take the particle to
infinity then it will follow in a bigger elliptical orbit as shown in
figure-6.67 in path-11, with earth's centre at one of the foci of
the orbit. . . .

In above case when speed of body was decreased and'its

value is lesser then and the speed is decreased to such

a value that the elliptical orbit will intersect the earth's surface

then it must move
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as shown in figure-6.68 then body will follow an arc ofellipse to earth which is acting along the line joining of satellite and
and will fall back to earth.

arc of
ellipse

Figure 6.68

6.11 Satellite Motion and Angular Momentum
Conservation

We've discussed that when a body is in bounded orbit around
a planet it can be in circular or elliptical path depending on its
kinetic energy at the time of launching. Lets consider"a case
when a satellite is laimched in an orbit around the earth.

A satellite S is first fired away from earth surface in vertical
direction to penetrate the earth's atmosphere. When it reaches
points, it is imparted a velocity in tangential direction to start
its revolution around the earth in its orbit.

v,>v,

Earth

Figure 6.69

This velocity is termed as insertion velocity, if the velocity

impartedto satellite is then it starts following the

circular path shown in figure-6.69. Ifvelocity imparted isv, >Vq
then it will trace the elliptical path shown. During this motion
the only force acting on satellite is the gravitational force due

centre of earth.

As the force on satellite always passes through centre ofearth,

during motion, we can say that on satellite there is no torque
acting about centre of earth this total angular momentum of

satellite during its orbital motion remains constant about earth's

centre.

As no external force is involved for earth-satellite system, no

external work isbeing done here so we can alsc/ state that total
mechanical energy of system also remains conserved.

Inthe elliptical path ofsatellite shown infigme if rj and are
the shortest distance (perigee) and farthest distances (apogee)
of satellite from earth and at the points, velocities of satellite

are Vj and thenwehaveaccording to conservation of angular
momentum, theangularmomentum ofsatelliteat a generalpoint
IS given as

L= wvj rj = mv^ = m\r sin0 ...(6.93)

During motion the total mechanical energy of satellite (kinetic
+ potential) also remains conserved. Thus the total energy of
satellite can be given as

^ 1 ^ GM^m
E = -^mvf-

2 1 n

1 - GMm
2 2 r-,

= 1
2 r

...(6.94)

Using the above relations in equation-(6.93) and (6.94) we can
find velocities Vj and of satellite at nearest and farthest
locations interms of and^2-

6.12 Kepler's Laws of Planetary Motion

The motionsof planet in universehave always been a puzzle.
In11^ century Johannes Kepler, after alife time ofstudyworded
out some empirical laws based on the analysis ofastronomical

measurements of TychoBrahe. Kepler formulate his laws, which
are kinematical description ofplanetary motion. Now we discuss
these laws step by step.

6.12.1Kepler's First Law [The Law of Orbits]

Kepler'sfirstlawis illustrated inthe image showninfigure-6.70
It statesthat "Alltheplanets movearound thesun in elliptical
orbits withsun at one ofthefocus not at centre oforbitf
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It is observed that the orbits of planets around sun are very
less acentric or approximately circular.

Planet

Focus

Figure 6.70
t

6.12.2 Kepler's Second Law [The Law ofAreas]

Kepler's second Law is basically an alternative statement of
law ofconservation ofmomentum. It is illustrated in the image
shown in figure-6.71(a). We know from angular momentum

conservation, in elliptical orbit planet will move faster when it
is nearer the sun. Thus when a planet executes elliptical orbit
its angular speed changes continuously as it moves in the
orbit. The point of nearest approach of the planet to the sun is

termed perihelion. The point of greatest separation is termed
aphelion. Hence by angular momentum conservation we can
state that the planet moves with maximum speed when it is
near perihelion and moves with slowest speed when it is near
aphelion; .

Aphelion

Perihelion

(a)

(b)

Figure 6.71

Kepler's second law states that "The line joining the sun and
planet sweeps out equal areas in equal time or the rate of
sweeping area by the position vector ofthe planet with respect
to suri remains constant." This is shown in figure-6.71(b)

39r

The abovestatementofKepler's secondlawcanbeverifiedby
the law of conservation of angular momentum. To verify this
consider the moving planet around the sun at a general point'
C in the orbit at speed v. Let at this instant the distance of
planetfromsunis r. If 0 be theanglebetweenpositionvectorf
of planetandits velocityvector thenthe angularmomentum of
planet at this instant is

L = mvr sin 0 ...(6.95)

In an elemental time the planet will cover a small distance CD=dl

and will travel to another adjacent point D as shown in figure-
6.71(a), thus the distance CD = ydt. In this duration dt, the

position vector 7 sweeps outanarea equal to thafoftriangle
SCD, which is calculated as

Area of triangle SCD is

£^4 =y Xr Xvi/r sin (tc - 0)

=yrvsm0. £7?

Thus the rate of sweeping area by the position vector r is

dA 1
-^=2n;sin

Now from equation-(6.95)

dA
constant

...(6.96)

...(6.97)

The expression in equation-(6.97) verifies the statement of

Kepler' II law ofplanetary motion.

6.12.3 Kepler's Third Law [The Law ofPeriods]

Kepler's Third Laws is concerned with the time period of
revolution of planets. It states that "The time period of
revolution ofa planet in its orbit around the sun is directly
proportional to the cube ofsemi-major axis of the elliptical
path around the sun."

If'T' is the period ofrevolution and 'a] be the semi-major axis
of the path of planet then according to Kepler's III Law, we
have

...(6.98)

For circular orbits, it is a special case ofellipse when its major
and minor axis are equal. If a planet is in a circular orbit of
radius r arotmd the sun then its revolution speed must be,
given as

• v = ...(6.99)



Where is the mass of sun. There you can recall that this

speed is independent from the mass of planet. Here the time

period of revolution can be given as

or

T=

T=

2nr

V

2nr

GM„

Squaring equation no.-(6.100), we get

7-2 = -iZL
GM.

•P

...(6.100)

...(6.101)

Equation-(6.101) verifies the statement ofKepler's third law for
circular orbits. Similarlywe can also verify it for elliptical orbits.
For this we start from the relation we've derived earlier for rate

of sweeping area by the position vector ofplanet with respect
to sun which is given as

dt 2m
...(6.102)

Where L is the total angular momentum of planet during its
motion considerthe path of planet shownin figure-6.72 js an
elliptical path with sun at one focus (- ae, 0).

minor
{- ae, 0)

axis

major axis = 2a

Figure 6.72

Here and are the shortest and farthest distance of planet
from sun during its motion, which are given as

and

• r, =o(l-e)

^2 = ^(1 +e)

...(6.103)

...(6.104)

Where e is the centricity. From geometry we know that the
relation in semi major axis a and semiminor axis b is given as

b=a^\-e^ .,.(6.105)
If Vj and V2 are the planet speeds at perihelion and aphelion
points then from conservation of momentum we have

...(6.106)

From energy conservation we have

1 _ GM.m 1 . GM.m
-xrmvf- —=-x:mv±- ———2 1 q 2 2 ^

L = wVj rj = mv^r^

or v2-v2 = 2GM
12 S

J__J_

/i >2
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From equation-(6.106) we have

or

2' 1

= 2GM
fi-n

'2 .
s

2GM,r^
V, =1 ll('i+'2M

From equation-(6.103) and (6.104) we have

^1 =
GM. (l + e

a 11-e

Now from equation-(6.102) we have the total area of ellipse
traced by the planet is given as

A=^T
2m

or

or

or

_ 2m . 2mnab 2mitab
T=—rA=—r-z—=L L wviq

2mTia asjl-i
T=

m
GM, (\ + e

\ a l^l-e W-e)]

7^2=
^ GM, ° ...(6.107)

Lets take some examples to understand satellite motion in
elliptical path in detail.

# Illustrative Example 6.37

The moon revolves around the earth 13 timesper year. If the
ratio ofthe distance ofthe earth from the sun to the distance of

the moon from the earth is 392, find the ratio ofmass ofthe sun

to the mass of the earth.

Solution

The time period of earth around sun of mass M is given by

7-2 =

Where r is the radius of the earth.

...(6.108)

Similarly, timeperiod of moonaroundearth is givenby

.2

...(6.109)T 2 =
471^



Dividing equation-(6.108) byequation-(6.109), weget

or

le

K

Me

...(6.110)

Substituting the given values, we get

® ={^} '<(392)'=3.56xl0'

:39^?

# Illustrative Example 6.39

Imagine a lightplanetrevolvingarounda verymassivestar in a
circular orbit of radius r with a period ofrevolution T.On what
power of r, will the square of time period depend if the
gravitational force of attractionbetweentheplanetand the star
is proportional" to

Solution

As gravitation provides centripetal force

# Illustrative Example 6.38 mv^ K
r ~ ^5/2 '

A satellite revolves around a planet in an elliptical orbit. Its
maximum andminimum distances from theplanetare 1.5x 10'm
and0.5 x 10'm respectively. If the speed of the satellite at the
farthest pointbe 5 x 10^ m/s, calculate thespeedat thenearest
point.

i.e.,

So that

2 ^

V ,

Solution
or

rr.-}

K

3/2
mr

K .

so
.7/2

^ - 0 Appogee
im

Figure 6.73

In case of elliptical orbit, the speed ofsatellitevaries constantly
as shown in figure-6.73. Thus according to the law of
conservation of angular momentum, the satellite must move
faster at a point of closest approach (Perigee) than at a farthest
point (Apogee).

We know that

T*.L = rx w V

Hence, at the two points,

or

L= m Vj Tj = w V2 7*2

. ^2

Substituting the given values, we get

' 5x10^ _ 0.5x10^
V2 1.5x10^

V2 = 1.5 XlO'̂ m/s

# Illustrative Example 6.40

A meteorite of massmcollideswitha satellitewhichwasorbiting
around a planet in a circular path of radius R. Due to collision,
the meteoritesticksto thesatellite(mass= 10w) andthe satellite
is seen to have gone into an orbit whose minimum distance
from the planet isRH. Determinethe velocity v ofthe meteorite
before collision. Mass of the planet is M.

Solution

The situation before collision and after collision is shown in

figure-6.74.

Path after • /
collision

m

V

lOm

v; \
\

\

R

Figure 6.74

Path before
collision



^394

Before collision the speed of satellites is

Ur. =
GM

•0 ^ ^ ...(6.111)
Ifafter collision with meteorite the combined mass 11 w moves

ofan angle 9 with the orbit as shownin figure-6.74. If finally 11
m moves at speed v' then applying the law of conservation of

momentumalong horizontal and vertical directions, we get

or

or

7K v = 11 w v'sin 0

v'sin0=(v/ll)

lOw Wg = 11w v'cos 0

v'cos 0 = (lOvg/ll)

...(6.112)

...(6.113)

After collision (Figure-6.74), applying the conservation of
angular momentum, we have

llm(v'cos0)??= 11 m(v") y ...(6.114)

[Ifv" is speed at perigee]

Applying the principle of conservation of energy, we have

(S/2)

GA/ , V/2 2GM V

R 2

p2

From equation-(6.112)and (6.113)

,2 ^

lli 11 121

...(6.115)

...(6.116)

From equation-(6.114), v"=2 v'cos 0= (20/11) Vg ... (6.117)

Substituting thevalues ofv'^andv"from equation-(6.116) and
equation-(6.117) in equation-(6.115), we get

GM ^ 1p+lQO»o
i? 2 121

^ lAs tr ^
242 R Mo-

58 GM

242??

or v =
58 GM

R

2GM 1

R 2

GM^
^ J

"20
Tr"«

Gravitation

Illustrative Example 6.41

Halley's comet has a period of 76 years and in the year 1986,

hadadistanceofclosest approach to the sun equal to 8.9 x 10^°
m. What is the comet's farthest distance from the sun if the

massofsunis2 x 10^® kg and G= 6.67 x iQ-i® MKSunits?

Solution

Perigee
KE = max

PE = min
Focus

Comet

Semi major
axis

KE - mm

PE = max

Figure 6.75

From the problem it is self-evident that the orbit ofthe comet is
ellipticwithsunbeing at one focus(see figure-6.75). Now as for
elliptic orbits, according to Kepler's third law.

T^ =
GM

I.e.,
T^GM

1/3

4;c^

(76x3.15x10^)2 x6.67xlO-"x2xlO
or a =

-2.7xl0i2ni

But in case ofellipse, we have

2a = r - + r
mm max'

or r = 2a - r_,_

471^

,30

r^ = 2x2.7x 10'2-8.9x 10'o=5.3x lo'^m

# Illustrative Example 6.42

1/3

A satellite is revolving roimd the earth in a circular orbit of
radius a withvelocity Vg. Aparticle isprojected from thesatellite
in forward direction with relative velocity v= (V5/4-1) Vg.
Calculate,duringsubsequentmotionof theparticle its minimiiTn
and maximum distances from earth's centre.



fGravitapDn ' " - """'' ™

Solution

The corresponding situation is shown in figure-6.7(5

V + Vf,

Figure 6.76

Initial velocity ofsatellite

GM
Vr,=

Whenparticle is thrownwiththe velocityv relativeto satellite,
the resultant velocity ofparticle will become .

V^ = Vo + V

\( 5 GM
Vn =

As theparticle velocity isgreater thanthevelocity required for
circular orbih hence theparticle pathdeviates from circular path
to elliptical path. At positions of minimum and maximum
distances velocity vectors are perpendicular to instantaneous
radius vector. In this electrical path the minimum distance of
particle from earth'scentre isa andmaximum speedinthepath
is and let themaximum distance andminimum speedin the
path is r and Vj respectively.

Now as angular momentum and total energy remain conserved.
Applying the law of conservation of angular momentum, we
have

or

mv^r = m(Vq + v)a [m= mass ofparticle]

(vo + v)a ; ,
V, =

5 GM

4 a

jxGMaJ
J

Applying the law of conservation of energy

1 -) GMm 1 ^ GMm

• 1 {5 GMa] GMm _\ (5GM\ GMm
2'"l4' a

5 a__]^^5 1 _3_
^ r S a a 8a

or - 8 a r + 5 = 0

5a
or r = a or

Thusminimum distance of the particle= a

And maximumdistance of the particle =

a

3951

# Illustrative Example 6.43

A skylabofmass2 x 10^ kgis firstlaunched fromthesurface of
earthin a circular orbitof radius 2 R (from the centre of earth)
and then it is shifted from this circular orbit to another circular,
orbitofradius 3R.Calculate theminimum energy required (a)to
place the lab hi the first orbit (b) to shift the lab from first orbit
to thesecondorbit.Given, = 6400km andg= 10m/s^.

Solution

(a) The energy of the sky lab on the surface of earth

or

or

£:e=KE + PE = 0+ -
GMTn\ _ GMm

R J's I /? I p

And the total energy of the sky lab in an orbit ofradius 2R is

„ GMm

So the energyrequired to place the lab from the surfaceof earth
to the orbit of radius 2R is given as

GMm

4R

• GMm

R

3 GMm

4 R

A GMAs g=—^
R'

Af =^ (2 X103x10x6.4x106)

=-|(12.8x 10i'')=9.6x IQiOj
(b) As for II orbit of radius3R the total energyof sky lab is

GMm GMm

or

or

^2 2(3^?)

^ GMm

6R

GMm\ 1 GMm
4R )~ 12 R

AE= ~mgR=~ (12.^ X10^0)= 1.1 x 10»Oj



# Illustrative Example 6.44

A satellite is revolving around a planet ofmass Min an elliptic
orbit of semimajor axis a. Show that the orbital speed of the
satellite when it is at a distance r from the focus will be given
by:

v^ = GM

Solution

2_j_
r a

As in case ofelliptic orbit with semi major axes a, of a satellite
total mechanical energy remains constant, at any position of
satellite in the orbit, given as

or

E —

KE+PE = -

GMm

la

GMm

la
...(6.118)

Now, if at position r, v is the orbital speed of satellite, we have

...(6.119)KE= and PE = -
2 r

So from equations-(6.118) and (6.119), we have

GMm1 , GMm
la

i.e., \^ = GM ---1r a]

# Illustrative Example 6.45

A planet of mass m moves along an ellipse around the sun so
that its maximum and minimum distances from the sun are equal
to and ^2 respectively. Find the angular momentum of this
plane relative to the centre of the sun. •

Solution

If Vj andV2 arethevelocities orplanetat its apogee andperigee
respectively then according to conservation of angular
momentum, we have

w Vj rj = w V2 rj

or = ^2'•2

—Q Appogee
tm

Figure 6.77

As the total energy of the planet is also constant, we have

G M m , \ 9 G M m , \ 9
+~mvf = +

rj 2 I ^2 2 2

Where M is the mass of the sun.

or

or

or

GM

GM'

GM\

"i r V?

h?'

1

2 2

fn ^2] vf1
2

I n 'a J 2ri

-i
2 [-•I

,.2
n -r-,

Giivjtatidn

or v} =
IGMir^-r^yi IGrj

or V, =
IGMr^

Now Angular momentum ofplanet is given as

L= m Vj Tj

= m

IGM q ^2

. ('i + '2) .

# Illustrative Example 6.46

A planet moves along an elliptical orbit around the sun. At the
moment when it was at a distance from the sun its velocity
wasequal to Vq andthe angle between theradius vector and
the velocity vector Vq was equalto a. Findthe maximum and
minimum distances that will separate this planet from the sun
during its orbital motion.

Solution

Planet revolving around the sun is shown in figure-6.78. Here
we have assumed that the.apogee and perigee ofthe planet are
Tj and ^2 respectively and the velocities of the planetat these
pointare Vj and V2 respectively. "

Figure 6.78



: ,

The angular momentum of planet at a position when it is at a
distance from sun is given as

L= w Vq Tq sina

The angular momentum ofplanet at apogee is

According to law of conservation of Angular momentum, we
have, . .

m Vrt Kn sin a = w v, r.'0 '0 1' 1

Vq /q sm a
or V, = ...(6.120)

Using the law of conservation of total energy of planet, we
have

1

or

or

G m M, 1
= —mv}-

GmM,

2"';i _ .1

. 2GM.

0

2GM.
v;t--

' 2 2GM, , _ „
^0 —Irf = sin^a - 2G r.

2 2GM, , „ ...Vq — j +2G /-J - rl sin^a =0

...(6.121)
'0 .* '1

Substituting the value of Vj from equation-(6.120) in equation-
(6.121), weget •

2GM\ Vfirnsin^a 2GM^

-2G M, ±,[AG^mI +4j^vo' - (vo 'b' sin' a)
• 2 2GM,
Vn -

or rj =

or

^0

GM, j(vJ ^2 ^j
r2GM,

I fo
--Vf

I v^ro^sm^af2 2')
GM, Up °J

or =

To GM,

The above two values of corresponds to both perigee and
apogee respectively.
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Practice Exercise 6.6

(!) A planet ofmass M moves around the sun along an ellipse
so that'its minimum distance from the sun is equal to r and the
maximum distance to R. Making use ofKepler's laws, find its
period of revolution around the sun.

[it
(r + ^)-
2GM.

(11) Suppose we have made a model ofthe solar systemscaled
down in the ratio r\ but ofmaterials of the samemeandensity as
theactualmaterial of theplanetand thesun.Howwilltheorbital
periods ofrevolution of planetary models change in this case ?
[iVb Change]

(ill) Two Earth'ssatellitesmoveinacommon planealongcircular
orbits. The orbital radius of one satellite r while that of the

other satellite is Ar less. What time interval separates the
periodic approaches of the satellites to each other over the
minimum distance ?

27t

Vgm
p/2 (r-Ar)-;.3/2

(iv) Asatellite is put inan orbitjust abovetheearth's atmosphere
with avelocity y/hS times the velocity for acircular orbit atthat
height. The initial velocity imparted is horizontal. What would
be the maximum distance ofthe satellite from the earth, when it

is in the orbit.

[2RA

(v) A cosmic body A

moves towards the sun

S withvelocityVq when
far from the sun and

aiming along a line

whose perpendicular
distance from the sun

is </ (figure-6.79). Find Figure 6.79

the minimum distance ofthis body from the sun. Take Mas the
mass of the sim.

r-GM

Vo

1 + -1



(v^ Two satellites and$2 revolve round a planetincoplanar
circular orbits in the same sense. Their periods of revolutions
are 1 hour and 8 hour respectively. The radius of the orbit of
5j - 10"* km. When $2 isclosest to 5",, find
(a) the speedof 152 relative to

(b) the angular speed of S2 as .actually observed by an
astronaut in S'j.

[(a) n X10'' km/hr; (b) -jrad/hour]
t 'I . • ' 'f

(viQ If a planetrevolvearoundthesun inan elliptical orbitsuch
that its minimum distance fi"om sun is and maximum distance

is r2. Finddiedistance ofplanetfrom sunwhen it isataposition
wherethe linejoining theplanetandsunis perpendicular to the
major axis ofellipse.

21^2

6.13 Projection of Satellites and Spaceships From
Earth

Toprojecta body into space,first it shouldbe takento a height
where no atmosphere is present then it is projected with some
initial speed.,Thepath followed by the body also depends on
the projection speed. Lets discuss the cases step by step.

Consider the situation shown in figure-6.80.Abody of mass m
is taken to a height h above the surface of earth to a point A
and then projected with an insertion velocity v as shown in
figure-6.80.

Earth

Figure 6.80

Ifwe wish to launch the body as an earth's satellite in circular
path the velocity ofprojection must be

GM,

R.-\-h ...(6.122)

Gravitation i

If^ is small compared to radius ofearth, we have

GM.

R. =4gsK =7.93km/s. ...(6.123)

Thisvelocity Vj = 7.93 km/s withwhich, when a bodyis thrown
from earth's surface tangentially so that after projection it
becomes a satellite ofearth in a circular orbit around it, is called
"orbital speed" or "first cosmic velocity".

We've already discussed'that ifprojection speed is lesser then
theorbitalspeed, bodywillstart following theinnerellipseand
if velocity of projection is increased the body will follow the
outer ellipse. Ifprojection speed ofbody is increased, the outer
ellipse will also become bigger and at a particular higher
projection speed. It may also be possible that body will go to
infinityandwill nevercomeback to earth again.

We have discussed that negative total energy of body shows
its boundness. If wewritethe totalenergy of a bodyprojected
from point A as shown in figure is

^. 1 , GM^m

If after projection body becomes a satellite of earth then it
impliesit is boundedto earthand its totalenergyis negative. If
atpointA,thatmuchof kinetic energy is imparted to thebody
so that total energyof body becomeszero then it implies that
the body will reach to infinity and escape from gravitational
field of earth. If Vjj is such a velocity thenwehave

R„ +h ^

or v„ =

For h « R\, we have

v„ =

^R, +h

2GM.

R

= 11.2 km/s

= PSsRe

...(6.124)

...(6.125)

Thus from earth's surface a body is thrown at a speed of
11.2 km/s, itwillescape from earth'sgravitation. If theprojection
speed ofbody is less then this value then total energy ofbody
is negative and it will orbit the earth in elliptical orbit. This
velocity is referred as the "secondcosmic velocity" or "escape
velocity". When a body is thrownwith this speed, it follows a
parabolic trajectory and will become free from earth's
gravitational attraction.

When body is thrown with speed more then Vjj then it moves
alonga hyperbolictrajectoryand also leavesthe regionwhere
the earth's gravitational attraction acts. Also when it reaches



i Gravitation

infinitysomekinetic energywill be left in it and it becomesa
satelliteof sun, that is a smallartificialplanet.

✓ v / ! \ v^^>.
'' '' / i ' \

✓ /
✓ /

/ /
/ /

/ /

inner ellipse

circle

-V-\^ 'v--\ \ \

y<V I \ \ ^ hyperbolic
I. ._v \ trajectory

I > \
I •* »

I 1 I
I \ \

' . . ' 1

'vj < ,V< Vj£
outer ellipse

1
] . Shi . ;
J ]parabolic
' trajectory

Figure 6.81

All the calculations we've performed till now do not take into
account the influence of the sun and of the planets on the
motion of the projected body. In other words we have assumed
that the reference frame connected with the earth is an inertial

frameandthebodymovesrelativeto it. But in realitythewhole
system body and the earth is in a non inertial from which is

permanently accelerated relative to sun.

For a bodyprojected into space,a third cosmicvelocity is also
defined and it is the velocity with which when a body is
projectedfromearth,itmayescapefromoursolarsystem. This
velocity can be"calculated approximately as follows. From
equation-(6.124) we can see that theescapevelocityof a body
is\/2times its orbital speed when it is moving around earth.
Thesame shouldbe obviously trueforearthor a bodymoving
inearth'sorbitaround thesun. Thevelocity of earthrelative to
sunis measured anditsvalue is Vq = 29.76 km/sec. Thus when
body-is thrown from earth's surface at speed Vjj, relative to
earth it will escape from earth's gravitational attraction and will
reach infinity and will have no kinetic energy left in it with
respect to e^h but as it is thrown from earths surface it must
have a speed left in it equal to with which it can orbit around
the stm. If the body is projected from earth's surface with such
a speed so that it is able to overcome earth's attraction and at

infinity itis left with an extra speed of{•Jl - 1) then itwill
also be able to escape from the gravitational attraction ofsun.
IfVjjj be the third cosmicvelocityfromearth's surfacethan we
have

2 ^11 -1)^
On solving we get

Vjjj s 16.75 km/s

399

;.. (6.126)

Lets take some examples to understand somebasic concepts
related to gravitational energy and projection.

6.14 Escaping From a Satellite

As we have seen that orbital speed of a body close to Earth's

surface is yfg^ and escape velocity is •j2gR^ . This shows
.that the escape velocity is >/2 times higher than orbital speed.
Also we can state of the speed of a body orbitting around
earth close to its surface isincreased by41.4% (=s V2 -1) the
body escape from earth's gravitational attraction.This can also
be proven for a body orbittingaround earth in an orbit of any
radius. The orbital speed ofa satellite of mass m around earth

in orbit radius X is ' ' '

GM.

Potential energy of the orbitting satellite is

U=-
GM„m

If satellite speedis changed to so that from orbit,it escapes
from earth's gravitational attraction then we use

1 2 GM.m-mv]- ^>0
2 X

V =

2GM„
= V2 v„

Thus at any orbit of radius x for a satellite if its speed is
increased by 41.4% the satellite will escape from earth's
gravitational attraction.
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a Illustrative Example 6.47

A spaceship is launched into a circular orbit close to the earth's
surface. What additional velocity has now to be imparted to the
spaceship in the orbit to overcome the gravitational pull. (Radius
ofthe earth = 6400 kman(^=9.8m/sec).
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Solution

In an orbit close to earth's surface velocity of space ship is

V =

GM

R =4^
We know escape velocity is

Vj,=

Hence additional velocity required to be imparted is

Av = Vii - V

=(V2-1)V^

, =(V2-1)79 8x
= 3.28x lO^m/s

# Illustrative Example 6.48

6400x10-^

A spaceship approaches the moon (mass= M and radius= R)
along a parabolic path which is almost tangential to its surface.
At the momentofmaximumapproach, the brake rocket is fired
to convert the spaceship into a satellite of the moon. Find the
change in speed.

Solution

Figure-6.82 shows the corresponding situation

' orbit

Figure 6.82

We know a particle follows a parabolic trajectory tangential to
a planet when at the surface of planet it has escape velocity

2GM
v„ =

R

Now to transform it into a circular orbit its speed should be
decreased to.orbital speed.

GM

R''o-V

"Gravitation

Thus change in speed is

Av= v^^-v„

# Illustrative Example 6.49

A particle is fired vertically upward witha speedof 9.8 km/s.
Find the maximumheight attainedby the particle. Radius of the
earth = 6400 kmandg atthesurface = 9.8 m/s^. Consider only
earth's gravitation.

Solution

Initial energy of particle on earth's surface is

^ 1 , GMm

If theparticlereachesupto a heighth abovethesurfaceof earth
then its final energy will only be the gravitational potential
energy. ,

_ GMm

According to energy conservation, we have

or

or

or

GMm GMm,

R + h

_• gR'-^u^-gR=-
R + h

2gR^
, 2gR-u'

•R

2x9.8x(6400xl0y
2x9.8x6400x10^-(9.8)^

. =(27300-6400)x,103

=20900 km
' j

^ Illustrative Example 6.50

6400 xlO^

A satellite ofmass m is orbiting the earth in a circular orbit of
radius r. It starts losing energy slowly at a constant rate C due
to friction. IfA/ andR denote the mass and radius ofthe earth

e . e

respectively,show that the satellite falls on the earth in a limit
time t given by

G m

~2^
t =

\ \

Re- r
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Solution

Let velocity of satellite in its orbit ofradius r be v then we have

GM.
v =

When satellite approaches earth's surface, if its velocity
becomes v', then it is given as

GM„
v' =

R.

The total initial energy ofsatellite at a distance r is

Ej.=K.+ U.

2 r

__ 1 GM^m
1 r

The total final energy ofsatellite at a distance R is

_ 1 ,2 GM.m
2^^ ~ R.

1 GMjn
2 R.

...(6.127)

...(6.128)

As satellite is loosing energy at a rate C, if it takes a time t in
reaching earth, we have

or

Ct = E^- E~T; Tf

= "2 GMjn

GMgOt
~2^

t =

# Illustrative Example 6.51

±_1

J__l

An artificial satellite is moving in a circular orbit around the

earthwith a speed equalto half the magnitudeof escapevelocity
from the earth.

(i) Determine the height of the satellite above the earth's

surface.

(ii) If the satellite is stopped suddenly in its orbit and allowed
to fall freely onto the earth, find the speed with which it hits the
surface of the earth.

Solution

(i) Let M and R be the mass and radius of the earth

respectively. Ifm be the mass of satellite, then escape velocity
from earth v - -yjlg Rg

401

Velocity ofsatellite = ...(6.129)

Furtherwe know orbitalspeed of satelliteat a heighth is

j(gm;\
/ '> \f Reg]

[ ^ J-i R^+ h
\ j

0^ ...(6.130)

From equation-(6.129) and (6.130), we get

/i=.ff-6400km

(ii) Now. total energy at height h = total energy at earth's
surface (principle ofconservation ofenergy)

1 2 GM^m GM^m
[As h==R]

Solving we get v= yjg K

v= V9.8x6400xl0^ =7.919km/sor

# Illustrative Example 6.52

An artificial satellite of the moon revolves in a circular orbit

whose radius exceeds the radius of the moon r\ times. In the
process of motion, the satellite, experiences a slight resistance
due to cosmic dust. Assuming the resistance force to depend
onthevelocityof the satelliteas7^= a v^, wherea is a constant,
find how long the satellite will stay in orbit until it falls into the
moon surface.

Solution

Let R be the radius ofthe moon. Then the satellite revolves in a

circular orbit of radius r\R. If tn be the mass of satellite and M,
that of moon, then

m Vi GMm If GMor v. =J|^
(r]Ry

Let be the velocity of satellite when it falls at the moon's

surface. Then

Given that

,2 -
GM

R

F=a\^

dv 2



or
dv ,

- aat
V

Integrating this expression, we get

•IgmJr

m

or

GM

R

dt

GM

x\R

m lV'n~lJrA GM I—

Alternative Method:

Let r be the orbital radius. Then

GMm mv^ GM
^— = or V =

r ^ r

Where Mand m are masses of moon and satellite respectively.

Total energy of satellite

j- c LTic 1 2 G M mE = K.E. + P.E. =-;rm\r
2 r

or

„ 1 (GM^ GMm GMm
2 " [~r - =- ^7-

Differentiating, we get

2r^

Further, ^ =-F.v—(av2)v —av^
dt

--a
GM\

3/2

dE^-a\^Y d,or

From equation-(6.131) and (6.132), we get

or

GMm , (GM^
— dr = -a. \ — I

2r'

m

3/2

r J

1

dt

dt —
2aV^ Vr

dr

...(6.131)

...(6.132)

.Gravitation:

m

a

m

a^R
X - l][As VgM = 4g R.]

m

o. |̂igR)

6.15 Communication Satellites

Communication satellite around the earth are used by

InformationTechnologyfor spreading information through out
the globe.

Figure-6.83 shows as to how using satellites an information
from an earth station, located at a point on earth's surface can
be sent throughout the world.

to other

satellite sat-Z

Earth

Earth

station

to other

satellite satA

Sat-\

Figure 6.83

First the information is sent to the nearest satellite in the range

of earth station by means of electromagnetic waves then that
satellite broadcasts the signal to the region ofearth exposed to

this satellite and also send the same signal to other satellite for
broadcasting in other parts of the globe.

6.15.1 Geostationary Satellite and Parking Orbit

There are so many types ofcommunication satellites revolving
around the earth in different orbits at different heights

depending on their utility. Some of which are Geostationary
satellites, which appears at rest relative to earth or which have

same angular velocity as that ofearth's rotation i.e., with a time
period of 24 hr. such satellite must be orbiting in an orbit of
specific radius. This orbit is called parking orbit. If a
Geostationary satellite is at a height h above the earth's surface
then its orbiting speed is given as

GM.

V 1/(/?, +/?)
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Thetime periodofitsrevolution canbegiven byKepler'sthird
law as

or
72 =

or /? =

or h =

471^

Bs'^e

d2
Sa^e <7^2

4n'
-R.

9.8x[6.4xlQ^]x[86400f
4x(3.I4)^

= 35954.6 km

-6.4 X 10^

= 36000 km

Thus when a satellite is launched in an orbit at a height of
about 36000 km above the equator then it will appear to be at
rest with respect to a point on Earth's surface. A Geostationary
satellite must have its orbit in equatorial plane due to the
geographic limitation arose because of irregular geometry of
earth (ellipsoidal shape).

6.15.2 Broadcasting Region ofa Satellite

Now as we know the height ofa geostationary satellite we can

easily find the area of earth exposed to the satellite or area of
the region in which the communication can be mode using this
satellite.

Figure-6.84 shows earth and its exposed area to a geostationary
satellite. Here the angle 0 can be given as

R.

Axis ofrotation
ofearth

Earth

R^+ h

Figure 6.84

Geostationary
satallite
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Now we can find the solid angle Q which the exposed area
subtend on earth's centre as

Q = 2 ;i:(l - cos 0)

R.
= 2tz 1 —

S = nR}^ =
R„-\-h

2nh

Rg-\-h ] R^ A-h

Thus the area of earth's surface to geostationary satellite is

2%hRl
...(6.133)

Lets take some examples to understand the concept in detail.

§ Illustrative Example 6.53

A satellite is revolving around the earth in an orbit of radius

double that ofthe parking orbit and revolving in same sense.

Find the periodic time duration between two instants when
this satellite is closest to a geostationary satellite.

Solution

We know that the time, period of revolution of a satellite is

given as

.2

[Kepler's ni law]

or

GM,

For satellite given in problem and for a geostationary satellite

we have •

A = Ll
7^ W-)

T. = |-;r| >=T, =(2)3x24-192hr

If Ust be the time between two successive instants when the

satellite are closed then we must have

0 27C+0
St= — =

CO, CO-,

2tz

CO2 - co

Where cOj and cOj are the angular speeds of the two planets

# Illustrative Example 6.54

Find the minimum colatitude which can directly receive a signed
from a geostationary satellite.

Solution

The farthest point on earth, which can receive signals from the

parking orbit is the point where a length is drawn on earth
surface from satellite as shown in figure-6.85.
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Parking orbit

AOR

Figure 6.85

Thecolatitude XofpointP canbe obtained from'fig^e as

• 1
R,+h ~ 1

We know for a parking orbit h - 6R

Thus we have X= sin ' Iy

§ Illustrative Example 6.55

Ifa satellite is revolving around the-earth in a circular orbit in a

plane containing earth's axis of rotation. If the angular,speed
of satellite is equal to that of earth, find the time it takes to
movefroma point abovenorthpole to a point abovethe equator.

Solution

\AOR

Figure 6.86

'' ^ ^ • __Gravitahpn ]

When satellite moves from a point above north pole to a point

above equator, it traverses an angle , this time taken is

r=^=21600s = 6hrs.
©

§ Illustrative Example 6.56

A satellite is orbiting around the earth in an orbit in equatorial
planeofradius 2R^ where R^ is theradius ofearth. Findthearea
on earth, this satellite covers for communication purpose in its
complete revolution.

Solution

patch-l

patch-2

Figure 6.87

As shown in figure-6.87 when satellite 5" revolves, it covers a

complete circular belt on earth's surface for commimication. If

the colatitude of the farthest point on surface upto which
signals can be received (point P) is 0 then we have

sin b =

or

A
2Re

7C_

6

During revolution satellite leaves two spherical patches 1 and
2 on earth surface at north and south poles where no signals
canbe transmitteddue to curvature. The areasof thesepatches
can be obtained by solid angles.

The solid angle subtended by a patch on earth's centre is

n =2 Ti: (1 - cos 0)- Ti: (2 - V3) st.
Area ofpatch 1 and 2 is

Ap =aRl =K{2-S)Rl

Asatellite which rotates with angular speed equal to earth's earth ssurface to which communication can
rotation has an orbit radius 7 R^ and the angular speed of "^^de is
revolution is

© =
2a 2a

86400
= 7.27 X 10-5 rad/s

A^ = A%Rl-2Ap

=4nR}-2n (2- y/3)R^
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=2%Rl(2-l +S)

=iSr}
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Ag^e Group - High School Physics |Age 17-19 Years
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Topic- Satellite Motion
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Practice Exercise 6.7

(i) Fora lowaltitude orbit if r == Vp, where Vp isplanet radius,
show that for a given average planetary density, the orbital
period of satellite is independent of the size of the planet.
Calculate its value if average density is p.

(ii) What should be the orbit radius of a communication

satellite so that it can cover 75% of the surface area of earth

during its revolution.

[1.515

(iii) Theradius ofa planetis/?j andasatellite revolves around
it inacircle of radius R^. Thetimeperiod ofrevolution is T. Find
the acceleration due to the gravitational field of the planet at
its surface.

2d2 ]T^R

(iv) Two small dense stars rotate about their common centre of

mass as a binary system with the period 1 year for each. One
star is of double the mass of the other and the mass of the

1
lighter one is —of the mass of the Sun. Find the distance

between the stars if distance between the Earth & the Sun is R.

[^1

(v) An artificial satellite is moving in a circular orbit around the

Earthwitha speedequalto half the magnitudeofescapevelocity
from the Earth.

(a) Determine the height of the satellite above the Earth's
surface.

(b) If the satellite is stopped suddenly in its orbit and allowed
to fall freelyon the Earth, findthe speedwithwhichit hits
and surface ofEarth. Given M= mass ofEarth & ^ = Radius

ofEarth

[(a) 6400 km (b) 7.92 km/s]

(vi) Aparticle is projected frompointA, that is at a distance AR
fi*om the centre ofthe Earth, with speed Vj inadirection making
30" withthe linejoining the centreof the Earth andpointA,as
shown. Findthe speed Vj of particle if particle passes grazing
the surfaceof theearth. Considergravitational interaction only
between these two.

GM J , ,
(Use -— = 6.4 XlO'mVs^)

R

- 8000[^m/s]

Figure 6.88

(vii) A mass of6 x l kg (equal to the mass ofthe earth) is to
be compressed in a sphere in such a way that the escape
velocity from its surface is 3 x 10^ m/s. What should be the
radius of the sphere ?

[8.893 mm]

i. .Advance Illustrations Videos at www.phvsicsgalaxy.com

! Age Group-Advance illustrations
: Section- Gravitation

Topic - Gravitation
Illustrations - 19 In-depth Illustration videos
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Discussion Question

Q6-1 The sun's tide-raising power is only half as great as that
of the moon. The direct pull of the sun on the earth, however, is
about 175 times that of the moon. Why is then that the moon
causes larger tides?

Q6-2 At noon the sun and the earth pull the objects on the
earth's surfacein oppositedirections. At midnight the sun and
the earth pull these objects in samedirection. Is the weight of
anobject, asmeasured byaspring balance ontheearth's surface,
more at midnight as compared to its weight at noon ?

Q6-3 As measured by an observer on earth, would there be
any difference in the periods of two satellites each in a circular
orbit near the earth's equatorial plane, but one moving eastward
and the other westward.

Q6-4 Draw a free body diagram for a satellite in an elliptical
orbit showing why its speed increases as it approaches the
parent body and decreases as it moves away.

Q6-5 Does a rocket really need the escape velocity from the
very beginning to escape from the earth ?

Q6-6 Ifan artificial satellite is orbiting the earth, is it possible
for the plane of the orbit to not pass through the center of the

earth?On whatpropertyofthe gravitational force isyouranswer
based?

Q6-7 Ifa planet ofgiven density were made larger, its force of
attraction for an object on its surface would increase because
of the planet's greater mass but would decrease because of the
greater distance from the object to the centre of the planet.
Which effect predominates?

Q6-8 An astronaut in a satellite .releases a spoon out of the

satellite into the space. Will the spoon fall to the earth ?

Q6-9 Can two particles be in equilibrium under the action of
their mutual gravitational force ? Can three particles be ? Can
one of the three particles be ?

Q6-10 Suppose an artificial satellite is in a circular orbit around
the earth at a distance Tq from the center of the earth. A short
burst is fired from its rocket engine in a direction such that its

speed quickly increases (but not enough to take it out ofearth
orbit), (a) What is the subsequent path of the satellite? (b) Will

isperigee distance be greater than, lessthan, or equalto r^? (c)
Will its apogee distance be greater than, less than, or equal to

(d) Will its period increase or decrease?

Q6-11 If the gravitational forceon an objectdepends linearly,
on its mass, why is the acceleration of a freely falling object
independent of its mass?

Q6-12 A satellite revolves around the earth in a circular orbit.

Whatwillhappento its orbit if universal gravitational constant
start decreasing with time.

Q6-13 If the force of gravityactson all bodies inproportion to
their masses, why does a heavy body not fall faster than a rigid
light body ?

Q6-14 The weight ofan object is more at the poles than at the
equator. Is it beneficial to'purchase goods at equator and sell
them at the pole ? Does it matter whether a spring balance is
used or an equal-beam balance is used ?

Q6-15 Objects at rest on the earth's surface move in circular
paths with a period of 24 hours. Are they in 'orbit' in the sense
that an earth'satellite is in orbit ? What would the length ofthe

day have to be to put such objects in true orbit ?

Q6-16 A satellite is revolving around a planet in a circular

orbit. Whatwillhappen if its speedis increased from Vq to (a)
(V?Vq) (b) 2vq.

Q6-17 Because the earth bulges near the equator, the source

ofMississippi River, although high above sea level, is nearer to
the. centre of the earth than its mouth. How can a river flow

'uphill' ?

Q6-18 The astronaut in a sateUite orbiting the earth feels

weightlessness. Does the weightlessness depends upon the
distance of the satellite from the earth ? If so, how ? Explain

your answer.

Q6-19 The total energy of the earth + sun system is negative.

How do you interpret the negative energy of a system ?

Q6-20 Two air bubbles with radius r are present in water. Are

these bubbles attracted or repelled?

Q6-21 Suppose an earth satellite, revolving in a circular orbit
experiences resistance due to cosmic dust then what happens

to the kinetic end potential energy of satellite.

Q6-22 Objects at rest on the earth's surface move in circular

paths with a period of24 hours. Are they in 'orbit' in the sense

that an earth satellite is in orbit? Explain.
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Q6-23 When a train moves from west to east at high speed,
does its weight increase or decrease ?

Q6-24 A spacecraft spins about its axis. What would be the

feeling ofan astronaut inside it?

Q6-25 Can a satellite coast in a stable orbit in a planet not
passing through the earth's centre ? Explain your answer.

Q6-26 Ifyou are buying gold from a dealer who uses a spring

scale to measure the amount of gold, and you wish to get the
most gold for your money, do you want the measurement to be

made at the equator or at the poles?

Q6-27 An apple falls from a tree. An,insect in the apple finds
that the earth is falling towards it with an acceleration g. Who

exerts the force needed to accelerate the earth with this

acceleration g ?

Q6-28 A spacecraft consumes more fuel in going from the
earth to the moon than it takes for a return trip. Comment on this

statement.

Q6-29 The planet Egabbac (in another solar system) has a
radius twice that of the earth's, but an average mass density
which is the same as the earth. Would the weight of an object
on Egabbac's surface be the same as on the earth's, greater
than on the earth's, or less than on the earth's? If greater or less

than on the earth's, then by how much?

Q6-30 As measured by an observer on earth, would there be
anydifference in the periodsof twosatellites, eachin a circular

407

orbit near the earth in an equatorial plane, but one moving
eastward and the other westward ?

Q6-31 When a toilet is flushed or a sink is drained, the water

(and other stuff) begins to rotate about the drain on the.way
down. Assuming no initial rotation and a flow initially directly
straight toward the drain, explain what causes the rotation and
which direction it has in the northern hemisphere. (Note that

this is a small effect and in most toilets the rotation is caused by
directional waterjets.) Would the direction ofrotation reverse if

water were forced up the drain?

Q6-32 The sun's speed relative to the earth (as measured with
respect to background stars) is highest at around January 4
each year and lowest around July 4. When is the earth closest
to the sun and when is it farthest from the sun? Does this effect

tend to make summers and winters more severe or less severe in

(a) the northern hemisphere, (b) the southern hemisphere?

Q6-33 Can a satellite move in a stable orbit in a plane not

passing through the earth's centre ? Explain.

Q6-34 What will happen to an orbiting planet if all a sudden
(a) it comes to stand still in the orbit (b) the gravitational force
ceases to act on it?

Q6-35 Describe the way the mass of an astronaut and the
gravitational force on the astronaut vary during a trip from the
earth to the moon.

Q6-36 Would you expect the total energy of the solar system

to be constant ? The total angular momentum ? Explain.
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ConceptualMCQs Single Option Correct

6-1• If the gravitational force were proportional to —, then a

particle in a circular orbit under such a force would have, its

original speed:

(A) Independent of r

(Q •
• r

(B) cci
r

P)

r = Rn r = R„

(Q

6-2 The ratio ofacceleration due togravity ata depth hbelow "•
the surface ofearth and at aheight habove the surface ofearth Particles possible

are:
for /i < < radius of earth:

(A) Is constant
P) Changes linearly with h
(Q Changesparabolicallywith/?
p) Decreases

6-3 A uniformspherical shellgradually shrinks maintaining its
shape and its wall thickness. The gravitational potential at the
centre:

(A) Increases - (B) Decreases
(Q Remains constant P) Oscillates

6-4 If both the mass and radius of Earth decreaseby 1%, the
value of acceleration due to gravitywill changeby nearly:
(A) 1% decrease P) 1.5%increase
CQ 1% increase p) 2% decrease

6-5 In Q.No. 6-4,the escapevelocitywill:
(A) Be doubled P) Be halved
(C) Be tripled P) Not change

6-6 Themagnitude ofgravitational potential energy oftheearth-
satellite system is U with zero potential energy at infinite
separation. The kinetic energy of satellite is K. If we consider
mass ofsatellite « mass of earth. Then :

(A) K=2U

(Q K =U

(B) ^=y
p) K=4U

6-7 P is a point at a distance r from the centre ofa solid sphere
of radius R^. Thegravitational potential atP is V. If Visplotted
as a function ofr, thenthe curverepresenting theplot correctly
IS:

r = Rn '• = Rn

(A) P)

V

(A) «(«+l)

(Q n(n~l) .

P) y«(«+l)

P) 2«(«-l)

6-9 A satellite revolving around the Earthlosessomeenergy
due to collision. What would be the effect on its velocity and
distance from the centre of the Earth ?

(A) Velocity increases and distance decreases

P) Both velocity and distance increase
(Q Both velocity and distance decrease
P) Velocity decreases and distance increases

6-10 A particle on earth's surface is given a velocity equalto
itsescape velocity. Itstotalmechanical energywithzeropotential
energy reference at infinite separation will be;
(A) Negative P) Positive
(C) Zero p) Infinite

6-11 The gravitational potential energy magnitude of a body
at a distancer fromthe centreof Earth is U.The weightof the
body at that point is :

(A) Ur

(Q

P) ^
P) Ur^

6-12 A thin spherical shell ofmass Mand radius R has a small
hole. A particle of mass m is released at the mouth ofthe hole.
Then :

Figure 6.89
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(A) The particle will execute simple harmonic motion inside the
shell

(B) TJieparticle willoscillate insidethe shell, but the oscillations
are not simple harmonic

(Q The particle will not oscillate, but the speed ofthe particle
will go on increasing

(D) None of these

6-13 Two identical trains P and Q move with equal speeds on
parallel tracks along the equator. P moves from east to west and
Q from west to east.

(A) Train/'exerts greater force on track

(B) Train 2 exerts greater force on track
(Q Both exert equal force on track
(D) Data is insufficient to arrive at a conclusion

6-14 Two identical satellites are moving around the Earth in
circular orbits at heights ZR and R respectively where R is the
radius ofthe Earth. The ratio oftheir kinetic energies is:
(A) 2:1 - (B) 1:2

(Q 3 :1 (D) 2; 3

6-15 A particle of mass m is projected vertically upwards. A

uniform gravitational field S is acted vertically downwards.
The most appropriate graph between magnitude of potential
energy U and height h (« radius of earth) is (assume U to be

zero on surface ofearth):

Vu

(A)- (B)

(Q P)

6-16 A satellite is to be stationed in an orbit such that it can be

used for relay purposes (such a satellite is called a Geostationary
satellite). The conditions such a satellite should fulfill is/are :
(A) Its orbit must lie in equatorial plane.
(B) Its sense of rotation must be from east to west.
(Q Its orbital radius must be 44900 km.
p) Its orbit must be elliptical

6-17 Consider a planet in some solar system which has a mass
double the mass of the Earth and density equal to the average
density of the Earth. An object weighing W on the Earth will
weigh:
(A), W (B) 2 IF
(C)- wa P) 2 '̂̂ w

,409 •

6-18 Figure-6.90 shows the variation ofenergy with the orbit

radius rofa satellite in a circular motion. Mark the cofrect

statement:

Energy

Figure 6.90

(A) C shows the total energy, B the kinetic energy and A the
potential energy of the satellite

P) A shows the kinetic energy, B the total energy and C the
potential energy of the satellite

(Q A and B are the kinetic and potential energies and C the

total energy of the satellite

p) C and^ are the kinetic and potential energies respectively

and B the total energy of the satellite

6-19 Ifg^^ andg^be the accelerations dueto gravity at height
h and at depth d, above and below the surface of earth
respectively. Assuming h«R andd«R andifgf^ = g^then,
iA)d = h

(B) d=2h

(Q h = 2d

(D) Data is insufficient to arrive at a conclusion.

6-20 A particle is placed in a field characterized by a value of
gravitational potential given hyV=- kxy,where ^ is a constant.

If E is the gravitational field then,

(A) E^= k{xi +yj) and isconservative innature

P) E^=k{yi +xy) and isconservative in nature
(Q E^ = k{xi +yj) and isnon-conservative innature

P) E^ =k(yi +xj) and is non-conservative in nature

6-21 Which of the following statements is wrong ?
(A) A ship moving from west to east, along the equator, shall

, have more less as compared to when it is at rest at the
equator

P) A ship movingfrom east to west, along the equatorj shall
have more weight as compared to when it is at rest

(Q Earth has retained its atmosphere because the value of

3kT

m
for air molecules is larger than escape velocity

p) The time period ofa simple pendulum of infinite length is
the same as the time period of SHM of a ball in a tunnel
along the diameter of earth
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6-22 If the period of revolution of an artificial satellitejust
above the earth's surface is T and the density ofearth is p, then
pT^-.

. 3ji
(A) Is a luiiversal constant whose value is

. Stc
(B) Is a universal constant whose value is

(Q Is proportional to radius ofearth R
(D) Is proportionalto square of the radius of earth
Here G = universal gravitational constant

6-23 A planet is revolvingroundthe sun in an ellipticalorbit.
Of the following, the property which is a constant during the
motion ofthe planet is :
(A) The force of attraction between the planet and sun.
(B) The total energy of the "planet plus sun" system.
(Q The linear momentum ofthe planet.

(D) The kinetic energy of the planet about the sun.

6-24 Two air bubbles in water in a container in gravity fi-ee

space:

(A) move toward each other
move away fi"om each other

(Q Do not move if system is left undisturbed.
(D) May move toward or away fi-om each other depending

upon the distance between them

6-2S A particle of mass m is located at a distance r from the
centre of a shell ofmass Mand radius R. The force between the

shellandmass isF (r). Theplot oiF{r) vs r is :
Fir)

(A) (B)

m

(Q (D)

6-26 Asphere ofmass Mandradius R^ has aconcentric cavity
ofradiusiJj asshown infigure-6.91. Theforce F exerted bythe
sphere on a particle of mass m located at a distance r from the
centre ofsphere varies as (0 < r < oc):

Figure 6.91
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F'

(Q (D)

6-27 A shell of massMand radiusR has apoint mass mplaced
at a distance r from its centre. The gravitational potential energy
C/(r)vsrwillbe:

(A)

(Q GMm

R
(D)

U{r) Uir)

6-28 A satellite is orbiting round the earth. While in orbit a
small part separates from the satellite. The separated part.
(A) Falls directly to the earth
(B) Moves in a spiral path and reaches the earth after few

revolutions about the earth.

(Q Continues to move in the same orbit.
P) Moves gradually father from the earth.

6-29 A satellite S is moving in an elliptical orbit around the
earth. The mass of satellite is very small compared to the mass
ofearth: •

(A) The acceleration ofS is alwaysdirected towards the centre
of the earth

(B) The angular momentum ofS about the centre of the earth
changes its direction but its magnitude remains constant

(Q The total mechanical energy ofS varies periodically with
time

P) The linear momentum of^remaiits constant in magnitude

6-30 A planet ofmass m ismoving around the sun in an elliptical
orbit ofsemi-major axis a:

(A) The total mechanical energy of the planet is varying
periodically with time ''



(B) The total mechanical energy of the planet is constant and

GmM^ .
equals r , M is mass of sun

la ^

(Q Total mechanical energy of the planet is constant and

. equals , M is mass of sun
a ^

(D) Data is insufficient to arrive at a conclusion

6-31 Two starsof masses Wj and distance r apart, revolve
about their centre of mass. The period of revolution is :

(A) 271
/

^2G(mi +^2)

(Q 271 —
YG(wi + W2)

(B) 271
r (W1+W2)

^ 2Gm^m2

P) 271, G(wi +WJ2)

6-32 A satellite in an equatorial orbit has a time period of 6
hrs. At a certain instant, it is directly overhead an observer on
the equator of the earth. It is directly overhead the observer
again after a time T. The possible value(s) of T is/are :
(A) 8hr P) 4.8hr
(Q both (A) and (B) ' p) none of these

6-33 A comet moves around the"sun in an elliptical orbit. It is

closest to the sun at a distance and its corresponding velocity

is Vp andif it is farthest from thesunata distance d2, then the
corresponding velocity is :

(A)
^1

P) V, . ^

6-34 A turmel is made inside earth passing through center of
earth. Aparticle is droppedfromthesurfaceof earth. Selectthe
correct statement:

Figure 6.92
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(A) Kinetic energy of particle is maximum at center and

its potential energy is zero at center
P) Velocity ofparticle is proportional to x [where x is distance

ofparticle from center ofearth
(Q Kinetic energy ofparticle is maximum when it reaches on

the other side of tunnel

P) Kinetic energy ofparticle is maximum at center

6-35 Two particles A and B (ofmasse m and 4m) are released

from rest in the two tunnels as shown in the figure-6.93. Which
particle will cross the equatorial plane first ?

(A)^

A(m)

Figure 6.93

P) B

B(4m)

earth

(Q Both simultaneously P) Data insufficient

6-36 Identify the correct definition of gravitational potential
at a point.

(A) it is defined in terms ofthe force required to displace a unit
mass from infinity to that point

P) it is defined in terms of the force required to move a unit
mass from the surface of earth to that point

(Q it is defined in terms ofthe force required to displace a unit
• mass from that point to infinity

P) none of these

6-37 The tidal waves in the sea are primarily due to :
(A) The gravitational effect of the moon on the earth
P) The gravitational effect of the sun on the earth
(Q The gravitational effect of Venus on the earth
p) The atmospheric effect of the earth itself

6-38 Ifthe sun were suddenly replaced by a block hole of one
solarmass,whatwouldhappento theearth's orbit immediately
after the replacement ?

(A) The earth would spiral into the black hole
P) The radius of the earth's orbit would be unchanged, but

the period of the earth's motion would increase
(Q The radius of the earth's orbit would be unchanged, but

the period of the earth's motion would decrease
P) Neither the radius ofthe orbit nor the period would change
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6-39 A block ofmass m is lying at a distance ;* from a spherical
shell ofmass m and radius r. Then:

Figure 6.94

(A) Only gravitational field inside the shell is zero

(B) Gravitational field and gravitational potential both are zero
inside the shell

(Q Gravitational potential as well as gravitational field inside
the shell are not zero

P) Can't be ascertained.

« « * « *

Gravitation.
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NumericalMCQs Single Option Correct
6-1 Theratioof the timeperiodof a simple pendulum of length
/q with a pendulumof infinitelengthis :

(A) zero (B)

(Q
R

(D) '/o+i?

(Where, R is the radius ofearth)

6-2 The rotation of the earth having R radius about its axis
speeds up to a value such that a man at latitude angle 60° feels
weightlessness. The duration of the day in such a case is :

(C) (D) 4jrJ^

6-3 At what height the gravitational field reduces by 75% of
the gravitational field at the surface of earth?

{A) R (B) 2R
(Q 3R (P) 4R

6-7 Ifg^ and be the accelerations dueto gravity at a height
h and at depth d, above and below the -surface of earth
respectively. Assuming h«R andd«R andifg;^ = g^then:
(A) d=h

(B) d=2h

(Q h-ld

(D) Data is insufficient to arrive at a conclusion.

6-8 A satellite is revolving round the earth in an orbit ofradius
r with time period T.If the satellite is revolving round the earth
in an orbit of radius r + Ar(Ar « r) with time period
r+A7'(A7'«r)then.

(A)

(Q

AT 3 Ar

T ~2~

AT Ar

T ~ r

(B)
T

T

2^
3 r

Ar

(D) T;r = —

6-9 Consider an infinite plane sheet ofmass with surface mass
density a. The gravitational field intensity at a point P at
perpendicular distance r fi^om such a sheet is :

(A) Zero (B) -aG

(C) 27ictG •p)-47caG

6-4 In acertain region ofspace gravitational field is given by 6-10 Two identical thin rings each ofradius Rare coaxially
placed at a distance R. If the rings have a uniform mass
distribution and each has mass m^ and respectively, then
the work done in moving a mass m from centre of one ring to
that of the other is :

g = . Taking the reference point to be at r = with

potential V= V^, the potential (V) at a generalpoint r is given
by:

/.

(A) V=K\n

I

(Q V=K\n

+ v.

+ v^

(B) V=K\n\ —

P) V=K\n

/• ^

r

- v„

6-5 Two different planets have same density but different radii.
The acceleration due to gravity (g) on the surface ofthe planets
is dependent on its radius (R) as ;

(A) P)

(Q P) goci?

6-6 A shell of mass Mand radius?? has another point mass m
placed at a distance r from its centre (r > R). The force of
attraction between the shell and point mass is : ^

(A) F =
GMm

P)
GMm

(Q F=ZQro P) None of above

(A) Zero

G/«V2(mi +W2)
(Q

R

(B)

(D)

Gm(mj - Wj )(yl2 -1)
yl2R

Gmm^ (^/2 +1)
f^iR

6-11 Apoint/'(/?>.^, 0, 0) lies on the axis ofa ring ofmass M
and radius R. The ring is located iny -z plane with its centre at
origin O.Asmall particle ofmass m starts fromP and reaches O
under gravitational attraction only. Its speed at O will be.

Gm
(A)

(Q

GM

R

GM

V2??

6-12 An artificial satellite moving in circular orbit around the
earth has a total (kinetic + potential) energy Its potential

energy and kinetic energy respectively are :
(A) 2Eq and- 2Eq P) - 2Eq and 3Eq
(Q 2Eq and-E^ P) -2Eq and - E^
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6-13 Theratio ofEarth's orbital angular momentum (about the •it risesandR is theradius of the earth, thenr is :
Sun) to its mass is 4.4 x 10^^ m^s~h The area enclosed by the 2R
earth's orbit is approximately.

(A) 1XlO^m^ (B) , 2^ r '
(Q 5x1022^2 P) 7x1022^2 (C) TT <P)

6-14 A particleis projectedverticallyupwardsfromthe surface
of earth (radius R^) with a kinetic energy equal to halfof the
minimum value needed for it to escape. The height to which it
rises above the surface of earth is :

(A) R^ (B) 2i?^
(Q 3/;^ ' (P) 4R^

Paragraphfor Questions 15 & 20

A satellite of mass 5000kg is projected in space with an initial
speedof4000m/smakinganangleof 30°withthe radialdirection
from a distance 3.6 x I'O^m away from the center ofthe earth.

•6-15 The angular momentum ofsatellite:
(A) 3.6x lO'̂ J-s (B) 4.9x lO'̂ J-s
(Q 9.2xlO'^J-s (P) 3.6xW'^J-s

6-16 The energy of satellite:
(A) 1.6X10"^joule p) 4.9x10'joule
(Q 0.2XlO'̂ joule p) -1.5x IQiOjoule

6-17 The minimum distance ofsatellite from earth

(A)66.6xl02m P)14.9xl02m
(Q 1.29xl02m P) 1.6xI0^m

6-18 The maximum distance ofsatellite from earth.

(A) 6.6xl02m P) 24.9xl02m
(Q 11.9xl02m P) 1.6xl04m

6-19 The semi-major axis ofthe orbit ofsatellite:
(A)6.6xl02m p) 14.9xl02m
(Q 19.2xl07m P) 1.6xl0''m

6-20 Semi-minor axis ofthe orbit ofsatellite:

(A) 16.6xl02m p) 3.92xl02m
(Q 10.2xl0i^m P) 2.6xi0'^m

6-21 Imagine a light planet revolving around a very massive
star in a circular orbit ofradius R with a period ofrevolution T.

If the gravitational force of attraction between the planet and
the star is proportional to then :

(A) 7^is proportional to R^ P) P- is proportional to R?'̂
(Q P is proportional to R '̂̂ P) is proportionalto

6-22 Aprojectile is fired upwards from the surface ofthe earth

witha velocity kv^ where is the escape velocity andk< 1.If
r is the maximum distance from the centre ofthe earth to which

l-k'

6-23 Two satellites and S2 revolve round aplanet incoplanar
circular orbits in the same sense. Their periods ofrevolution are
1 hourand8 hourrespectively. Theradius of the orbitof S^ is
lO'* km. The speed of$2 relative to when they are closest (in
kmh~')is:
(A) lO'̂ Tc (6)2x10^71

(C) -.10% P) 4x10^71

6-24 In previous problem what is the angular speed of S2 as
observed by an astronaut in 5^ when theyare closest:

n

3

7C

(A)-

7t

(Q 4

(B)

71

(D) ^

6-25 Two particles having masses w, and start moving
towards each other from the state ofrest from infinite separation.
Their relative velocity of approach when they are interacting
gravitatiohally andat a separation r willbe :

(A)
G(wi + /W2)

(Q
Gm^m2

P)

(D)

2G(»7i + W2)

G(wj +m2)

2r

6-26 A body is imparted a velocity v from the surface of the
earth. If Vq isorbital velocity and be the escape velocity then
for: '

(A) V= Vq, the body follows a circular track around theearth.
P) V> Vq but< ve, thebody follows elliptical patharound the

earth. "'

(Q V< Vq, thebodyfollows elliptical pathandreturns to surface
of earth.

P) V> v^, the body follows hyperbolic pathand' escapes the
gravitational pull ofthe earth.

(A) A,B P) B,C
(Q A,B,C . P) A,B,C,D

6-27 A particle is launched from the surface ofearth with speed
,v. For the particle to move as a satellite, which statement is
correct ?

(A) <v<v^

(Q V^<V< yj2^

P) <v<v

CO)
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6-28 Two bodies of masses m and Mare placed a distance d
apart. The gravitational potential at the position where the
gravitational field due to them is zero is V:

(A) V=-—{m+M) (B) V = -
Gm

(Q v = -
GM (D) V=-'—(^-Jm+y[M^

6-35 Inprevious question calculate orbital speed of satellite.
(A) 6.335 km/sec p) 7.335 km/sec
(Q 8.335 km/sec • (D) 9.335 km/sec

6-36 Three particles each having amassof 100 gmareplaced
onthe vertices ofanequilateral triangle ofside 20cm. The work
done in increasing the side of the triangle to 40 cm is

6-29 The orbitalperiodof revolution of a planetroundtheSun
isTq. Suppose we make amodel ofSolar system scaled down in
the ratio r[ but of materials of the same mean density as the
actual material ofplanet andtheSun has.Theneworbital period
is:

(A) y\T,
(Q r]%

(B)

P) T,

6-30 Thetimeperiodof a spysatellite orbiting a fewhundred
kilometre above the earth's surface (iiggrth ~
approximately be:

(Q 2h

(B) Ih

(D) Ah

6-31 Consider a thin uniform spherical layer of mass A/and
radiusR. The potential energy of gravitational interaction of
matter forming this shell is :

(A) -
GM'

R

3GM'

-5-T

2 -•

1 GM
P)^ 2 R

2GM'
(D)

6-32 If we consider a solid sphere of mass Mand radius R,
then thepotential energy of gravitational interaction ofmatter
forming this solid sphere is :

,2 1

(A) -
GM'

R

3GM^
'P> "I—

P)
^ 2 R

3 GM'

, 2 R

6-33 What should be the period of rotation of earth so as to
make anyobject ontheequator weigh halfof itspresent value?
(A) 2 hrs P) 24 hrs
(Q 8 hrs P) 12hrs

6-34 An artificial satellite is describing an equatorial orbit at
3600 km above the earth's surface. Calculate its period of
revolution ? Take earth radius 6400 km.

(A) 8.71 hrs P) 9.71 hrs
(Q 10.71 hrs P) 11.71 hrs

_ii N-m'
G = 6.67x10

(A) 5.0X i0-^2j
(C) 4.0xi0->'J

6-37 If the time of revolution of a satellite is T, then Kinetic

energy is proportional to :

(A) 1/r P) 1/T2
(Q i/r^ p) r-2?

6-38 ASaturn yearis 29.5times the earthyear. Howfar is the
Sa^ from the sun if the earthis 1.5 x 10^ kmaway from the
sun?

(A) 1.43 XlO^km (B) 2.43xl0^km
(Q 3.43xl0^km P) 4.43xl0^km

6-39 A spherical planet in space hasa mass anddiameter
Dq. a particle ofmass mfalling freely near the surface ofthis
planet will experience anacceleration due to gravity which is
equal to:

(A)

(Q

GM,

dI

4GM„

dI

(B) 2.25xlO-'°J
(D) 6.0xl0-'5j

P)

P)

AGmM,,

dI

GmM

dI

6-40 A body falls freely towards the earth from a height 2i?,
above the surface of the earth, where initially it was at rest. If
is theradiusof theearththenitsvelocityonreaching the surface
ofthe earth is :

(A) ,1-gR

(O

P) xi^^sR

P) 2gR

6-41 Twosatellited and5 are movingroundaplanet in circular
orbit having radii Rand3R respectively, if thespeed ofsatellite
d is Vthe speed ofsatellite B will be :

(A) v/3 P) v/^^
(Q 3v P) data insufficient
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6-42 The radius ofa planet is 7?. A satellite revolves around it
in a circle ofradius r with angular speed co. The acceleration due

to gravity on planet's surface will be :

(A)

(Q

r^co

~Y
(B)

P)

R

2 2
r CO

R

6-43 The gravitational field in a region is given by

g = (4/ + j) N/kg. Work done by this field is zero when the

particle is moved along the line :
(A)y + 4x = 2 (B) 4^+x-6
(Q :c+y = 5 (D) all of the above

6-44 A particle of mass m is placed inside a spherical shell,
away fi-om its centre. The mass of the shell is M.
(A) The particle willmove towards the centre.
(B) The particle will move away from the centre, towards the

nearest wall.

(Q The particle will move towards the centre if w < M and
away fi"om the centre ifw > M

(D) The particle will remain stationary

Paragraphfor Question Nos. 45 to 47

Supernova refers to the explosion of a massive star. The
material in the central case ofsuch a star continues to collapse

under its own gravitational pull. Ifmass ofthe core is less than
1.4 times the mass of sun, its collapse finally results in a white
dwarfstar. However, if the core has a mass greater than this, it

could end up soon as a neutron star and if its mass is more
than about three solar masses, the collapse may still continue
till the star becomes a very small object with an extremely high
value ofdensity called a 'Black hole'. Escape speed for a black

hole is very large. The figure shows a block hole of radius R
and another concentric sphere of radius R^, called the
'Schwarzschild Radius'. It is the critical radius at which escape
speed equals the speed of light c. Nothing even the light, can
escape from within the sphere of Radius R^. So light from a
black hole cannot escape and hence the terminology 'black

hole'. There has been astronomical evidence of a small and

massive object at the centre of our galaxy the 'Milky way'.
Suppose that there is a particle at a distance about 6 light years

that orbits this massive object with an orbital speed of about
2x10^ m/s.Usethegivendatawherevernecessary andanswer
the questions that follow. G = 6.67 x 10" '̂ N - m^/kg^, Solar
mass A/=2 x lO^^kg, C=3 x 10^ m/s, 1lightyear=9.5 x 10'^m.

Rs I

Figure 6.95

Gravitation I

6-45 Mass (in kg) of the massive object at the centre of the
milkywaygalaxyis of the order:
(A) 10^2 (B) 10" .
(C) (D) 10^9

6-46 Theories suggest that it is not possible for a single star
to have a mass of more than 50 solar masses. The massive

objectat the centreof milkywaygalaxyis most likelyto be a :
(A) white dwarf (B) neutron star
(C) black hole p) single ordinary star

6-47 If mass of earth » 6 x lO '̂' kg and its radius
R^ = 6400 km, to what fraction of itspresents radius does the
earth need to be compressed in order to become a black hole?
(Give only the order of your answer)
(A) lO"" (B) 10"^ ,
(C) 10" (P) 10"4

6-48 A hole is drilled from the surface of earth to its centre. A

particle is dropped from rest at the surface of earth. The speed
of the particle when it reaches thecentre of the earth in terms of
its escape velocity on the surface ofearth v is :

(A) 2k.
2

(Q' V2v

(B)

P)

6-49 Two small balls of mass m each are suspended side by
side by two equal threads of length L. If the distance between
the upper ends ofthe threads be a, the angle 0 that the threads
will make with the vertical due to attraction between the balls

is:

(A) tan-'
mO

(Q tan.-I {a-Xfg
mO

0\

{a-X)

Figure 6.96

•, P) tan-1
mO

(c-xpg

.-1 («'-^')gP) tan
mO

6-50 Two masses of mass m each are fixed at a separation
distance of2i;/.Asmall mass placed midway, when displaced
slightly, starts oscillating. Then :
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m o-

•Id-

Figure 6.97

(A) Frequency of simple harmonic motion is given by

1 i4Gm

2k]l ci^

(B) Frequency of simple harmonic motion is given by

I \2Gm

2k\

(Q Acceleration of the mass m is given by

(D) Time period ofvibration is 2jr
GM

(2df

6-51 Mass Mis uniformly distributed only on curved surface
ofa thin hemispherical shell. A, B and C are three points on the
circular base ofhemisphere, such that A is the centre. Let the
gravitational potential at points A, B and C be V^,
respectively. Then:

Figure 6.98

(A) V,>V,>Vc
(Q F,>F,andF^>Fc

(B) V^>V,>V^
(D) V^=V,= Vc

6"52 Figure show a hemispherical shell having uniform mass

density. The direction of gravitational field intensity at point P
will be along:

(A) <3

(Q c

Figure 6.99

(B) b

(D) d

exerts on a point mass m placed at x = 0 is given by:

>"1

Figure 6.100

(A) Gm(a(-—• +M
{ {a a+IJ

(Q

Gm(a + bx )

V

a\ —\-\-bl
a + / a

417

6-54 The planet with radii i?2 have densities pj, p2
respectively. Theiratmospheric pressures arep-^,P2 respectively.
Therefore, the ratio ofmasses oftheir atmospheres, neglecting
variation ofg within the limits of atmosphere, is :

{A) p^R^pJP2Ri92
(C) p^ iilj !P2 Rj P2 (B) P\ Ri P2 ^P2 ^2 Pi

6-55 A satellite ofmass m orbits the earth in an elliptical orbit
having aphelion distance and perihelion distance r^. The
period ofthe orbit is T. The semi-major and semi-minor axes of

the ellipse are ^^ ^ and respectively. The angular

momentum ofthe satellite is :

(A)

(Q

f

2T

(B)

P)

2mK(r^+rp)^p
T

mK{r^+rp)^[^
AT

6-56 A uniform thin rod of mass m and length R is placed

normally on surface of earth as shown. The mass of earth is M
and its radius is R. Then the magnitude of gravitational force
exerted by earth on the rod is :

(A)
GMm

AR^

Figure 6.101

GMm

6-53 A straightrod oflength/extends fromx = a tox = / +a. (Q
Ifthemass perunit length is{a+ 6x^). The gravitational force it

AGMm

9R'

(B)

P)
GMm
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6-57 Abody ofsuperdense material with mass twice the mass distance ofP from the centre ofthe sphere is 2R. Aspherical
ofearth but size very small compared to the size ofearth starts „<jius - is now made in the sphere. The sphere (with
fromrestfrom/?«i?abovetheearth'ssiirface.Itreachesearth 2 . . • ,

cavity) exerts a gravitational force on the same particle at P.
in time t:

(A) t =

6-58 Consider a mass Wq enclosed by a closed imaginary
surface S. Let g be the gravitational field intensity due to at

the surface element dS directed as outward normal to it. The

surface integral ofthe gravitational field over S is :
(A) -m^G (B) •ArrrnQG

(Q-
4:1

(D) None of above

6-59 A solid sphere of uniform density and radius R exerts a
gravitational force of attraction Fj ona particle placedatP. The

The ratio — is :
F,

(A)

(Q T

Figure 6.102



Gravitation 419

Advance MCQs with One orMore Options Correct
6-1 Two objects of masses m and 4 m are at rest at an infinite
separation. They move towards each other under mutual

gravitational attraction. If G is the universal gravitational
constant. Then at separationr; (Assumezeroreferencepotential
energy at infinite separation)
(A) The total energy of the two object is zero

(lOGm^
1/2

(B) Their relative velocity of approach is [—-— ] in

magnitude

(C) The total kinetic energy of the objects is
r

P) Net angular momentum of both the particles is zero about
any point

4Gw^

6-2 Aplanet ofmass misrevolving round the sim (ofmass M)
in an elliptical orbit. If v is the velocity of the planet when its
position vector from the sun is ? , then areal velocity of the

position vector of the planet is :
(A) V X ? (B) F X V

(Q ^(vxF) P)
12(rxv)

6-3 In Q. No. 6-2, if the planet rotates in counter clockwise
direction, then areal velocity has a direction :
(A) Given by "Right Hand Thumb Rule"
(B) Given by "Left Hand Thumb Rule"
(Q Normal to the plane oforbit upwards

P) Normal to the plane oforbit downwards

6-4 A particle of mass m lies at a distance r from the centre of
earth. The force of attraction between the particle and earth as

a function of distance is F (r).

(A) F(r)oc--forr<i? P) F{r)cc—r forr>R

(Q F{r)xriovr<R P) F(/•) Xi for r<

6-5 A planet is revolving round the sun in an elliptical orbit.
The work done on the planet by the gravitational force of sun is
zero:

(A) In some parts of the orbit
p) In any part of the orbit
(Q In no part ofthe orbit
p) In one complete revolution

6-6 A satellite is orbiting round the earth's surface in an orbit

as close as possible to the surface of the earth.
(A) The time period ofrevolution of satellite is independent of

its mass and is maximum,

p) The orbital speed ofsatellite is maximum.
(C) The Kinetic energy ofthe satellite is minimum.

P) The total energy of the "earth plus satellite" system is
maximum

6-7 Supposeuniversalgravitationalconstantstarts to decrease,
then :

(A) Length ofthe year will increase
P) Earth will follow a spiral path ofdecreasing radius
(Q Kinetic energy ofearth will decrease
p) All of the above

6-8 A body is imparted a velocity v from the siuTace of the
earth. If is orbital velocityand be the escape velocity then
for:

(A) V= Vq, the body follows a circulartrack aroundthe earth
P) V> Vg, but < , thebodyfollows elliptical path aroundthe

earth

(C) V< Vq, thebodyfollows elliptical pathandreturns to surface
of earth

p) V> v^, the body follows hyperbolic path and escapes the
gravitational pull of the earth

6-9 Let Vand E be the gravitational potential and gravitational
field. Then select the correct altemative(s): '
(A) The plot of E against r (distance from centre) is

discontinuous for a spherical shell
P) The plot of Vagainst r is continuous for a spherical shell
(Q The plot ofE against r is discontinuous for a solid sphere

P) The plot of Vagainst r is continuous for a solid sphere

6-10 Inside a uniform sphere of mass Mand radius R,a cavity
of radius i?/3 is made in the sphere as shown :

Figure 6.103

(A) Gravitational field inside the cavity is uniform
P) Gravitational field inside the cavity is non-uniform

(Q The escape velocity of a particle projected from point A is

88GM

\5R

p) Escape velocity is defined for earth and particle system

only
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6-11 A solid sphere of uniform density and radius 4 units is

located with its centre at the origin O. Two spheres of equal
radii 1 unit with their centres at A (- 2, 0, 0) and B (2, 0, 0)

respectively are taken out of the solid leaving behind cavities
as shown in figure-6.104. Then :

Figure 6.104

(A) The gravitational field due to this object at origin is zero
(B) The gravitational field at the point B (2,0,0) is zero
(C) The gravitational potential is the same at all points on the

circle>^+z^ = 36
(D) The gravitational potential is the same at all points on the

circle^+z^ = 4

6-12 Two tunnels are dug from one side of the earth's surface

to the other side, one along a diameter and the other along a
chord. Now two particles are dropped from one end ofeach of

the tunnels. Both the particles oscillate simple harmonically
alongthe tunnels. Let Tj and be the time periods andVj and
V2 be the maximum speed of the particles in the two tunnels.
Then:

{h)T^ = T^ (B) r,>r2
(Q V, = V2 (D) V,>V2

6-13 A satellite is revolving round the earth in an elliptical
orbit:

(A) Gravitational force exerted by earth is equal to centripetal

force at every point of trajectory.
(B) Power associated with gravitational force is zero at every

point

(Q Work done by gravitational force is zero in some small

parts of the orbit

(D) At some point, magnitude ofgravitational force is greater
than that of centripetal force

Gravitation

6-14 Two spherical planets have the same mass but densities
in the ratio 1: 8. For these planets, the :

(A) Acceleration due to gravity will be in the ratio 4:1
Accelerationdue to gravity will be is the ratio 1 :4

(Q Escape velocities from their surfaces will be in the ratio

^/2 :1
(D) Escape velocities from their surfaces will be in the ratio

l:^/2

6-15 An artificial satellite is in a circular orbit around the earth.

The universal gravitational constant starts decreasing at time
/ = 0, at a constant rate with respect to time t. Then the satellite

has its:

(A) Path gradually spiralling out, away from the centre of the

earth

(B) Path gradually spiralling in, towards the centre ofthe earth
(Q Angular momentum about the centre of the earth remains

constant

(D) Potential energy increases

6-16 Suppose an earth satellite, revolving in a circular orbit,
experiences a resistance due to cosmic dust. Then :
(A) Its kinetic energy will increase
(B) Its potential energy will decrease
(Q It will spiral towards the earth and in the process its angular

momentum will remain conserved

P) It will get heated and bum offultimately or fall somewhere
on the surface of earth

6-17 A point P is lying at a distance r (< a) from the centre of
shell ofradius a. Ifg and Vhe the gravitationalfield and potential
at the point P then :

(A)g=0
GM

(B) g = -

(C) v=o (D) y=-
GM
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UnsolvedNumericalProblemsfor Preparation ofNSEP, INPhO & IPhO
For detailedpreparation oflNPhO andJPhO students can refer advance study material on www.physicsgalaxy.com

6-1 At what distance from the center of the earth will a 1 kg
object have a weight of1N? Ifreleased from rest at this distance,

what will its initial acceleration be?

Ans. [2.023 x iC m]

6-2 The radius ofMars is 3.4 X 10^ m and the acceleration ofa

freely falling object on its surface is 3.7 m/s^. Determine the
mass of Mars.

Ans. [6.46 x kg]

6-3 Suppose we invent a unit of mass which we shall call the
cavendish (C). One cavendish of mass is defined such that

G=1.0000 {AUfliyt^C). Our unit oflength isthe astronomical
unit (^D); the earth-sun distance-1 AU= 1.496x 10^^ m-and
our unit of time is the year iyr). (a) Determine the conversion
factor between C and kg. (b) Find the mass of the sun in C.

Ans. [(a) 1.984 x 10-29 c/kg; (b) 39.5 C]

6-4 Determine the fractional reduction of the acceleration of

gravity due to an increase in elevation of 10 km near the earth's

surface.

Ans. [0.003]

6-5 In figure-6.105, particleyl has a mass of 1.4 kg and particle
B has a mass of3.1 kg. What is the gravitational field at point F?

1.5 m

•2.4 m-

Figure 6.105

Ans. [I = (2.2 X 10-11 N/kg)/ - (5.5 x iQ-'i N/kg)/']

6-6 While investigating the planet Norc in anodier solar system,
we find that the radius of Norc is 9.54 x lO^ m and that the

period ofa satellite putincircular orbit ofradius 1.476 x 10^ mis
8.09 X 10^s. Determine (a) the mass of Norc, (b) the average
massdensityofNorc, (c) the valueof the gravitational field on
the surface ofNorc. (d) Ifthe period ofNorc's rotation about its

axis is 1.04 x 10'̂ s, what will be the reading on a spring scale
(calibrated on earth) supporting a 1.0 kg object at Norc's
equator ?

Ans. [(a)2.908 x io25 kg; (b) 8.00 x 10' kg/m'; (c) 21,3 N/kg; (d) 17.8N]

6-7 Two concentric shells ofmasses Mj and aresituated as
shown in figure-6.106. Find the force on a particle of mass m

when the particle is located at {<i)r= a{h)r=b and (c) r=c. The
distance r is measured from the centre of the shell.

Figure 6.106

Ans. [(a) Gm (M, -I- (b) (c) 0]

6-8 Twopoint masses, each equal to M, are placed a distance
2a apart. Show that a small mass m placed midway between
them on the line joining them will be in equilibrixun and if it is
slightly displaced from this position along the line perpendicular
to the line joining the masses, it will execute simple harmonic
oscillations. Calculate the frequency of these oscillations.

Ans. [
2ji

2GM

6-9 Compute the mass and density ofthe moon if acceleration
due to gravity on its surface is 1.62 m/s^ and its radius is
1.74X10^ m [G= 6.67x1'MKS units].

Ans. [7.35 x 1022 kg, 3.3 x 10' kg/m']

6-10 Twomasses/Wjand/n2areinitially'atrestatinfinitedistance
apart.Theyapproacheach otherdue to gravitationalinteraction.
Find the magnitude of the gravitational force on any sphere
due to the other two.

Ans. [ ^[2G (mj +m2)/<^] ]

6-11 Imagine a planet whose diameter and mass are both one
half of those of earth. The day's temperature of this planet
surface reaches upto 800 K. Make calculation and tell whether
oxygen molecules are possible in the atmosphere of the planet.
[Escape velocity from earth's, surface = 11.2 km/s,
k= 1.38X10"23j/K, massof oxygen molecule = 5.3 x 10"^^ kg].

Ans. [Oxygen molecules cannot escape]

6-12 A thin rod ofmass M and length L is bent in a semicircle

as shown in Figure-6.107. (a) What is its gravitational force
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(both magnitude and direction) on a particle with mass m at O,
the centre ofcurvature, (b) What would be the force on m ifthe
rod is, in the form ofa complete circle?

Ans. [(a)
InGniM

L'

Figure 6.107

(b) 0]

6-13 Three identical bodies ofmass Mare located at the vertices

of an equilateral trianglewith sideL. At what speedmust they
move if they all revolve under the influence of one another's
gravitation in a circular orbit circumscribingthe triangle while
still preserving the equilateral triangle.

r \GM ,Ans. [v =y— ]

6-14 A smooth tunnel is dug along the radius of earth that
endsat centre.Aball is releasedfromthesurfaceof eaith along
tunnel. Coefficient of restitution for collision between soil at

centre and ball is 0.5. Calculate the distance travelled by ball
just before second collision at centre. Given mass ofthe earth is
Mand radius of the earth is R.

Ans. [d = 2R]

6-15 A particle ofmass m is subjected to an attractive central
force of magnitude kli^, k being a constant. If at the instant
when the particle is at an extremeposition in its closed path, at
adistance afrom the centre ofthe force, its speed is ^k l{2ma),
find the other extreme position.

Ans. [j]

6-16 If the radius ofthe earth shrinks by one percent, its mass
remaining the same, by what per cent will the acceleration due
to gravity on its surface change?

Ans. [Will increase by 2%]

6-17 In a certainregionof spacegravitational fieldis givenby
/=-(if/r). Taking the reference point to beatr=/-Q with V= Fq,
find the potential at position r.

Ans. [/i: In — + FJ
7-0
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the centre of the earth and a body is released from the surface

into the tunnel. Show that the motion of the body in the tunnel
will be simple harmonic and hence calculate the time taken by
the body to travel from one end of the tunnel to the other.

(Radius of the earth = 6.38 x lo^ m and acceleration due to
gravity at the surface = 9.81 ras~^).

Ans. [42 min 14 s]

6-19 Anironball ofradius 1manddensity 8000 kg/m^ isplaced
in water. A bubble ofradius 1 cm is at a distance 1.5 m from the

centreof the ball. Will therebe a force of attraction or repulsion
between them and what will be the magnitude of this force?

Ans. [3.7 X 10"® N]

6-20 Twosatellites.;^ and5ofequalmassmove inthe equatorial
plane ofthe earth, close to the earth's surface. Satellited moves
in the same direction as that of the rotation of the earth while

satellite B moves in the opposite direction. Calculate the ratio
ofthe kinetic energy ofB to that ofd in the reference frame fixed
totheearth. (g= 9.8m/s^ andradius ofthe earth= 6.37 x lO^m)

Ans. [1.27]

6-21 Threemasses, 100kg,200kgand500kgareplacedatthe
vertices of an equilateral triangle with sides 10 m. They are
rearranged by an agent on the vertices of a bigger triangle of
sides 15 m and with the same in-centre. Calculate the work done

by the agent.

Ans. [3.77 x 10"'' J]

6-22 A simple pendulum isa devicein which a massm(bob)is
suspended from a.suppoit by means ofa string (figure-6.108). If
the string is pulled aside by a small angle from the vertical and
released, the bob executes simple harmonic motion. For two
pendula whose bob have the same gravitational mass, at one of
which has an inertial mass 1% larger than the other, show that
the one with the larger inertial mass has a time period-
approximately 0.5% greater than the other one.

y////////////////////y

Figure 6.108

6-23 A satellite of Sun is in a circular orbit around the Sun,
midway between the Sun and earth. Find the period of this
satellite.

6-18 A short, straight andfrictionless tunnel isboredthrough Ans. [129 days]
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6-24 A spacecraft is in a circular orbit of radius 3R around the
moon as shown in figure-6.109.At point A, the spacecraft fires
a probe which is supposed to arrive at the surface of the moon
at point B. Determine the necessary velocity of the probe
relative to the spacecraft just after ejection. Also calculate the
angular displacement 0 ofthe spacecraft when the probe arrives
at point B. Assume velocity of spacecraft remains unchanged
due to ejection of probe.

1,
\ s

\ s

\ N.

Figure 6.109

Ans. [v^ = 284-in/s; 0 = 98°]

6-25 Anobjectweighs 10N at thenorth-pole of the earth. In a
geostationary satellite distant 7R fi-om the centre of earth (of
radiusR) whatwillbe its (a) true weight, (b) apparentweight?

Ans. [(a) 0.2 N, (b) 0]

6-26 What is the energy required on earth surface to laimch a
mkgsatellite fi-om earth'ssurface to a circular orbitat analtitude
2R.

Ans. [̂ mgR]

6-27 What will be the acceleration due to gravity on the surface
ofthe moon if its radius were (l/4)th the radius ofearth and its
mass(l/80)th themassof earth? Whatwillbe theescape velocity
on the surface of moon if it is 11.2 km/s on the surface of the

earth given thatg = 9.8 m/s^?

Ans. [2.5 km/s]

6-28 In a gravitational field g = (2i +3y) N/kg. What is the
work done inmoving a particle fiom(l, l)to (2,1/3) along the
line2.r + 3y=5.

Ans. [Zero]
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afterwhichit will appearat the sameequatorialtown.Giventhat
the radius of the earth = 6400 km and g (acceleration due to
gravity) = 10ra/s^.

Ans. [5 hr 48 min]

6-30 A system consists of a thin ring of radius R and a very
long uniformwire oriented along axis ofthe ring with one of its
ends coincidingwith the centre of the ring. If mass of ring be M
and mass of wirebe Xper unit length,calculateinteractionforce
between the ring and the wire.

'GMk'
Ans. [

6-31 A pendulumbeats seconds on the surfaceof the Earth.
Calculate as to how much it loses or gains per day if it is taken
to;

(a) a mine 8 km below,
(b) a point 8 km above, the surface. (Radius of the Earth
= 6.4xl06m)

Ans. [(a) 54 sec; (b) 107.9 sec]

6-32 Find the ratio of kinetic energy required to be given to a
satellite to escape fiom earth to the kinetic energyrequired to
be given to the satellite to revolvesound the earth in an orbit
just above the earth surface.

Ans. [2:1]

6-33 If the timeperiodof a satellite is different fromthatof
earth's rotation and the satellite is moving in the directionof
earth's rotation, show that the time interval between two

successive appearances of the satellite overhead is given by

J_
Te

Whatwillhappen to thistimeinterval if T^=T^

Ans; [r= M, i.e., the satellite will appear stationary overhead]

6-34 Twoidentical solid spheres each of radiusR are placed in
contact with each other. It is observed that the gravitational
attraction between the two is proportional to /?". Find the value
ofK.

Ans. [n = 4]

6-35 The masses and radii of the earth and moon are R^
and M2, R2 respectively. Their centres are at distance d apart.
What is the minimum speed with which a particle of mass m
should be projected fiom a point midway between the two
centres so as to escape to infinity.

6-29 A satellite is revolving in a circular equatorial orbit of Ans. [2
radius R = 2 x Ifi* km fiom east to west. Calculate the interval

G(Mi+M2)
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6-36 A 50kg astronautis floating at rest inspace35m fromher
stationary 150,000 kg spaceship. About how long will it take her
to float to the ship under the action of the force ofgravity?

Ans. [About 10^ s]

6-37 The eccentricity ofearth's orbit is 0.017. What is the ratio
ofthe maximumspeed in its orbit to its minimumspeed.

Ans. [1.034]

6-38 Find the proper potential energy of gravitational
interaction ofmatter forming
(a) a thin uniform spherical layer ofmass m and radius R;
(b) a uniform sphere ofmass m and radius R

Ans. [(a) U=- Gm^lR; (b) C/= - 3GmV5/?]

6-39 A manofmass mstarts fallingtowardsa planetofmassM
and radius R. As he reaches near to the surface, he realizes that
he will pass through a small hole in the planet. As he enters the
hole, he sees that the planet is made of two pieces a spherical
shell of negligible thickness of mass = M/S and a point mass
M/3 at centre. Find the change in force of gravity experienced
by man.

Ans. [|^]

6-40 A pair of stars rotates about a common centre of mass.
One ofthe stars has a mass Mand the other m. Their centres are

a distance d apart, being large compared to the size of either
star. Derive an expression for the period of revolution of the

stars about their common centre ofmass. Compare their angular
momenta and kinetic energies.

Ans. [-^1

6-41 Aplanetof massMmovesaroundtheSunalonganellipse
so that its minimum distance from the Sun is equal to r and the
maximumdistance to R. Making use of Kepler's laws, find its
period ofrevolution frame.

Ans. [r= JtV(r +/?)^/2GM ]

6-42 The optimal way of transferring a space vehicle from an
inner circular orbit to an outer coplanar circular orbit is to fu-e its
engines as it passes through^ to increase its speed and place
it in an elliptic transfer orbit. Another increase in speed as it
passes through B will place it in the desired circular orbit. For a
vehiclein a circularorbit about the earthat an altitude = 320 km,
which is to be transferred to a circular orbit at an altitude

= 800 km, determine:

(a) The required increases in speed at A and B.
(b) The total energy per unit mass required to execute the

Gravitation,

transfer. Radius ofearth is 6370 km.

Figure 6.110

Ans. [(a) Av_^ = 147 m/s; Av^ = 117 m/s (b) 201 MJ/kg ]

6-43 A lunar probe is rocketed from earth directly toward the
moon in such a way that it is always between the earth and the
moon. The probe narrowly misses the moon and continues to
travel beyond it on an extension ofthe line segment described
above. At what distance from the center of the earth will the

force due to the earth be equal to the force due to the moon?

Ans. [432 Mm]

6-44 A particleis projectedfromearthsurfacewitha velocity

in upward direction where R is the radius of earth. Find

the velocity of particle when it is at half its maximumheight.

6-45 A rocket starts vertically upwards with speed Vq. Show
that its speed v at a height h is given by

v^v^ = (2gA)|l +A

Where?? is the radius ofthe earth. Hence deduce the maximum

height reached by a rocket fired with speed equal to 90% of
escape velocity.

6-46 A satellite is in a circularorbit very close to the surfaceof
a planet.At some point it is given an impulsealong its direction
ofmotion, causing its velocity to increase r\ times. It now goes
into an elliptical orbit. What is the maximum value ofr] can be
used for this.

Ans. [ -Jl ]

6-47 A spherical hollow is made in lead sphere of tadius R,
such that its surface touches the outside surface of the lead
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Sphere and passes through its centre (figure-6.111). The mass
of the sphere before hollowingsphere exerton a pointmassm
placed at the centre of the hollow ?

Figure 6.111

Ans. [ F =
GMm

2R'

6-48 If a satellite is revolvingarounda planet of densityp with
period T, showthat the quantity pP is a universal constant.

6-49 Find the angularspeed ofearth so that a body lying at 30°
latitude may become weightless.

Ans. [, ]

6-50 A projectile is fired vertically upward from the surface of
earthwith a velocity Kv^ where is the escape velocity and
iC< 1.Neglectingair resistance;show that the maximumheight
towhich itwillrisemeasured fromthecentre ofearthis7?/(l - iP)
where R is the radius of the earth.

6-51 A satellite is in a circular polar orbit of altitude 300 km.
Determine the separation d at the equator between the ground
tracks associated with two successive overhead passes of the
satellite.

Ans. [d = 2520 km]

6-52 A satellite ofmass 5 Morbits the earth in a circular orbit.

At one point in its orbit, the sajellite explodes into two pieces of
masses i/and 4 M. After the explosion, the mass Mends up
travelling in the same circular orbit, but.in opposite direction.
Check finally 4 Mwill move in a bounded or unbounded orbit.

Ans. [Unbounded]

6-53 A body is projected vertically upwards from the surface
ofearth with a velocity sufficient to carry it to infinity. Calculate .
the time taken by it to reach height h.

* r t 2/JAns. [-Z J—

6-54 What is the radius ofa planet ofdensity p if at its surface
escape velocity of a body is v.

Ans. [v
SnGp
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6-55 Considertwosatellites A andBof equalmass,movingin
the same circular orbit of radius r around the earth but in the

oppositesensearidtherefore,on a collisioncoursefigure-6.112.
(a) Find the total mechanical energyB^+Egofthe two-satellite-
plus-earth system before collision.
(b) If the collision is completely inelastic, find the total
mechanical energy immediately after collision. Describe the
subsequent motion of the combined satellite.

Ans. [
GM.m IGM.m

Figure 6.112

; the combined body falls directly down]

6-56 A satellite is circling around earth in an orbit ofradius x.
If its radius is reduced by 1%, then by what percent its speed
will increase.

Ans. [0.5%]

6-57 A "body on the equator of a planet weighs half of its
weightat thepole.Thedensityofmatterof theplanetis3gjerr?.
Determine the period ofrotation ofthe planet about its axis.

Ans. [3.16 X 10^ rad/s]

6-58 Two satellites move in circular orbits around the earth at

distances 9000 km and 9010 km from earth's centre. Ifdie satellite

which is moving faster has a period of revolution 90 minutes.
Find the difference in their revolution periods.

Ans. [9 s]

6-59 A body is projected horizontally near the surface of the
earth with Vl5 times the orbital velocity. Calculate the maximum
height up to which it will rise above the surface of the earth.

Ans. [2;?]

6-60 A satellite is orbiting around earth with its orbit radius 16
times as great as that ofparking satellite. What is the period of
this satellite.

Ans. [64 days]

6-61 What should be the radius of a planet with mass equal to
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that of earth and escape velocity on its surface is equal to the
velocityof light. Giventhatmass of earth is M= 6 x lO '̂̂ kg.

Ans. [9 mm]

6-62 Treating the earth as a symmetrical sphere of radius
R - 6400 km with field 9.8 N/kg at its surface, calculate the
vertical speed with which a rocket should be fired so as to reach
a height AR fi'om the surface.

Ans. [10 km/s]

6-63 A diametrical tunnel is dug across the earth and a ball is
dropped into the tunnel Irom one side. Find the velocity ofball
when it reaches the centre of earth.

Ans. [ ]

6-64 Two satellites 5, and revolve around aplanet incoplanar
circular orbits in the opposite sense. The periods ofrevolutions
are T and r\T respectively. Find the angular speed of $2 as
observed by an astronaut in S^, when theyare closest to each
other.

Ans. [ 2n(n^'^+l)

6-65 A small body starts falling onto the sun fiom a distance
equal to the radiusofthe Earth's orbit.The initialvelocityof the
body is equalto zero in the heliocentric referencefiame.Making
use ofKepler's laws, find how long the body will be falling.

Ans. [65 days]

6-66 The gravitationalpotentialdifferencebetweenthesurface
of planet and a point 20 m above the surface is 2 J/kg. If the
gravitationalfieldis uniformthen findtheworkdone incarrying
a 5 kg body to a height of 4 m above the surface.

Ans. [2 J]

6-67 What would be the length of a day if angular speed of
earth is increased such that bodies lying on he equator fly off?

Ans. [1.3 hr.]

6-68 A communicationsatellite is put inparking orbit.What is
the time taken by a wave to go to satellite and come back to
earth in its checking mode.

Ans. [0.25 s]

6-69 A cordof length64mis usedto connecta 100kgastronaut
to a space-ship whose mass is much larger than that of the
astronaut. Estimate the value ofthe tension in the cord. Assume

that the space-ship is orbiting near earth surface. Also assume
that the space-ship and the astronaut fall on a straight line from
the earth's centre. The radius of the earth is 6400 km.

Ans. [3 X 10-2
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6-70 The escape velocity for a planet is 20 km/s. Find the
potential energy ofa particle ofmass 1 mg on the surface ofthis

planet.

Ans. [200 J]

6-71 A particle ofmass 1 kg is placed at a distance of4m fi'om
the centre and on the axis of a uniform ring of mass 5 kg and
radius 3 m. Find the work required to increase the distance of
the particle from 4mto 3VJ mis.

Ans. [-|- J]

6-72 A body of mass m rises to a height h = R/5 fi'om the
earth's surface where R is earth's radius. Find increase in

potential energy.

Ans. ["g wgA]

6-73 A missilewhichmisseditstargetwentintoan orbitaround
the earth at a mean radius 4 times great as the parking orbit.
Find the period ofmissile.

Ans. [8 days]

6-74 Compute themagnitude of thenecessary launch velocity
at B and angle a. If the projectile trajectory is to intersect the
earth's surface so that the angle P equals 90®. The altitude at
the highest point of the trajectory is 0.5 R.

Figure 6.113

Ans. [Vd = 7560 m/s]

6-75 Suppose Moon's orbital motion around the earth is
suddenly stopped. Making use of Kepler's third law find the
time the moon shell take to fall on to the earth ?

Ans. [Approx 5 days]

6-76 Distance between the centres of two starts is 10 a. The

masses ofthese starts are M and 16 M and their radii a and 2a

respectively. Abody ofmass m is fired straight fiom the surface
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of the larger start towards the smaller star. What should be its

minimum initial speed to reach the surface ofthe smaller star ?
Obtain the expression in terms ofG, M and a.

-if

6-77 Ifa body is to be projected vertically upward from earth's

surface to reach a height of 10 i?, where R is the radius ofearth.
Find velocity required for this. ;

Ans. [

6-78 A satellite of mass m is revolving round the earth at a

height R above the surface ofearth. If R is the radius of earth,
what is the kinetic energy of satellite.

Ans. [^mgR]

6-79 A spaceship nears the Moon along a parabolic trajectory
that almost touches the Moon's surface. In order to transfer

into a circular orbit a retro-engine fires at the instant of the
closest approach. The engine ejects gas at a speed ofM = 4km/s

relative to thespaceship initsdirection ofmotion. IfVj =velocity
ofspaceship in parabolic trajectory, when it almost touches the
earth and = velocity of spaceship in circular orbit when it
almost touches the earth. Then what fraction oftotal mass should

the fuel bum to transfer space ship to circular orbit?

Ans. [M = MqB T = 3600 K]

6-80 If the earth be at one half its present distance from the

Sim, how many days will there be in a year?

Ans. [129 days]

6-81 At what height above the surface of earth the value of g

is the same as that in a mine 10 km deep ?

Ans. [5 km]

6-82 A massive body moving radially from a planet ofmass M,
when at distance r from planet, explodes in such a way that two
of its many fragments move in mutually perpendicular circular
orbits around planet. Find the maximum distance between
fragments before collision and their relative speed at the moment
they collide.

Ans. = V2r ; V- ]

6-83 Masses, assumed to be equal to m each, hang from strings

ofdifferent lengths from the ends ofa balance on the surface of
the earth. Ifthe strings have negligible mass and differ in length
by h, showthat the error in weighing, W- tV, is givenby IF'-
fV = ^ Gmph, where pis the density ofthe earth.
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6-84 At what height above the earth's surface acceleration
due to gravity becomes half its value on earth's surface.

.\ns. \i4i ~ 1)/?]

6-85 A ring ofradius /?= 4 m is made ofa highly dense material.

Mass ofthe ring isWj =5.4 x 10^ kg distributed uniformly over
its circumference. Ahighly dense particle ofmass /W2 - 6x 10^ kg
is placed on theaxisof theringat a distance Xq = 3 ra from the
centre. Neglecting all other forces, except mutual gravitational
interaction of the two, calculate

(a) Displacement of the ring when particle is closest to it.
(b) Speed of the particle at tliat instant.

Ans. [(a) 0.3 in (b) 18 m/s]

6-86 Four particles each of mass M, move along a circle of
radius R under the action of their mutual gravitational
attractional. Find the speed of each particle.

Ans. [
GM

R

2V2+1'

6-87 The density of the core of a planetis Pj and that of the
outershell is P2. Theradiiof thecoreandthatof theplanet are
R and 2R respectively. Gravitational acceleration at the surface
of the planet is sameas at a depthR. Find the P[/p2-

Ans. [ B- = I
P2 3

Figure 6.114

6-88 A planet moves along an elliptical orbit around the sun.
At themoment when itsdistance from thesunis r^, itsvelocity
is Vq atangle a to Find the maximum andminimum distance
of this planet from the sun. Mass of the sun = M.

Ans. [ 1^1 +̂1-4"{«-l)sin^aj , («-l)sin^aj ]

6-89 Ifgravitational forces between a planet and a satellite is
proportional to R~ '̂̂ ifR is theorbitradius. Thentheperiod of
revolution of satellite is proportional to J?". Find n.

Ans. [7/2]
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6-90 A uniformsphereof radius a and densityp is dividedin
two parts by a plane at a distance b from its centre. Calculate
the mutual attraction between two parts.,

Ans.

6-91 A uniform sphere has a mass M and radius R. Find the
pressure p inside the sphere, caused by gravitational
compression, as a function of the distance r from its centre.
Evaluate pressure at the centre ofthe Earth, assuming it to be a
uniform sphere.

Ans. [p = 3/8 (1 -

6-92 Ameteorite approaching aplanetofmassM(in thestraight
line passing through the centre of the planet) collides with an
automatic space station orbiting the planet in the circular
trajectory of radius R. The mass of the station is ten times as
large as the mass the meteorites. As a result of collision, the
meteorite sticks in the station which goes over to a new orbit
with the minimumdistance RH from the planet. Determine the
velocity u of the meteorite before the collision.

Ans. [ yjs^GmfR ]
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6-93 Two satellites of the earth move in the same plane with
radii a and b, b being slightly greater than a. What is the
minimum interval between the instants when they are on the
same line through the centre ofthe earth (i) when they move in
the same direction, (ii) in opposite direction?

.5/2 _5/2

Ans. [ 471 4n

6-94 Two leadspheresof 20 cmand2 cmdiameterareplaced
with their centres 1.0 m apart. Calculate the force.of attraction
betweenthe two spheres.The radiusof the earthis 6.37 x 10^ m,
its density is 5.51 x 10^ kg/m^ andrelative density of lead is
11.5.

Ans. [1.5 X lo-'o N]

6-95 A space vehicle is in circular orbit about the earth. The
mass ofthe vehicle is 300 kg, and the radius ofthe orbit is 2 .
It is desired to transfer the vehicle to a circular orbit of radius

(a) What is the minimumenergy required for the transfer ?
(b) If the transferaccomplished throughanellipticalorbit,what
initial and final velocity changes are required.
Takeg=10 m/s^ at the earth's surfaces and R^ =6400 km (radius
ofthe earth).

Ans. [(a) 2.4 x lo® J, (b) 876 m/s, 734 m/s]^
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FEW WORDS FOR STUDENTS

After the detailed study of Newtonian mechanics, with

applications to motions ofdifferentparticles and rigid bodies,
our next step is to discuss the behaviour offluids, which are

large collection ofparticles in a volume^ In this chapter we

will study the behaviour offluids and develop relations oflaws
ofmechanics, especially the law ofconservation ofenergy with

fluid bodies. These laws are strictly valid onlyfor certain types
offluids and theirflow in some ideal conditions.

7.1 The Concept ofPressure

7.2 Pressure Distribution in a Static Fluid

7.3 Archimedes Principle

7.4 PascaVs Principle

7.5 Pressure Distribution in an Accelerated Frame

7.6 Fluid Dynamics

7.7 Bernoulli's Theorem

7.8 Numerical Applications ofBernoulli's Theorem

7
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All physical bodies are made of molecules which are in
permanent motion. In solids the molecules oscillate about

certain equilibrium position and the displacement of the
molecules are so small that they do not affect the character of

motion ofsolid bodies or its parts, as we've already covered in
mechanics. The equilibrium positions of the molecules of a

solid, that is their average position, are quite definite and fixed.

Every solid has a definite shape. To change this shape, that is
to produce a deformation of the body, some forces must be
applied to the body or to some of its parts. Solid bodies in
contrast to fluid and gases, retain a definite geometrical form.

Fluid and gases are physical bodies that have no definite shape
and assume the shape of the vessel they fill.

The matter is that every body may behave as a solid, fluid or
gas depending on the physical conditions and on the
phenomenon in which it takes part. For example a rotating
metal disc behaves as a rigid body while the same disc, when
subject to heating, behaves as fluid. We first discuss a definite

approach in which we distinguish between a solid, fluid, or a
gas.

In a gas the molecules are in a chaotic motion and collide with
each other like small balls. The molecules are not connected

with one another when they move.. Because of permanent
collisions they tend to move in all possible directions so that
the gas fills uniformly the volume ofvessel in which it is filled.

That is why we define an amount of a gas is a physical body

which does not possess its own definite shape and volume. Its
volume is determined by the volume ofthe vessel which it fills.
Thus the gas can be thought of as a continuous body which
tend to expend and to fill the entire volume in which it is placed.

In a fluid or gas the molecules are not invariably connected
with each other and the molecules can move quite arbitrarily
relative to each other in their chaotic motion. In a fluid unlike to

a gas, the average distance between the molecules remains
almost constant. This means that an amount of a fluid is a

physical body like a gas, which has no definite shape but
unlike a gas posses an almost invariable volume. The volume
of a fluid changes only when large external forces act on it. A
given amount of a fluid is always separated by an interface

from other solids or gases. In case ofa gas medium adjoining a
fluid we speak of a free surface ofthe fluid.

An amount ofa gas is usually bounded either by a fluid surface
or by a surface of some solids.

In mechanics we consider solids, fluids and gases as
continuous bodies. A solid possesses a definite shape and a
definite volume undergoing invariable conditions. An amount
of fluid only possesses a definite volume and has no definite

Fluid Mechanics i

shape and an amount of gas has neither a definite shape nor
volume.

7,1 The Concept ofPressure

A fluid or a gas placed in a closed volume can be subject to an
external action. For example consider the situation shown in
figure-7.1 AFluid is filled in a container and its top is closed by
a smooth light piston. A constant force F is applied to the
piston and after that as piston and fluid are in equilibrium then-

obviously we can state that fluid also exert the same force F in

upward direction on piston. Now consider a small cubical
volume of fluid within its volume as sho'^ in figure-7.1 (a). As
this is also in equilibrium net forces on it must also be zero.

There must be some internal forces present on this volume as
we know when some external forces are applied on a body, due
to its elasticity some internal restoring forces develop with in
the body. In solids we account for these forces in the form of

stress in the solid body and the tangential components of
these forces are accounted in sheer stress which produces

sheer strain. But in fluids there is no tangential component. In
static fluid internal forces are normal to the bounding surfaces.

F

—<

•Jvr-n;

(a)

(b).
Figure 7.1

In figure-7.1(a) we can see that the forces exerted by the
surrounding fluid on the small cubical volume are balanced

and normal to its surface (hypothetical).
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Similarly as shown infigure-7.1 (b)weconsider a small spherical
volume and here also it is in equilibriumdue to theradial (normal
to,bonding surface) inward forces on it by the surrounding
fluid.

On the basis of similar concept we can explain the equilibrium
of a floating body. Forexample considerthe situationshownin
figure-7.2.

Figure 7.2

Here we can see that on the surface of submerged part ofbody
whichis incontactwiththeliquidmolecules, the liquidmolecules
exerts normal forces at every local point of contact. For
equilibrium of body we can state that the weight of body is
balanced by thevertical upward components of all thenormal
contact forces and all the horizontal components of these
contact forces must cancel each other, as a floating body can

not move horizontally all by itself or by fluid.

The above experimental facts indicates that in fluids in the
state ofequilibrium there canonlyappear normal internal forces,
and these forces always has a tendency to compress the
bounded volume in the fluid. That is why when considering

for the internal forces in fluids we talk about the pressure not
about vector forces. It follows that a pressure in a fluid is a
sealer quantity measured bythemagnitude ofthecompressive
force acting perunitareaofahypothetical surface ofanisolated
volume and this force is always normal to the surface.

InSIsystem theunitofpressure istaken 1pascal (1 Pa) which
is given as

\Pa = \
N

m

Incgs the unit ofpressure is 1bar where 1bar = 1dyn/cm^

7.2 Pressure Distribution in a Static Fluid

We've discussed that in a static fluid the distribution of the
pressure isuniform inhorizontal direction otherwise there can
benoequilibrium inthefluid. It follows thatthefree surface of
an immovable fluid is always horizontal except near the walls
of vessel where due to the surface tension it may be in curve

shape, we'll discuss later about surface tension in detail.

431

Base Area = S

Figure 7.3

In this chapter we'll deal only with fluids that cannot be
compressed, that is,withliquids. Considerthe container shown
in figure-7.5 filled with a liquid of density p, upto a height h.
The weight of the liquid exerts a force on the bottom of the
container. Where the pressure at the bottom can be defined as

P=inM.
S

or

or

P =
(p/^.S')g

[Mass of liquid in container m = p/j5]

P=hpg ...(7.1)

Herefrom equation-(7.1) wecannowseethatpressure isdirectly
proportional to bothdensity and the depthof the liquid. Thus
separate containers of different size,holding identical liquids
of uniform density have equal pressure at equal depth. If two
containers are filled to the same height, they have equal
pressures at the bottom, even though the total force on the
bottom surface due to the liquid is greater at the bottom of the
large container. The pressure depends on the depth and not
on the cross-section. A narrow long vertical tube of length 2m
withwater has the samepressure at its bottom as does a large
lake that is 2m deep.

We've alreadydiscussed thata fluidexertsa forcenormalto all
the bondingsurfaces of the fluid thus a force mustbe exerted
on the side'walls of the container also and a corresponding
pressure is present there. Moreover a pressure exist at any
point within the body of the liquid. If the liquid is static, the
pressure is independent of direction. As shown in figure, in a
container filled with water, we consider three points A, B and
C, pressure remains equal to hf>g at all these points. If we
measure thispressure bya pressure measuring device inwhich
thepressure exerted bywateronrubbermembrane is measured
by the pressure gauge as shown in figure-7.4(b). The reading
of the pressure meter at all three points is same even though
the forces on the three membranes are in different directions. If

the readings at the points alonga horizontal surface (parallel
to free surface) of liquid were not same then the pressure
difference would cause fluid to flow which contradicts the

practical situation thatliquid isatrest. Sothe pressure inliquid
mustdepend onlyon the height of the liquid above the point
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at which we are finding the pressure. Thuswe can also state Hereyou can observe that in pressure we've takenthe height
thatin a static liquid, difference in pressure APbetween two hupto thefree topsurface oftheliquid, nomatter, whatever be
points that differ in depth by Ah is given as

AP = AApg

Figure 7.4

...(7.2)

We have discussed that' the pressure at any point in the body
of liquid depends on the height of liquid column above that
point. It does not depend on the shape of vessel.

To capture the concept in a better way,we take another example
ofa vessel filled with a liquid as shown in figure-7.5. The vessel

is fitted with a long random stem pipe with a funnel. Ifwe find
the force at the bottom of vessel due to the liquid, then it is
given as ,

7^ = pressure at bottom Xsurface area

= hpg X^ .

base area,S = atbase area,S = ab
where b = width ofvessel

Figure 7.5

the amount of liquid present and whatever be the shape of
container, the force on bottom is same.

Now consider the situation shown in figure-7.6. Liquid is filled
in an irregularly shaped container with four different openings.

Figure 7.6 • - .

As we know in a static fluid the.pressure at one horizontally
level remains constant thus here also we can conclude that the

pressure at the four points A, B, C and D remains constant.

7.2.1 Force on Side Wall of a Vessel

Force on the side wall of the vessel can not be directly

determined as at different depths pressures are different. To
find this we consider a strip of width dx at a depth x from the
surface ofthe liquid as shown in figure-7.7, and on this strip the
force due to the liquid is given as :

dF^xpg X bdx ...(7.3)

dF

Figure 7.7

This force is acting in the direction normal to the side wall.

Net force can be evaluated by integrating equation-(7.3)

h

... p= ^dF ^xpgbdx ,
0

F =
pgbh'

...(7.4)



7.2.2 Average Pressure oh Side Wall

The absolute pressure on the side wall cannot be evaluated
because at different depths on this wall pressure is different.

The average pressure on the wall can be given as :

F
^av l,fj

1 pgbh 1 . ,
= 2-br = 2P^^ .-..(7.5)

Equation-(7.5) showsthat the averagepressure on side vertical
wall is half of the net pressure at the bottom of the vessel..

7.2.3 Torque on the Side Wall due to Fluid Pressure

As shown in figure-7.7, due to the force dF, the side wall
experiences a torque about the bottom edge ofthe side which is
given as: \ - • - > ^ • •

dx = dF>^{h~x)

= xpgbdx(h~x)

h

Thus net torque is x=J* i/x =J*pgb'(hx- dx

^Pgb

-.0' .

2 3

- -g pgbh^ '...(7.6)

7.2.4 Force on the Side Walls of a Random Shaped Vessel

Ifwe consider a vessel shown in figure-7.8(a), which has a flat
bottom and the side walls are random in shape. In this case the
pressure on the bottom will be hpg, as it depends only on the
height of the top surface. So the force on the bottom will be
given as :

F —hpg X'S" —normal reaction on the bottom

This force will obviously be less then the vveight of the liquid
filled in it as this will be equal to the weight of the liquid if the
vessel is cylindricalinshape withbottom of samearea as shown
infigure-7.8(b). Inpresentcaserestof theweightof the liquidis
balancedby the vertical component of the contactreactionF^
on the side walls as shown in figure-7.8(c).

area =5

(b)

Figure 7.8

'area - S

(c)
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7.5 Archimedes Principle

In the kingdom ofSyracuse, King Hiero asked Archimedes to
determine the actual composition ofthe kings crown, which as
supposed to be ofpure gold. Archimedes was ordered to do so
without damaging the crown. For this he was inspired by the
concept he found as he lay partially submerged in his baths on
getting into the tub, he obseiyed that the more his body sank
into the tub, the more water ran out over the top. He jumped
out of the tub and rushed through, the streets naked, shouting
loudly "Eureka". The statement ofArchimedes principle says

."A bodywhethercompletely orpartially submergedinaJluid,
is buoyed upward.by aforce that is equal to the weight ofthe
displacedfluid". , , . . . ,

How this principle allowedArchimedesto solve the problem of
.the king's crown,- we'll see in examples later.

The above principle can be easily obtained by a simple
mathematical analysis of finding force on a submerged body.
For this let us consider a cylindrical block submerged in a
container filled with a liquid,as shown in figure-?.9. The top
surface ofthe cylinder is at a depth I below the free surface of
the liquid thus net force F^ on the top surface of cylinder (in
downward direction) can be given as

F, = pressure of liquid x S

= /pgx,S' [p = density of liquid] ...Q.l)

Figure 7.9 "

Similarly at the bottom surface the force F.^ on cylinder (in
upward direction) can be given as ,
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= pressure of liquid at point near bottom x S The force exerted by the mercury on the bottom

= (/ + /i)pgx6' ...(7.8) =(1.136 xl05N/m2)x (3.14x0.04mx 0.04m)

Here we can see that all the forces acting on cylindrical surface
are horizontal and acting in radially inward direction all ofwhich

gets cancelled out. Thus net force on the cylindrical block is in
upward direction and is given as

-{l + h)^gS~lpgS,

= hpgS ...(7.9)

= weight ofthe liquid displaced.

This upward force on cylinder due to the surrounding liquid is
the buoyant force and is equal to the weight of the liquid in the
volume displaced by the object. If we replace this cylinder by
another cylinder of same size but of different material. The

buoyant force remains the same. It depends only on the volume
of the submerged object not on its mass or density. In above
example ifblock is made of aluminium and liquid is water we
can say that as aluminium is denser then water and the weight
of cylinder is more then the buoyant force on it given by
equation-(7.9) so it sinks to the bottom but if liquid used is
mercury which has a greater density then that of aluminium
then in this case the buoyant force on block is more then that
of its weight and block will move up and will start floating.Hot
air balloons,fiimish anotherexampleofArchimedes principle.
They float in air and because hot air density is less then the
normal atmosphericair.A similarexamplecan be seen for large
ships, which float on water even through they are made of
steel and carry dense objects, because the water is displaced
by the submerged part of the ship.

# Illustrative Example 7.1

A beaker of circular cross-section of radius 4 cm is filled with

mercury upto a height of 10 cm. Find the force exerted by the
mercuryon the bottom ofthe beaker.The atmosphericpressure
= lO^N/m^. Density ofmercury= 13600 kg/m^. Takeg= 10 m/s^.

Solution

The pressure at the surface = atmosphericpressure = 10^N/m^.

The pressure at the bottom

^ 10^ N/m^ -1- hpg

-105N/m2+(0.1m) |̂ 13600-^j |̂ 10-^j
= 105N/m2 + 13600N/m2

= 1.136 X lO^N/m^

=571N

# Illustrative Example 7.2

A cubical block ofiron 5 cm on each side is floating on mercury

in a vessel.

(i) What is the height of the block above mercury level ?
(ii) Water is poured in the vessel until it just covers the iron
block. What is the height ofwater column.
Density ofmercury= 13.6gm/cm^.,
Densityof iron7.2 gm/cm^

Solution

Case-I: Suppose Abe the height ofcubical block ofiron above

mercury.

Volumeofironblock=5 x 5 x 5 = 125 cm^

Mass ofiron block =125x7.2- 900 gm

Volume ofmercury displaced by the block

= 5x5x(5-A) cm^

Mass of mercury displaced

= 5x5 (5-A) X13.6 gm

By the law floatation, weight ofmercury displaced = weight of
iron block i,

5x5(5-A) X13.6=900

or
25x13.6

A = 5—2.65 = 2.35 cm

Case-II: Suppose in this case the height ofiron block in water
be X. The height ofiron block in mercury will be (5 - x) cm.

Water

'Mercury 'Mercu^.

(a) (b)

Figure 7.10
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Mass of the water displaced

= 5 X5 X(x) X1

Mass of mercury displaced

^5"x5x(5-;c)x 13.6

So, weight of water displaced + weight of mercurydisplaced =
weight ofiron block

or 5 X5 x^x 1+5 X5 X5 x(5-x) X13.6=900

or ;c= (5-x)x 13.6 = 36

Solving we get x = 2.54 cm

# Illustrative Example 7.3

A tank containing water is placed on a spring balance. A stone
of weightw is hungand loweredinto thewater withouttouching
the sides and the bottomof the tank. Explain how the reading
will change.

, . , •//////////.

Solution

The situation is shown in figure-?-.11.
Make, free-body diagrams of the bodies
separately and consider their equilibrium.
Like all other forces, buoyancy is also
exerted equally on the two bodies in
contact. Hence if the water exerts a

buoyant force, say,B onthe stoneupward,
the stone exerts the same force on the

water downward. The forces acting on the
'water,+container'system are: weight Figure 7.11
of the system downward, B, buoyant force of the stone
downward; and the forceR of the springin the upwarddirection.
For equilibrium

R = W+B

Thus the reading of the spring scale will increaseby an amount
equal to the weightofthe liquid displaced,diat is, by an amount
equal to the buoyant force.

# Illustrative Example 7.4

A cylindrical vessel containing a liquid is
closed by a smooth piston of mass m as
shown in the fIgure-7.12. The area of

cross-section of the piston is A. If the
atmospheric pressure is P^, find the
pressure of the liquid just below the
piston.

Figure 7.12

435

Solution

Let the pressure of the liquid just below the piston be P. The
forces acting on the piston are
(a) its weight, mg (downward)
(b) force due tothe airabove it,P^A(downward)
(c) force due to the liquid below it, PA (upward).
Ifthe piston is in equilibrium,

PA=P.A + mg

or P=P +!ni.
^ ^0^ A

# Illustrative Example 7.5

A rubber ball ofmass m and radius r is submerged in water to a
depth h and released. What height will the ball jump up to
above the surface ofthe water ? Neglect the resistance ofwater
and air. Take water density p.

Solution

Let the ball go up by x above the level of water. Let us now
consider energy conservation between the initial and final

positions. In both the positions kinetic energy of the body is
zero. The potential energy in the first position with reference to
thewaterlevelis- mghplustheworkdonebyanexternalagent

'4 3.against the buoyant force which is JKwhere pis the
density of the water.

or

x =

-mgh+ I ]h= mgx

4 3jnr p-m

m
xh

UIllustrative Example 7.6

A cube of wood supporting a 200 g mass just floats in water.
When the mass is removed, the cube rises by 2 cm. What is the
size of the cube ?

Solution

If, / = side of cube, h = height of cube above water and
p = density of wood.

Mass of the cube ^^.9

Volume of cube in water =P-{l~h)

Volume ofthe displacedwater = P-{I-h)x I

As the cube is floating

weight of cube + weight ofwood = weight of liquid displaced
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or Pp + 2QQ = f{l-h) ..:(7.10)

After the removal of200 gm mass, the cube rises 2 cm.

Volume of cubein Nvater =/^x {/-(/z + 2)}

or /2x{/-(ft + 2)}-/3p ...{7.11)

Substituting thevalue of p from equation-(7.11) ineqiiation-
(7.10), we get

{^{l-{h+T}}+2m = f{l-h)

or /3-/2/i-2/2 + 200-/3-/2/j

2/2=200 " " •

. /= lbOcm • , ,

# Illustrative Example 7.7

A boat floating in a water tank is carrying a number of large
stones. If the stones were unloaded into water, what will happen
towaterleyel,?,Givethereasoninbrief. , . • . .

Solution • .,

Suppose W and w be the weights of the boat and,stones
respectively.

' I I , ' ' •

First, we consider that the boat is floating. It will displace
(If+ w) X1 cm^ ofwater.

Thusdisplaced water=( If + w)cm^
[As density ofwater = 1gm/cm^]

Secondly,we consider that the stones are unloaded into water.

Now the boat displaces only Wx 1 cm^ of water. If p be the
density of stones, the volume of water displaced by stones

= w/pcm^
« r ' . *

As p > 1, hence w/p < w, thus we have

Now (If+ w/p) <(lf+w)

This shows that the volume of water displaced in the second

' case is less than thevolume ofwater displaced in the first case.
Hence the level ofwater will come down. , . . . •

Illustrative Example 7.8

Two solid uniform spheres each of radius 5 cm are connected
by a light string and totally immersed in a tank of water. If the
specific gravities ofthe sphere are 0.5 and 2, find the tension in
the string and the contact force between the bottom ofthe tank
and the heavier sphere. ' - . . - i

Solution

The situation is shown in figure-7.13

Fluid Mechanics^

Figure 7.13 . . '

Let the volume ofeach sphere be Vm^ and density ofwater be
pkg/m^ . ,

Upwardthrust on heaviersphere=Vpg'

Weightofthe heavier sphere = f x 2 x p g

For heavier sphere,

- f+/?+fpg=fx2xpg - • ...(7.12)

Where R is the reaction at the bottom.

Similarly for lighter sphere

r+fX0.5 Xpg= f pg ...(7:13)

Subtracting equation-(7.13) fromequation-(7.12), wehave

R+ 0.5Vpg=V'pg --.(^.H)

or. /2= 0.5fpg ...(7.15)

From equation-(7.13)

r=0.5 Vpg

=0.5x (^-ix3.14x5^xl0^j xl000x9.8
=2.565 N

Similarly " /?=2.565 N

Illustrative Example 7.9

A rod of length6 m hasa mass of 12kg. If it is hingedat oneend
at a distance of 3 m below a water surface, •

(i) What weight must be attached to other end of the rod so
that 5 m of the rod is submerged ?
(ii) Find the magnitude and direction of the force exerted by
the hinge on the rod. The specific gravityofthe material of the
rod is0;5.
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Solution

Let AC be the submerged part of the rod AB hinged at A as
shown in figure-7.14. G is the centre ofgravity ofthe rod and G'

is the centre ofbuoyancy through which force ofbuoyancy
acts vertically upwards.

Water

Surface

Hinge

Figure 7.14

Since the rod is uniform,

The weight ofpart./4C will be , .

•|xl2 =10kg
[Because AB = 6m and ^4 C=5 m]

The buoyancy force on rod at G' is

Fg==20 kg weight •

(i) Let Xbe the weight attached at the end B. Balancing torques
about we get

W>^AG+xxAB=F^xAG'

12x3+xx6=20x(5/2)

Solving we get x = 2.33 kg '

[As ^G'=5/2m]

(ii) Suppose R be the upward reaction acting on the hinge,
then in equilibrium position, we have

W+x=Fg + R

or R=W+x-F.
B

= 12 + 2.33-20

=-5.67 kg. wt.

Negative sign shows that the reaction at the hinge is acting in

the downward direction. The magnitude of the reaction is
5.67 kg. wt.

437 i

# Illustrative Example 7.10,.

A cylinder of area300cm^ andlength 10cmmade ofmaterial of
specific gravity 0.8 is floated in water with its axis vertical. It is

then pushed downward, so as to be just immersed. Calculate
the work done by the agent who pushes the cylinder into the
water.

Solution

Weightqf the cylinder,. . . - f

= C300x 10^)x(i0x l0-2)x800k^=2.4kgf ' '

Let Xbe the length ofthe cylinder inside the water. Then by the
law offlotation

2.4g = (300x 10-^xjc)x lOOOg

or x=0.08m

When completely immersed,

F^(buoyant"force) = (300 x 10^ x Q.J) x 1000 xg =3gN

Thus to immerse the cylinder inside the water the extemal agent
has to push it by 0.02 m against average upward thrust.

Increase in upward thrust = 3 g-- 2.4 g = 0.6 g N

Since this increase in upthrust takes place gradually from 0 to
0.6 g, we may take the average upthrust against which work is
done as 0.3 gN. ' -i- . •

or work done = 0.3 g x 0.02 = 0.0588 J

a Illustrative Example 7.11

A thin uniform rod oflength 21and specific gravity 3/4 is hinged
at one end to a point height HI above the surface ofwater, with
the other end immersed. Find the inclination ofrod in equilibrium.

Solution

The sittiation is shown in figure-7.15.

Water

Surface

•Figure 7.15

Hinge



Let the length of rod outside water is x and its cross-sectional

area is Here weight ofrod is

W=21Ay^dg ...(7.16)
[d = density of water]

Buoyancy force on rod at the centre of gravity of submerged
part is

F, = (2l~-x)Axdg .'..(7.17)

Let N be the upward force on rod by the hinge'then for
equilibrium ofrod we have

N+F^^W

or N= W-F
B

or = 2lAdg-{2l~x)Adg

= Adg ^l-2Ux

••Adg\x-~ ...(7.18)

Now as rod is also in rotational equilibrium, taking net zero
torque about point A, we have.

21-xFg X —-— cos a - IFx / cos a + 77x 2/cos a = 0 ...(7.19)

From equation-(7.16), (7.17) and (7.19), we have

-.2

or ^^^^^Adg- jMdg+2lAdg =0
or (2/-x)2-3/2 +4/|x-y| =0

or 4/2 + x2-4/x-3/2 + 4/;r-2/2 = 0

or = Q

or

or

,2-= P-

X = l

% 1Thus we have sin a =^ =-j or a=30°

# Illustrative Example 7,12

A piece of an alloy of mass 96 gm is composed of two metals
whosespecificgravitiesare 11.4 and 7.4. If the weight of the
alloy is86gminwater, find the mass ofeach metal inthealloy.

Solution

Supposethemassof themetalof specificgravity11.4bemand

Fluid Mechanics

the mass of the second metal of specific gravity 7.4 will be
(96-w).

m

11.4

96-m

cm-"

cm"*

m 96 —w

7.411.4

Volume offirst metal

Volume ofsecond metal

Total volume

Buoyancy force in water

Apparent "vrt. in water

m 96-m^ . ,
UA ~T^] weight

= 96-

According to the given problem,

96-
OT ^ (96 - m)

11.4r 7.4

m ^ (96 - w)
11.4 7.4

= 86

or
m , (96r.w)

11.4 7.4

Solving we get, m= 62.7gm

Thus mass of second metal is =96-62.7

= 33.3 gm
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Practice Exercise 7.1

(1) To what height should a cylindrical vessel be filled with a
homogeneous liquid to make the force withwhich the liquid
presses on the side of the vessel equal to the force exertedby
the liquid on the bottom of the vessel ?

[r]

(ii) A piece ofcopper having an internal cavityweighs 264 g in
airand221 g inwater. Findthevolume ofthecavity. Density of
copperis 8.8 g/cm^

[13 cm^]

(ill) A vessel full of water has a

bottomof area 20 cm^, top of area
20 cm^, height 20 cm and volume
halfa litre as shown in figure-7.16.

(a) Find the force exerted by the
water on the bottom.

20 cm^

Figure 7.16

20 cm
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(b) Considering the equilibrium ofthe water, find the resultant
force exerted by the sides of the glass vessel on the water.
Atmospheric pressure = 1.0 x 10^ N/m^. Density of water
=1000kg/m^ andg = 10m/s^.

[(a) 204 N; (b> 1 N upward]

Ov) A hollow sphere of inner radius 9 cm and outer radius 10
cm floats half-submerged in a liquid of specific gravity 0.8.

Calculate the density of the material of which the sphere is
made. What would be the density ofa liquid in which the hollow
sphere would just float completely submerged ?

[1.476 gm/cm^; 0.4 gm/cm^]

(v) Apiece of gold weighing 36 g in air, weighs only 34 g in
water. If in this piece some copper is mixed with gold, find the
amotmt ofcopper in it. Specific gravity ofgold is 19.3 and that
ofcopper is 8.9.

[2.225 g]

(vQ In previous problem if the piece is made ofpure gold with
some air cavities in it. Calculate tlie volume ofthe cavities left

that will allow the weights given in that problem.

[0.135 cm^]

(vU) A flat bottomed thin-walled glass tube has a diameter of
4 cm and it weighs 30 g. The centre ofgravity ofthe empty tube

is 10 cm above the bottom. Find the amount of water which

mustbe pouredintothetubeso thatwhenit is floating vertically
in a tank of water, the centre of gravity of the tube and its
contents is at the midpoint ofthe immersed length of the tube.

[110.53 g]

(vlii)AuniformrodA5,4mlongandwei^iing 12kg,is supported
at end A, with a 6 kg lead weight at B. The rod floats as shown
in the figure-7.17 with one half to its length submerged. The
buoyant force ontheleadmass isnegligible as itis ofnegligible
volume. Find the tension in the cord and the total volume ofthe

rod.Takeg= lOm/s^.
• • /-//XX

Figure 7.17

[20 N, 3.2 X 10-2 jn3]

(Ix) Water stands at a depth /fbehind the vertical face ofa dam
and exerts a certain resultant horizontal force on the dam tending

to slide it along its foundation and a certain torque tending to
overturn the dam about the point O. Ifthe total width ofthe dam
is L, find (a) the total horizontal force (b) the total torque about

O and (c) moment arm of the resultant horizontal force about

the line through O.

[(a) ^pgLlfi; (b) -^pgLH^; (c) —]

(x) The density of air in atmosphere decreases with height

and can be expressed by the relation :

P =

where Pq is the density at sea-level, .<4 is a constant andh is the
height. Calculate the atmospheric pressure at sea-level. Assume
g to be constant.
(g=9.8 m/s^, Pq =1.3 kg/m^ and A=1.2^ 10^m~')

[1.06 X 105 N/m2]

7.4 Pascal's Principle

Some timeswhile dealingwith theproblems offluid it is desirable
to know the pressure at one point ifpressure at any other point
in a fluid is known. For such types ofcalculations Pascal's Law
is used extensively-in dealing of static fluids. It is stated as

"The pressure applied at one point in an enclosed fluid is
transmitted uniformly to every part of the fluid and to the
walls ofthe container."

For exampleif we considera closedvessel filledwitha liquid as
shown in figure-7.18. The pressure in the liquid at a point A at
a depth x from the top of the vessel is

Pa = ^PS

Now if we open the cork ofthe slight opening at the top surface
then atmosphere pressure will act on the fi^ee surface of the
liquid at the opening. Here according to Pascal's principle
pressure at point A now be given as

PA = P. + x^g ...(7.20)

(a)
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-a-

(b)

Figure 7.18

As at the opening O, pressure is acting, at each point
throughout the volume of liquid the pressure is increased by
the amount

One more example can be considered better to explain the
concept of Pascal's Principle. Consider the situation,shown in

figure-7.19, a tube having two different cross section 5'j and Sj,
with pistons of same cross sections fitted at the two ends.

m

Figure 7.19

If an external force is applied to the piston 1, it creates a
pressure = F^IS^ on theliquidenclosed. As thewhole liquid
is at the same level, everywhere the pressure in the liquid is
increased bypj. Theforce applied bytheliquid onthepiston2
canbe given asF^=P2 ^ andas the two pistons areat same
\tvQ\p^=Py Thus

~P2 ^ "^2

...(7.21)

Equation-(7.21) shows that by using such a system the force
can be amplified by an amount equal to the ratio of the cross
sections of the two pistons. This is the principle of hydraulic
press, we'll encounter in next.few pages.

I

7.4,1Pressure at the Different Levelsof a Liquid

Indifferent types ofnumerical problems, themajor difficulty is
due to the pressure determination at different points of the
givensituationof theproblem. In thissection, we'll discussthe
same.

Consider thesituation shown in figure-7.20(a), a U tube, filled
with equal volumes of two different liquids 1 and 2.
Psychologically the liquids should fill the tube in a way as

Fluid Mechanics

shownin figure-7.20(a) but practicallyit isnot, the real situation
is shownin figure-7.20(b). Why does thishappens? The answer
is simple if,we calculate.the pressures at the bottom of the U-
tube in the two cases.

In case-1, the pressure at the left of the bottom is'

i^= Po+ /Pig •

At the right pressure is

l-x

(a) (b)

Figure 7.20

If p2 > pj then P2 > P^ and-thejunction of the liquid cannot
remain in equilibrium, it will be displaced to the left as shorn
in figure-7.20(b). The displacementofthe junction is such that
the pressure on the two sides at every point must be same, then
only the liquid remains in equilibrium.

In figure-7.20(b), if x be the displacement of the junction, the
pressure at the bottom from the two sides must be same. Thus

now Pj = P2, here P^ andPj given as
i j ,

• P]=Po + /pjg + XP2g

P2^P0'^(^-X)P2S

Onequating Pj andP^, wegetthevalue ofx.

7.4.2 The Hydraulic Lift

Figure-7.21 showshowPascal's principlecanbe made the basis
of a hydrauliclift.In operation,let anextemalforceof magnitude
Pj be exerteddownward on the left hand inputpiston, whose
areaisSy It results a force Pj which willact onpiston2 by the
incompressible liquid in the device.

Here

And

F2=P2xS2

P2""PB-VSh
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Where h is the depth of the point A below the free surface of
liquidalongeffective gravityand istheatmospheric pressure

-j- acting on free surface of the liquid.

Figure 7.21 , .

Where is the pressure on the bottom ofthe device which can
be given as: • •

Thus

or

P2=Pi and F^=p^S2

If F2»F,

7.5 Pressure Distribution in an Accelerated Frame

We've already .discussed that when a liquid is filled in, a
container, generally its free surface remains horizontal as shown
in figure-7.22(a) as for its equilibrium its free surface must be
normal to grayity i.e. horizontal. Due to the same reason we
said that pressure at every point of a liquid layer parallel to its
free surface remains constant. Similar situation exist when liquid
is in an accelerated .frame, as shown in figure-7.22(b). Due to
acceleration ofcontainer, liquid filled in it experiences a pseudo
force relative to container and due to this the free surface of

liquid which remains normal to the gravity now is filled as
shown'in figure and normal to the direction ofeffective gravity.
Thus we can get the inclination"angle of free stirface of liquid
from horizontal as

e = tan"^ ...(7.22)

(a)

Figure 7.22

Now from equilibrium of liquid we can state that pressure at

every point in a liquid layer parallel to the free surface (which is
not horizontal), remains same for example ifwe find pressure at
a point in the acceleratedcontaineras shovvh in'figure-7.23(a)
is given as

= + -a23)

(a)

>/-

-.2>

(b)

Figure 7.23

The pressure at point A can also be obtained in an another way
as shown in figure-7.23(b). If /j and I2 are the vertical and
horizontal distances of point A from the free surface of liquid
then pressure at point .^4 can also be given as

+ + ...(7.24)

Here is the pressure at A due to the vertical height of
liquid above A and according to Pascal's Law pressure at A is
given as

P^ = P^ + l,pg

Herewe canwrite/j as

/, = /z sec 0 =
h-/a

g

or from equation-(7.25)

...(725)

Similarly ifwe consider the horizontal distance ofpoint A from
free surface of liquid, which is /j then due t5 pseudo
acceleration of container the pressure at point A is given as

...(7.26)

Here L is given as

l2~b cosec 0 =



144^2^

From equation-(7.24), we have

Here students should note that while evaluating pressure at
pointA fromvertical directionwe haven't mentionedany thing
about pseudo acceleration as along vertical length /j, due to
pseudo acceleration at every point pressure must be constant
similarly in horizontal direction at every point due to gravity
pressure remains constant.

Using the above concept we can write pressure equations for
a static fluid. These pressure equations are very helpful in
solving numerical examples..

To understand the concept of pressure equations, consider
the example shown in figure-7.24. Two different liquids of
densities and p2 of column length / are poured in the two
arms of the U-tube with base length . Here we wish to find
the difference in the free levels of the liquids h. Figure shows
the equilibrium state of the two liquids in the U-tube. In this
case h is given as

Ih={Hx)-{^-x)

= 2 +2x. ...{121)

Now to find X, we start from point A where pressure is
atmospheric pressure now the pressure at point B can be
given as

liquid-2
{density = P2)

-^)92g = PB ...(7.28)

liquid-l
{density = pj)

Figure 7.24

As points B and C are at same horizontal level pressure at
point B and C must be same, thus

...(7.29)
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Nowpressure at pointD is less thenthat at point C by jrPjg,
thus pressure at point D can be given as

^0-^(2 P2S-xp2g=Pi ...(7.30)

Similarly wecanwrite pressure at point E which isPqas

Po +(j -x) p2g-xp2g-lpig =Po ...(7.31)

Here equation-(7.31)is called as pressure equationof the liquid
in equilibrium from point ^ to ^ through the liquid columns
thus on solving, we get

h = 2x =
% + p2)

Pi
...(7.32)

7.5.1 Pressure Distribution in a ClosedAccelerated Container

Consider the situation shown in figure-7.25. A closed tank car
filled with water is accelerating on a horizontal track with an
acceleration a. In this situationthe constantpressurelayers of
liquid are inclined at an angle 0=tan"' (^) with horizontal. In
the body of the whole liquid, the least pressure point is P (as
we've discussed). If container is completely closed then P can
be takenas a zeropressurepoint. If wewishto findpressureat
a generalpoint.^ at a depth h belowthe top surfaceofcontainer
and at a distance I from the right wall ofcontainer, then this can
againbe obtaineddirectlyby writingpressure equationfor the
liquidwithrespect to tankcar from pointPtoA through point
M. If can be written as

or

0 + hpg+ lpa = P^

...(7.33)

1 >1^

M

m
yTTTTTTTTTTT^WTTTTTTTTTTTTTTTTTT^ZTTTTTTTTTTTTZ.

Figure 7.25

Thus we can simply get the pressure at point A as discussed
by using pressure equation in a static fluid.

# Illustrative Example 7.13

The liquids shown in figure-7.26 in thetwo arms aremercury
(specific gravity= 13.6) andwater. If thedifference ofheights of
the mercury columns is 2 cm, find the height h of the water
column.
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Figure 7.26

Solution

Suppose the atmospheric pressure =

Pressure 2LtA=P^ + h (1000) g

Pressure dX.B =P^+ (0.02 m)(13600)g

These pressures are equal asA and B are at the same horizontal
level. Thus,

A=(0.02m)I3.6
I • . .

= 0.27m=27cm

Illustrative Example 7.14

A liquid ofdensity p is filled in a beaker ofcross-section 5" to a
height H and then a cylinder of mass m and cross-section s is
made to float in it as shown in figure-7.27. If the atmospheric
pressure is fmd'the pressure (a) at the top face A of the
cylinder(b) at the bottomface C of the cylinderand (c) at the
base B of the beaker. Can ever these three pressurebe equal ?

iCyUniim

H

-

Figure 7.27

Solution

(a) Above the cross-section A there is external pressure due
to atmosphere only.

So P^ = Atmospheric pressure-
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alsodueto theweight of the cylinder, i.e.,

Pc=Po+-f-
If thesystem is in freefall (as in a satellite), g 0,

Pa ""Pc ^Pb^Po [Asweight = 0]

a Illustrative Example 7.15

The area ofcross-section of the two arms ofa hydraulic press
are 1cm^ and 10 cm^ respectively (Figure-7.28). Aforce of5Nis
applied on the water in the thinner arm. What force should be

applied on thewater in the thicker arm so thatthewater may
remain in equilibrium ?

5N

Figure 7.28

Solution

In equilibriiun, the pressure at the two surfacesA and B should
be equal as they lie in the same horizontal level. If the
atmospheric pressure is P and a forceF is appliedto maintain
the equilibrium, the pressures are

SN

We have

This gives

P = P +

P = P +

^ " 10cm^

Pa =Pb

P'=50N

Icm^

F

UIllustrative Example 7.16 '

An open U-tube of uniform cross-section contains mercury.
When 27.2 cm ofwater is poured into one limb ofthe tube, (a)
how high does the mercury rise in the other limb from its initial
level? (b) What is the difference in levelsof liquidsof the two
sides? (p^ = 1and =13.6 units)

Solution

(b) At the point C the pressurewill be due to atmosphere and The situationis shownin figure-7.29.
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D

A

T
. Z

B' j
B h.

C
1

Figure 7.29 ' ' • '

(a) If water depresses the mercuryby y, the mercury in the
other limb will rise by y above its initial level (as fluids are
incompressible), so that from figure-7.29 ' • ' • • " •'

h2 = 2y

Now if is the height of water column above Athen as in a
liquid, pressure is same at all points in the same level:

Pa-=Pc'

or h^p^ = h2p2,

or

or

Po ^iPl^ = ^2^'

27.2 X1=2>'X 13.6

Whichon solutiongivesy = 1 cm, i.e., mercuryrises by 1 cm
from its initial level.

(b) The difference oflevel on two sides

z= /ij- /i2 = 27.2-2x 1= 25.2cm,

i.e., thewaterlevel willstand25.2cmhigher thanthemercury
level in the other limb.

UIllustrative Example 7.17

Find the tension in the string holding a solid block of volume
1000 cm^ and density 0.8 gm/cm^ dipped inliquid and tied tothe
bottom ofacontainer filled withliquid ofdensity 1.2gm/cm^ as
shown in figure-7.30.
(i) When container is moving upwards with an acceleration
4.9 m/s^.

(ii) When container is stationary..

Figure 7.30
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Solution

(i) In the container as accelerating upward, we can consider
effective gravity as

' SefrS +a ...(7.34)

Figure-7.31 shows the free body diagram of block relative to
container

Fb

T

Figure-7.31

Here buoyant force on block can be given as

Fb= —
^ P.

•..:(7.35)

Here and are the densities of solidand liquidrespectively.
Now for equilibrium ofblock relative to container,we have from

equation-(7.34) and (7.35)

or

FB= mig + a) + T

— Piig-^a)=m{g+a) + T
Ps •

...'(7.36)

If Vbe thevolumeof containerwe havefromequation-(7.36)

'ypi(s + ^)= Vp,(g +ci) + T

or T=(pj-p^)V(g + a) ...(7.37)

= (1.2-0.8) X1000X(980+ 490)

= 5.88x 105 dyne

= 5.88N

(b) Ifcontainer isatrest, from equation-(7.37) tension instring
can be given as

T-ip,-Ps)^S

, -(1.2-0.8)x I00.x980 = 3.92x 105dyne = 3.92N .

a Illustrative Example 7.18

Length ofa horizontal arm ofa U-tube is L and ends ofboth the

vertical arms are open to atmospheric pressure Pq. Aliquid of
density p is poured in the tube such that liquid just fills, the
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horizontalpart of the tube as shownin figure-7.32(a). Now one
end of the opened ends is sealed and the tube is then rotated
about a vertical axis passing through the other vertical arm with
angularspeed cOq. If lengthof each verticalarm is a and in the
sealed end liquid rises to a height^, find pressure in the sealed

tube during rotation.

Solution

When tube is rotated, liquid starts to flow radially outward and
air in sealed arm is compressed. Let the shift of liquid be y as
shown in figure-7.32(b).

Let the cross sectional area of tube be S. Here the pressure

difference between point A and B can be given by integrating
the pressure difference across an element ofwidth dx, which is
given as

dP = dxp a?- X

Now integrating from^ to B, we get
L

_ pco

(b)

Figure 7.32

Thus pressure at point C can be given as

Pc = PB-yPS

and at point A, pressure is atmospheric, thus we have

Po-ypg

:4:4&:

# Illustrative Example 7.19

Two identical cylindrical vessels with their bases at the same

level, each contain a liquid ofdensity p. The height ofthe liquid
in onevessel is andthatin theothervessel is h^. Theareaof
either base isA. What is the work done by gravity in equalizing
the levels when the two vessels are connected ?

Solution

The initial situation is shown in figure-7.33(a).

±

(a)

T

h^+ ^2
, 2
1

1 .

(b)

Figure 7.33

Initial potential energy of the system is given as

(/i,^p)g+ y {h^Ap)g=Ag^ ht +hi

Where h^H and ^2^2 are the centre of gravity or columns of
height /ij and respectively.

The final potential energy of the system in the situation shown
in figure-7.33(b) when the two level becomes equal is given as

h\-k-,hi

Here final centre ofgravity will be at a height

/?] + ^2
^Pg

+/?2

h\ + hi

Ap

The change in potential energy or work done by gravity is
given as :

,' ^1 + /?2 ,(r=(7^-^=i-hr^| Apg- ^ Pg
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Apg
2

{h-h,r

Negative sign shows that work is done by gravitational field on
the liquid.
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Practice Exercise 7.2

(1) A rubberballof mass10gmandvolume 15cm^ isdippedin
water to a depth of 10m. Assuming density of water uniform
throughout the depth if it is released from rest. Find (take
g^=9.8m/s^)

(a) the acceleration of the ball, and

(b) the time taken by it to reach the surface.

[4.9m/s2; 2.02s]

(li) Figure-7.34 shows a E-shaped tube in which a liquid of
density p is filled. Find with what acceleration the tube is

accelerated toward right so that no liquid will fall out of the

tube.

m

Figure 7.34

[^1
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Figure 7.35

[(a) 24 N, (b) 12 in/s^(upward)]

(iv) A closed tank filled with water is mounted on a cart. The

cart moves with an acceleration' a' on a plane road. What is the

difference in pressure between points B & A shown in

figure-7.36?

A

^^777777777^7/.7777777777777777777777777777777777/.

Figure 7.36

[{hg + aOp]

(v) A rough surfaced metal cube ofsize 4 cm and mass 100 gm
is placed in an empty vessel. Now water is filled in the vessel so
that the cube is just immersed in the water. Find the average

pressure on the bottom surface of vessel which is in contact

withthecube. Take g = 10m/s^.

[1.00625 X 105 Pa]

(vi) A U-tube of length L contain liquid. It is mounted on a
horizontal turn table rotating with an angular speed co about
one of its arms as shown in figure-7.37. Find the difference in

heights between the liquid columns in two vertical arms.

(iii) A solid sphere ofmass w = 2 kg and specific gravity 5= 0.5

is held stationary relative to a tank filled with water as shown in
figure-7.35. The tank is accelerating vertically upward with
acceleration a = 2 m/s^.

(a) Calculate tension in the thread connected between the

sphere and the bottom of the tank.

(b) If the thread snaps, calculate acceleration of sphere with
respect to the tank.Takedensity of water is p = 1000kg/m^ and
g=10m/s^. [-

2g

Figure 7.37



(viQ A closed tube in tlie formof an equilateral triangleof side I
contaii^ equal volumes ofthree liquids which do not mix and is

placed vertically with its lowest side horizontal. Find the value
ofx in the figure-7.38, if the densities ofliquids are in arithmetic
progression.

E • X

Figure 7.38

[X = //3]

(viii) For the system shown.in the figure-7.39, the cylinder on
the left at L has a mass of 600 kg and a cross sectional area

of 800 cm^. The piston on the right, at 5", has cross sectional
area25 cm^ andnegligible weight. If theapparatus isfilled with
oil (p = 0.75 gm/cm^) Find the force F required to hold the
systeminequilibrium. Takeg= lOm/s^.

8m

Figure 7.39

[37.5 N]

7.6 Fluid Dynamics

Up to now, we have studied only fluids at rest. Let us now
study fluids in motion, the subject matter of hydrodynamics.

The study of fluids in motion is relatively complicated, but the
analysis can be simplified by making few assumptions. We
discuss the motion of an ideal fluid instead ofreal fluid, as it is

simpler to handle mathematically. Although our results may not
fully agree with the nature of real fluids but these will be close
enough to be useful. We'll make foiir assumptions for the ideal
fluid, these are:

1. Streamline flow : It is also known as laminar or steady

flow in which the velocity ofthe moving fluid at any fixed point

does not change with time, either in magnitude or in direction.
For example the smoke rising from a cigarette, is steady initially
and as smoke rises, the speed of smoke particles increases and
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at a certain critical speed, the flow change its characteristics
from steady to turbulent.

2. Incompressible flow: We assume in our analysis that the

fluid is incompressible. That is, its density has a constant value.

3. Nonviscous flow: Viscosity ofa fluid is a measure ofhow

resistive the fluid is to flow. Basically it is a measurement of
friction between the flowing layers ofa fluid. For example, thick
oil is more resistive to flow than water. As in absence offnction

a block moves with a constant velocity, similarly in a nonviscous
fluid, a moving object will not experience any drag force due to
viscosity;

4. Irrotational flow: We assume that the flow is irrotational.

Means that the particles of fluid will not provide any rotational
motion to the uniform bodies moving along the fluid.

7.6.1 Representation ofStreamlines

The density of streamlines in representative diagram is more
where the velocity of the fluid is more. As shown in figure-
7.40(a), when water flows in a pipe line, at the bottom the velocity
ofthe layers is less as compared to the velocity ofthe particles
ofthe layer above some layers. Thus the stream lines are denser

at some height and rarer near the bottom. Unlike to this case, if

we consider the flow ofan ideal nonviscous fluid, as shown in

figure-7.40(b). The density ofstreamlines will remain constant
throughout the .volume.

(a)

(b)

Figure 7.40

7.6.2 Laminar Versus 'Rirbulent Flow

Let us examine how a fluid flows through a pipe. Friction forces
exerted on the fluid by the pipe wall tend to restrain the flow, as
do the viscous forces within the fluid. As a result, the fluid

close to the walls flows more slowly than that near the center of

the pipe. We show this effect in figure-7.41 (a), where the lengths
of the arrows indicate the magnitude of the velocity at various

positions in the pipe.
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Fluid velocity
(a)-

Streamlines

(b)

Turbulentflow
(c)

Figure 7.41

Another feature of flow through a pipe is shown in figure-
7.41(b). Suppose a tiny speck ofdust, like the one at point .4, is
flowing withthe fluid. If the flowrate is low, the speckfollows
thelineshown as it moves through thepipe. Otherspecks, and
the fluid as well, follow similar smooth lines. We call these'flow

lines streamlines, and this is called streamline, or laminar,
flow. Inlaminar flow, eachelementof thefluid follows arepeatable
streamline.

If the speed of the fluid becomes high enough, the flow lines
begin to behave erratically.At any instant, the flow lines may
look like those in figure-7.41(c). An instant later, the lines will
take another form. This situation, in which the flow lines are

contorted and vaiy widely with time, is called turbulent flow.

As you might guess, friction (or viscous) energy- losses are
nearly always larger in turbulent flow than in laminar flow.

Turbulence causes rapid, chaotic,motion that in turn increases
distances moved and friction losses. Because ofthis, turbulence
is to be avoided iffriction losses are to be minimized. Automakers

wish tominimize turbulent airflow aroimd their cars, forexample
(Figure-7.41). Ameans forpredictingwhenturbulence occurs
has obvious practical importance.

Although turbulence is very difficult to treat mathematically,
there is a unifying concept that simplifies the situation.
Experiment shows that flow changes from laminar to turbulent
whena criticalvalueis reachedforwhatis calledtheReynolds
number-TV^, a dimensionless constantgivenby L,.,

pvD
• •• •".:.(7.38)

for a fluid with density p, viscosity ri, and speed v flowing
through apipe ofdiameterD.IfN^ exceeds about 2000, the flow
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usually becomes turbulent. This is not a precise rule because
careful design can postpone the onset ofturbulence. Reynolds
numbers'of40,000 havebeen achievedfor special laminarflow
systems. (Bquation-7.38)' is also' applicable to a sphere of
diameter D moving through a fluid. In that case, however, the
critical value for is about 10.)

Despite its lack of precision, the critical value of2000 is very
useful, as is the Reynolds number itself. For example, two
systems, one of which is a scale model ofanother, give rise to
similar flow if is the same for both. Suchsystemsare said to
be dynamically similar. This concept forms the basis for small-
scale wind tunnel tests offlowpatterns around cars and planes.
The flows are similar if v is increased by the same factor by
whichD is decreasedbecause remains unchanged.;

7.6.3 Equation ofContinuity . <'•

This equation defines the steady flow of a'fluid in-a tube. It
states that if flow,of a fluid is steady then the mass of fluid
entering per.second at one end is equal to the mass of.fluid
leaving per second at the other end.

Figure-7.42 shows a section of a tube in which at the ends, the
cross sectional areas areA^and andthevelocity of the fluid
are Vj and V2 respectively.

Figure 7.42

According to the equationof continuity, if flow is steadymass
of fluid entering at endAj persecond = mass of fluid leaving
the endA2 per second

• • \In time di the fluid enters a distance Vj dt at end Aj so the
volume entered in time dt is dV = Vj dt and the volume
entered per second is' '

dV .
• —r- ^A.v.dt ' '

Hence mass entering per second at^j is=y4,Vjp r-. ! . •

Similarly mass leaving per second atA2 is=^2^2P

According to the definition ofsteady flow- • • •

, . ^iViP = ^2V2P _ .

or - •^,v,=^2^2 ' - T'..(7.39)-
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Equation-(7.39) isknownas equation ofcontinuity, whichgives
that in steady flow the product of.
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7.7 Bernoulli's Theorem

It is a basic consequence of energy conservations principle
for a flowing fluid. It relates the variables describing the steady
laminar flow of a fluid, assuming the fluid is incompressible
and non viscous. The analytical result ofthe theorem is called
Bernoulli's equation and it describes the relationship of fluid
pressure, velocity and height as it moves along a pipe or in a
tube of flow.

Figure-7.43 shows a fluid flowing smoothly from region A to
region B. The situation shown in figure shows that a fluid is

flowing in a pipe with cross sections at end A and B but it need
not be constrained to a real pipe, let us consider an example of
water flowing in a river. Ifwe draw all ofthe streamlines within
a portion ofwater similar to figure-7.42 from region A to region
B this.portion we call tube of flow.

B

Stream lines

Tube offlow

Figure 7.43

Now to establish a relation among the variables consider the

tube offlow shown in figure-7.44. Here we apply work energy
theorem for a small portion (volume AV) of fluid. Let fluid is
flowing ina streamline manner withspeedVj andVj at theends
A and B of the tube of flow. The pressure and areas of cross
sections at endsA andB are P.^,A^ andP2» ^2 respectively. If
AP"volumeoffluid enters into the tube at end .4 where pressure
isP, thenthe workdone in thisdisplacement at isPj AV. At
the same time, the same amount of fluid (volume AV) moves
out of the tube at endB.The work done in this case is - Pj ^ R-
Here negative sign indicates that the element of fluid at region
B moves against the force due to the pressure of the fluid to
its right. The work done by gravity in the net motion of fluid
fromregionAto region5 is- {h^-h^). Thusnetworkdone
is

449

JV= P^AV-PjAV-pAVg{h2~h^ ...(7.40)

BA2 AV

Figure 7.44

According to work energy theorem, we know this work must
be equal to the change in kinetic energy of the flowing fluid
from region A to region B. Thus we have

or

=I pvl +pgh2 +P2

^(pAV)v^~j(pAV)vf

= P,AV-P2AV- (pAV) g (h2 - h,)

\ pvf+ pg/?i+Pi

...(7.41)

Here by observing equation-(7.41) we conclude that the sum

ofthese three terms is constant for all cross-sections for a tube

offlow in streamline flow ofa fluid. The three terms are called

kinetic energyperunitvolume (pv^), gravitational potential
energy per unit volume (pgh) and pressure energy per unit
volume (P) of the flowing fluid. Thus for any cross-section,

sum of the three remains constant as

y pv^ +pgh +P= constant ...(7.42)

This equation-(7.42) is called Bernoulli's equation, for the
steady, non viscous flow of an incompressible fluid. Under
these conditions, Bernoulli's equation expresses conservation
ofenergy in a flowing fluid.

If we consider a horizontal tube of flow then for two points in

it we can write Bernoulli's equation as

P + -y pv^ = constant ...-(7.43)

Which implies that for such points there is a trade offbetween
"speed and pressure. If speed is high pressure will be low and
vice versa.
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approximately midway between the wind direction and the
boat's axis as shown. The force ofthe wind on the sail plus the
Bernoulli's effect, acts nearly perpendicular to the sail. This
would tend tomake the boat move sideway butthe keel beneath
prevents this for the water exerts a force on the keel nearly
perpendicular to it. The resultant of thesetwo forces is almost
directly forward shown.
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There are several examples tothis concept as follows :

The pressure in the air blown at high speed across the top of
the vertical tube ofaperfume atomizer (figure-7.45a) is less
than the normal air pressure acting on the surface ofthe liquid
in the bowl; thus perfume ispushed up the tube because ofthe
reduced pressure at the top.

Aping pong ball can be made to float above ablowingjet ofair
(figure-7.45b), ifthe ball begins to leave the jetofair, the higher
pressure outside the jet pushes the ball back in.

Airplane wings and other airfoils are designed todeflect the air
so that although streamline flow is largely maintained, the
streamlines are crowded together above the wing (figure-7.45c).
Just as the flow lines are crowded together in apipe constriction
where the velocity is high, so the crowded streamlines above
the wing indicate the airspeed isgreater than below and thee
is thus anet upward force; this is called dynamic lift. Actually,
Bernoulli's principle is only one aspect of the lift on awing.
Wings are usually tilted slightly upward so that air striking the
bottom surface is deflected downward; the change in momentum
ofthe rebounding air molecules results in an additional upward
force on the wing. Turbulence also plays an important role; for
example, ifthe wing istilted upward too much, turbulence sets
inbehind the wing with a consequent loss oflift.

7.5 NumericalApplications ofBernoulli's Theorem

There are several different cases in which Bernoulli's Equation
can be applied but the major problem in the numerical problems
is the selection of the points in the given situation where
Equation is to be applied. We'll discuss several examples and
applications concerned which will help you to select the points.

7.8.1 Pilot'Ribe

It is a device used to measure flow velocity offluid. It is a
shaped tube which can be inserted in a tube or in the fluid
flowing space as shown in figure-7.46. In the f/tube a liquid
which is immiscible with the fluid is filled upto alevel Cand the
short opening Mis placed in the fluid flowing space against the
flow sothat few ofthe fluid particles entered into the tube and
exertapressureonthe liquidin limbAof C tube.Dueto thisthe
liquid level changes as shown infigure-7.45.

Low Highp
P {noflow)

Mainsail

Keel

(c) (d)

Figure 7.45

Asailboat can move against the wind, (figure-7.45d) and the
Bernoulli effect aids in this considerably ifthe sails are arranged
so the air wlocity increases in the narrow constriction between
the two sails. The normal behind the mainsail is larger than the
reduced pressure in front ofitand this pushes the boat forward.
When going against the wind, the mainsail is set at an angle

Figure 7.46

At end B fluid is freely flowing, which exert approximately
negligible pressure on this liquid. The pressure difference at
ends^ and5 can be given bymeasuring the liquid level difference
h

If it is a gas, then



If it is a liquid of density p, then

Now ifwe apply Bernoulli's equation at ends^ and5 we'lhave

0+0+/'_^= y pv^ +O+Z'̂

or

Now by using equations-(-7.44), we can evaluate the velocity v,
with which the fluid is flowing.

NOTE: Pitot tube isalso used to measure velocityofaeroplanes
with respect to wind. Itcanbe mounted at the top surface ofthe
plain and hence the velocity of wind can be measured with
respect to plane.

In early 1920's such a device was also being used in ships to
measure the velocity of ships withrespect to seawater.

7.8.2 Venturimeter

Itis adevice used to measure velocity offluids (liquids only), in
pipe lines. This is a hollow tube with slightly narrow cross
section atthe middle, as shown in figure-7.47, itcan be inserted
in series with a flowing line.

•hpg ...(7.44)

45'1 I

Here pressure difference between points^4 andBcanbe evaluated
by measuring the height difference between the two pipes as

orfromequation-(7.45) y p -l\y^ =p^-p^ =hpg

or K =
2gh

I-
7.8.3 ToreceUi's Theorem

This concept is used to evaluate the velocity ofliquid flowing
out from a hole in a container.

The example can be taken as shown in figure-7.48; Iffrom the
surface ofthe liquid at adepth h, ahole is made ofsmall cross
section. The liquid will come out from this hole with some speed,
say V. To evaluate this speed, we apply Bernoulli's theorem at
two points Aand B, just inside and outside the hole.

At point Aas the cross-section ofthe vessel is large, we can
consider the velocity ofliquid particles close to zero and the
pressure atA is given as

P=P^ + hpg
A atm ^ ®

And atB the presstire is only atmospheric.

Figure 7.47

Let the liquid is flowing at arate fintube and the cross-sectional
areas of the two sections of venturi tube are A^ and A^
respectively. Thus the velocity vat the narrow section can be
given by continuity equation as

h

7^7^777^77§777777777777^^
Figure 7.48

Applying Bernoulli's Theorem at Aand B

or ' -C7-46)
/•

Equation-(7.46) is known as ToreceUi's Theoremand the velocity
with which liquid comes out, is called efflux velocity.

or

Here we choose points Aand Bfor Bernoulli'sApplication, just
below the two small pipes open in atmosphere. Due to less
cross section at A velocity of liquid is high and hence low.
pressure of liquid here. Thus liquid rises upto aless height in
this pipe ascompared to that atB.

atm

According toBernoulli's Theorem atAand B

±-n\4-V
•P I

This equation is used in problems concernedwith liquid draining
outfrom a vessel and in cases of conservation ofmomentum

...(7.45) (cases ofvariable mass).



1452;: '̂; '

7.8.4 Freely Falling Liquid

When liquid falls freely under gravity, the area ofcross section
of the streamcontinuously decreases, as thevelocityincreases.

Forexample, weconsiderwatercoming outfroma tap,asshown
infigure-7.49. Let its speed near the mouth oftap isVq and ata
depth h it is v, then we have

v2 = vl +2gh

T ii'i'i'i 0
iiiiiit

L IlKltl
" liUlil

Figure 7.49

If cross section of tap is A then according to the equation of
continuity, thecross section at pointM(say a) canbegiven as

VnA
or a =

Vvq +^8^

7.8.5Force ofReaction due to Ejection ofWater

Consideran example shownin figure-7.50. As thewatercomes
out from the vessel with some speed (generally ^2gh), ithas
some momentum,which was initially almostzero, when it is in
the container. This change in momentum is due to a force on
water ejecting in forward direction and the reaction ofthis force
must beexperienced bythe container and the liquid inside. If
the hole has a cross section ^and liquid iscoming with aspeed
given bythe equation-(7.46), the rate atwhich liquid comes out
is

p = .<4vp kg/s

Figure 7.50

Fluid, Mechanics J

The change in momentumper second i.e. the force is •

P={Avp)v

= /4v^pNt

UIHustfattVi^ Example 7.20

A watet pipe with internal diameter of 1 inch carries water at
floor of a house with velocity3 fl/sec and at pressure

IS lb/inch^. Another pipe of internal diameter 1/2 inch is
Connected to it and takes water to the first floor 25 feet above

groimd.What is the velocity and water pressure at first floor ?
, - I

Solution

According to Bemoulli*s theorem

Gis used for groufld afidF For first floor. Here hg =(i (reference
height)^ we get

According to continuity equation

From equation-(7.48),

Vf.=

Fromequation-(7i47)

, 71(0.5)^x3
Ap

= 12ft/S

7I(0;25)^

...(7.47)

...(7.48)

=25x144-1.94[^ (144-9)+32x25]

= 1917 lb/ft2= 13.3 lb/inch2

UIllustrative Example 7,21

Waterstands up to a height77in a tank, whoseside wallsare
vertical. Ahole ismade onone ofthe walls ata depth hbelow
the water surface. Find at what distance from the foot of the
wall does the emerging streamof waterstriketheiloor and for
whatvalue of h this rangeis maximum ?

Solution

Thesituation is shown in figure-7.51.
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H

T

h
t

, X ij

Figure 7.51

Here, we have = -y/(2g h),

and iH-h)=^gP
The distance x is given by

From equation-{7.50),

t =
2(H-h)

g

...(7.49)

...(7.50)

...(7.51)

...(7.52)

Substituting the value of from equation-(7.49) and the value
oft from equation-(7.52) in equation-(7.51), we get

;c=V(2g/i)xi/[2(^-A)/g]

or

or

1

= -(v|-vf)Py-Pi _ 1
P 2

= change in K.E. per kg mass,

or change in K.E. per kg mass ofoil

^1-^2

Substituting the given values, we have

Change in K.E. per kg mass

800

= 10-2 J/kg

# Illustrative Example 7.23
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Air is streaming past a horizontal aeroplane wing such that its
speed is 120m/s over the upper surfaceand 90 m/s at the lower
surface. If the densityof air is 1.3kg/m^ find the difference in
pressurebetween the top and bottom ofthe wing. If the wing is
10 m long and has an averagewidth 2 m, calculate the gross lift
of the wing.

•••C7-53) Solution

Therange;c will be maximum when =0

or =2 y (H-ky'̂ =0

Solving we get ' h=HI2

From equation-(7.53), substituting the value of h we get

x=2jfx[H-f 1=//

# Illustrative Example 7.22

In a horizontal pipe line of uniform area of cross section, the
pressure falls by 8 N/m^ between two points separated by a
distance of 1 km. What is the change in kinetic energy per kg of

the oil flowing at these points ? Density of oil is 800kg/m^.

Solution

According to Bernoulli's theorem,

Pj + Ypv2 = + y pV22 (pipe is horizontal)

According to Bernoulli's equation for a horizontal plane, we
have

I.e..

So

Now as

So

^ 1 2 ^ ^ 2
Pi+ 2 2

P\~Pi=\ 1.3 X(1202-902)
= 4.1 X10^N/m2

Gross lift = Ap'x-A

Gross lifl=4.1 x 103x(i0x2)= 8.2x lO'̂ N

^ Illustrative Example 7.24

In an experimental model of the venturimeter, the diameter of
the pipe is 4 cm and that of constriction is 3 cm. With water
filling the pipe and flowing at a certain rate the height of the
liquids in the pressure tube is 20 cm at the pipe and 15 cm at the
constrictions. What is the discharge rate ?



Solution

According to continuity equation
^lV,=^2Vj

16 V,
(ttX4)Vj = 7t (3/2)2 Qj.

The pressure at the cross-sections are

i'l =20 X1X980=19600 dynes/cm^

and P2^ 15 X1X980 = 14700 dynes/cm^

Using Bernoulli's theorem, we have

A 6Vi ^ _ 2 •
1-^1 - v2 =y (19600-14700)

Solving we get Vj =67.4 cm/s

Now discharge rate =i2=^j v,=4 7ux 67.4

= 847 cmVs = 847cmVs

# Illustrative Example 7.25

A nonviscousr liquidof constant density 1000 kg/m^ flows in a
streamline motion along a tube of variable cross section. The
tube iskept inclined inthe vertical plane asshown infigure-7.52.

' r

pf1
5m -

2m

Figure 7.52

The area ofcross-section of the tube at two points P and 0 at
heights of2 meters and 5 metres are respectively 4 x 10"^ m^
and 8 X10-3 ni2. The velocity of the liquid atpoint P is 1m/s.

'Find the work done per unit'volume by the pressure and the
gravity forces as theliquidflows from pointP to Q.

Solution

Asfluid is going upwork done perunitvolume is negative as

So
fdW\ _ dU
ydv)^ dv.

Fluid Ntechanicsj

r,Y P^(«2~^l)

=-2.94x lO^J/m^ ...(7.54)

For ideal fluid from equation ofcontinuity, we have

or ./4]V]=.^2^2

4^1 4x10"^ xl
So ^2 A, -k-3

^2 8x10"

Now as work done per unit volume by pressure,

(dW\ PdV „ ,
= "TF =-p=0i~-P2)

But by Bernoulli's theorem,

Px + \ 9^x "P2 +PSh +\ PV2
(dW\ 1

So , =iPx -P2) =PS (fj2 - + 2P^^2 -

Whichin the lightof equation-(7.53) and(7.54)yields

f dW') 1l^-^J =2.94x10^+1 xl03[(0.5)2-l2]=29025J/m3

HIllustrative Example 7.26

A Pitot tube figure-7.53 is mounted along the axis of a gas
pipeline whose cross-sectional area is equal to S.

= 0.5 m/s ...(7.55)

Figure 7.53

Assuming the viscosity to benegligible, findthe volume of the
gas flowing across the section of the pipeper unit time, if the
differencein the liquidcolumnsis equal to AA, and thedensities
of thediquid andthe gas are and p respectively.

Solution

Applying Bernoulli's theorem at points A and B, we have

P,+ -jpvi=P, +0 [As v, = 0]

or
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(2Ah pog'

Volume ofthe gas flowing

or Q=s
( 2A/? Pog'

Illustrative Example 7.27

455

^ =A^v=A^'^ •

or -A£fy =('j2gy)Afj dt [As dV=-Ady\

Which on integration improper limits gives

dt

H

jrxf
-4

10

A cylindrical tank 1 m in radius rests on a platform 5 m high.
Initially the tank is filled with water up to a height of5 m.A plug
whose area is 10^ ra^ is removed from an orifice on the side of

the tank at the bottom. Calculate (a) initial speed with which the So
water flows from the orifice (b) initial speed with which the
water strikes the ground and (c) time taken to empty the tank to
halfits original volume (d) Does the time to be emptied the tank
depend upon the height of stand.

= 9.2 X103s ~ 2.5 h

(d) No, as expression of t is independent of height of stand.

# Illustrative Example 7.28

A container of large uniform cross-section area A resting on a
horizontal surface, holds two immiscible, non-viscous and
incompressible liquids of densities d and 2d each of height
{HH) as shownin figure-7.55. The lowerdensityliquid is open
tothe atmosphere having pressurep^.(a)Ahomogeneous solid
cylinder of length L {L < HI2), cross-sectional area {A/5) is
immersed such that it floats with its axis vertical at the liquid-
liquidinterfacewith length(Z-/4) in the denser liquid.Determine
(i) The densityof solidand (ii)Thetotalpressureat the bottom
of the container, (b) The cylinder is removed and original
arrangementis restored.Atinyhole of areas {s« A) is punched
on the vertical side of the container at a height h {h < Hil).
Determine (i) the initial speed of efflux ofthe liquidat the hole
(ii) thehorizontal distance x travelledby the liquidinitially and
(iii) the height at which the hole should be punched so that
the liquidtravelsthemaximum distancex initially. Alsocalculate

Solution

The situation is shown in figure-7.54.

A

5 m

5 m • v.\\.

\\vV.

77/77777777/7777777777^77777777777^,

Figure 7.54

/ (a) As speed ofefflux isgiven by

v^=

or - -72x10x5 - lOm/s

(b) As initialverticalvelocityof water is zero, so its vertical
velocity when it hits the ground

Vi,=

= V2xl0x5 == lOm/s

So the initial speed with which water strikes the ground.

v= v^+v^

= 10^=14.1m/s

(c) Whentheheightofwaterlevelabovetheholeisy, velocity

of flow will be V= and so rate of flow

Solution

T
hh

I"
wi

\

Figure 7.55

\AX.
i\v.

(a) (i) As for floating, IV=Th

Vpg= V^d^g-i- V^d^g
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or

or

3 r^.fA
5

p=^^n^U+|T^| \^\2d

3 2 5
p=4^+t^=t^

Fluid Mechanics-^

75 cm has a narrow vertical slitrunningall theway downto the
bottom ofthe vessel. The length ofthe slit is / = 50 cm and the
width b = 1.0 mm. With the slit closed, the vessel is filled with
water. Find the resultant force of reaction ofwater flowing out
the vessel immediately after the slit is opened.

(ii) Total pressure = (weight ofliquid + weight of solid)//4 Solution

Thus p=pQ+^dg+^-2dg+^d^ f4^^) ''S'' T"

or P=P(i+\Hdg+^Ldg+p^+^ {(>H+L)dg

(b) (i) By Bernoulli's theorem for a point just inside and
outside the hole

or

or

or

a. 1 2 1 2
2P''i -"^2= 2 ^"2

gOH-Ah) = 2^

v= ^{g/2)i3H-4h)

(ii) As at the hole vertical velocity of liquid is zero so time
^en by it to reachthe groimd,

1=4^)

x=vl=4j(3H-4h) x^j-Here we have

= -JhiSH-Ah) ...(7.56)

(iii) For Xto be maximumx^mustbe maximum,thuswe have

l(^^)=o

or (3Hh-4h^)=0

or 37/-8/1=0,

or h=(3/S)H

Substituting the value ofh in equation-(7.56), we get

# Illustrative Example 7.29

The side wall of a wide vertical cylindrical vessel ofheight h =

Consider an element oflength dx ofthe slit as shown in figure-
7.56.

Figure 7.56

Area ofthe slit = bdx

Discharge per sec. through this area = p (6 dx) v

Force ofreaction due to element dx

dF=-p{bdx)v^ ...(7.57)

Negative sign is used because this is opposite to v.

Applying Bemoulli's theorem at point A, we have

or - v^ =-2pg{h-x) ...(7.58)

Substituting the value of fi-om equation-(7.58) in equation-

(7.57), we get

dF= p (b dx) 2 p g(h —x)

/ •

or

F=2pgb ^{h-x)dx

F=2pgb

Substituting the given values, we get

/?=(ia00)(9.8)(l X10-3)(0.5)[2x0.75-0.5]

= 5N

Vhl-^ = pgbl[2h-I\
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^ Illustrative Example 7,30

A bent tube is lowered into a

water stream as shown in

figure-7.57. The velocity of the
stream relative to the tube is

equal to v = 2.5 m/s. The closed

upper end of the tube located at
the height = 12 cm has a small

orifice. To what height h will the

water jet spurt ?

Solution

/ \ I

~r

i
".r-j

v-_

Figure 7.57

(K-E.),nw«-«nd = Pressure energy+ K.E.

or i Pv2 =/yoPg+
Solving it, we get

Vj =7(^^-2g/io) . ...(7.59)

The kinetic energy at the opening is converted into potential
energy. Thus

yP^?=P^^ or vf =2gh ...(7.60)
From equation-(7.59) and (7.60), we get

v2-2g/Jo =2g/i

Now
(2.5)^
2x9.8

a Illustrative Example 7,31

...(7.61)

0.12 = 0.20m

What work should be done in order to squeeze all water from a
horizontally located cylinder figure-7.58 during the time t by

means ofa constant force acting on the piston ? The volume of
water in the cylinder is equal to 7, the cross-sectional area of
the orifice is s, with s being considerably less than the piston

area. The friction and viscosity are negligibly small.

Figure 7.58

Solution

Work done =-F-L

457

...(7.62)

IfVbe the velocity at point B, then applying Bernoulli's theorem

at points A and B, we have

+ P^ +Po

Force on piston F=PS= -^ pv^S"

Discharge through orifice = 5 v per unit time

Discharge during time t = svt

This discharge is equal to V. Thus

V=svt

or v={V/st)

From equation-(7.63) and (7.64)

irJ ^
Thus work done is

or

or
2^

# Illustrative Example 7,32

...(7.63)

...(7.64)

...(7.65)

The horizontal bottom ofa wide vessel with an ideal fluid has a

roimd orifice of radius Rjoverwhich a round closed cylinder is
mounted, whose radius /?2 > 72, figure-7.59. The clearance
between the cylinder and the bottom ofthe vessel is very small,
the fluid density is p. Find the static pressure ofthe fluid in the

clearance as a fiinctiori of the distance r from the axis of the

orifice (and the cylinder), if the height ofthe fluid is equal to h.

'///////////?/////////////.

1 ^2
t 33:^3

IllIII
III

Ill
HillIII

i'/"
»" 1"
111 M

rR^

Figure 7.59
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Solution

In the figiire-7.60 shown,we consider the three section 1,2 and
3 atradius 7?,, r and i?2 respectively. Let D bethe width of the
gap. Applying continuity equation, we have

2^zR^Dv^=2^zR2Dv2-2KrD v

v//////////////////'//////.

Figure 7.60

Where v is the water flow velocity at a distance r from axis.

Here, we get

Vj = = ...(7.66)

Applying Bernoulli's equation between these points, we have

P+JPV^ =P^+ ^ pv2 =P2+ ypv|
Where P^= atmospheric pressure

Now ^ ^P +y P

P=P„+ipvf-|pv2or

or

or

P=P,+ 2 P^i'

p=p„+|pvf 1-^Aj

P = Pa'^PS^ I-

1-i^

[As =^]...(7.67)

[As v^- ^^2gh]...(7.6S)
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Practice Exercise 7.3

(i) A riverofwidth12mflowing at20 lq)hmixeswithanother
river of width 8 m flowing at 16 kph and spreads in another
streamofwidth 16m. Find the flowvelocity ofwater after mixing
assuming the depth of river are same.

[23 kph]

(ii) A siphon hasa uniform circular baseof diameter -j= cm
yjn

with its crests 1.8 m above water level as in figure-7.61. Find (a)
velocity of flow (b) discharge rate of the flow in m^/sec (c)
absolute pressure at the crest level A. [Use Pq= 10^ N/m^ '&
g— lOm/s^]

1.8m

3.6m

Figure 7.61

-[(a) 6n/2 m/s, (b) 9.6 V2 x mVs (c) 4.6 x 10" N/m^]

(lii) On the,opposite sides ofa wide vertical vessel filled with
water two identical holes are opened, each having cross-
sectionalareaS. The height differencebetweenthem is equal to
tsh. Find the resultant force ofreaction ofthe water flowing out
of the vessel.

[F={2AhpgS)]

0v) Water flows through a horizontal tube as shown in
figure-7.62. If the difference of heights of water column in the
vertical tubes is 2 cm, and the areas ofcross-section at A and B

are 4 cm^ and2 cm^ respectively, find the rate of flowof water
across anysection. Take ^ = 10 m/s^.

Figure 7.62

[146.05 cmVsec]

(v) A cylindrical vessel filled with water upto a height of2 m
stands on a horizontal plane. The side wall of the vessel has a
plugged circular hole touching the bottom. Find the minimum
diameter of the hole so that the vessel begins to move on the
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floor ifthe plug is removed. The coefficient offriction between
the bottom of the vessel and the plane is 0.4, and total mass of
water plus vessel is 100 kg.

[0.1128 m] •

(vi^ Water is flowing through two horizontal pipes of different

diameters which are connected together. In the first pipe the
speed of water is 4 m/s and the pressure is.2.0 x 10'̂ N/in^.
Calculate the speed and pressure of water in the second pipe.
The diameters ofthe pipes are 3 cm and 6 cm respectively.

[2;75 X IC N/m^]

(viQ A horizontal oriented tube AB of length / rotates with a
constant angular velocity oo about a stationary vertical axis OO'

passing though the endA figure-7.63. The tube is filled with an
ideal fluid. The end .4 of the tube is open, the closed end 5 has
a very small orifice. Find the velocity ofthe fluid relative to the
tube as a function of the column height h.

Figure 7.63

[co h f-'

(viii) For the arrangement shown is figure-7.64, find the time
interval after which the water jet ceases to cross the wall. Area

of the tank is A and area of orifice is a.

H

Orifice

Wall

K X -H

Figure 7.64 '

1

N\NNN
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(ix) The fresh water behind a reservoir dam is 15 m deep. A

horizontal pipe 4.0 cm in diameter passes through the dam 6.0 m

below the water surface as shown in figure-7.65. Aplug secures
the pipe opening, (a) Find the minimum friction force between

the plug and pipe wall to that plug does not eject out. (b) The
plug is removed. What volume ofwater flows out ofthe pipe in

3.0hour? Take g- = 10m/s^.

77777777777777777777777777777777777777.

Figure 7.65 ,

[(a) 75.36 N; (b) 148.59 m']
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Discussion Question

Q7-1 Why does a uniform wooden stick or log float

horizontally ? If enough iron is added to one end, it will float

vertically; explain this also.

Q7-2 A block ofwood is floating onwater at 0® C with a certain
volume Voutside the water-level. The temperature ofwater is

slowly raised from 0®C to 20®C. How will the volume Vchange
with rise in temperature?

Q7-3 Explain why a soft plastic bag weighs the same when
empty or when filled with air at atmospheric pressure? Would
the weights be the same ifmeasured in vacuum?

Q7-4 Explain why an air bubble in water rises from bottom to

top and grows in size ?

Q7-5 A beaker containing water is placed on the pan of a
balance whichshowsa reading of M.g.A lump of sugarofmass
m g and volume v is now suspended by a thread (from an

independent support) in such a way that it is completely
immersed in water without touching the beaker and without
any overflow of water. How will the reading change as time

passes on ?

Q7-6 A smoothair-tightpistonconnectedto a springof force
constant k and unstretched length I separates two regions of a
tube as shown in figure. Region^ is evacuated and region B is
open to the atmosphere. How will you use this set up to
determine the atmospheric pressure ?

1
P

1 B

3. k

1 -wmmm-

Figure 2.66

Q7-7 Aballfloats onthesurface ofwaterinacontainer exposed
to atmosphere.Will the ball remainimmersedat its initial depth
or will it sink or rise somewhat if the container is shifted to

moon.

Q7-8 A bucket of water is suspended froma springbalance.
Does the reading of balance change (a) when a piece of stone
suspended from a string is immersed in the water without
touching the bucket ? (b) when a piece of iron or cork is put in
the water in the bucket ?

Q7-9 A boy is carrying a fish in one hand and a bucket full of

water in the other hand. He hen places the fish in the bucket
thinking that in accordance with Archimedes' principle he is

now carrying less weight as the weight of the fish will reduce
due to upthrust. Is he right?

Q7-10 Explain why a soft plastic bag weighs the same when
empty or when filled with air at atmospheric pressure ? Would
the weights be the same if measured in vacuum ?

Q7-11 Apiece of ice is floating in water.What will happen to
the level ofwater when all ice melts ? What will happen if the
beaker is filled not with water but with liquid (a) denser than
water (b) lighter than water ?

Q7-12 A manis sittingin a boat whichis floating in a pond.If
the man drinks some water from the pond, what will happen to
the level ofwater in the pond ?

Q7-13 A boy is carryinga fish in one hand and a bucket full of
water in the other hand. He then places the fish in the bucket
thinking that in accordance with Archimedes' principle he is
now carrying less weight as the weight of the fish will reduce
due to upthrust. Is he right ?

Q7-14 A bucketof wateris suspended froma springbalance.
Does the reading of balance change (a) when a piece of stone
suspended from a string is immersed in the water without
touching the bucket? (b) when a piece of iron or cork is put in
the water in the bucket?

Q7-15 A vessel containing water is given a constant
acceleration towards the right, along a straighthorizontal path.
Which of the diagrams (Figure-7.67) represents the surface of
the liquid ?

(a) (b) (c)

Figure 7.67

Q7-16 Abeaker exactly full ofwater hasanicepiece floating in
it. As the cube melts what happens to the water level if (a) the
cube contains on air bubble (b) the cube contains (i) a lead
piece and (ii) a cork piece.

Q7-17 Two vessels have the same base area but different
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shapes. The first vessel takes twice the volume of water that
the second vessel requires to fill up to a particular common
height. Is the force exerted by water on the base of the vessel
the same in the two cases ? If so, why do the vessels filled with
waterto that sameheightgivedifferent readings on a weighing
scale ?

Q7-18 A boat containingsomepiddeof material is floatingin a
pond. What willhappen to the level of waterin thepondif on
unloading thepieces in thepond, thepiece (a) floats (b)sinks?

Q7-19 Aweightless balloon is filled inwater. Whatwillbe its
apparent weight when weighed in water.

Q7-20 Explain why a small iron needle sinks in water while a
large iron ship floats.

Q7-21 A block ofwood floats in a bucket ofwater in a lift. Will

461

the block sink more or less if the lift starts accelerating up.

Q7-22 A bottle full ofa liquid is fitted with a tight cork. Explain
why a slight blow on the cork may be sufficient to break the
bottle ?

Q7-23 A beaker containing water is placed on the pan of a
balance which shows a reading ofMg. a lump ofsugar ofmass
m g and volume v is now suspended by a thread (fi-om an
independent support) in such a way that it is completely
immersed in water without touching the beaker and without
any overflow of water. How will the reading change as time
passes on?

Q7-24 A .metal cube is floating in mercury in a bottle. The
bottle is connected to a vacuum pump so that all the air iii it is
evacuated. Find whether the submerged part ofmetal cube will
increase or decrease. Explain why ?
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ConceptualMCQsSingle Option Correct
7-1 A body of density p is dropped from rest from a height h
intoa lakeof densitya (ct> p). Neglecting all dissipative effect,
the acceleration ofbody while it is in the lake is :

(A) g\ ij upwards

(Q —I upwards

(B) ^

P) g

— -1 downwards

.P )

— downwards

-Pj

7-2 A piece of ice, with a stone frozen jnsideit, is floating in
water contained in a beaker. When the ice melts, the level of
water in the beaker :

(A) Rises
(B) Falls

(Q Remains unchanged
p) Fails atfirst and then rises to the same height as before

7-3 Bernoulli's Theorem is based on:

(A) Lawof Conservation of Energy
P) Law of Conservation of Mass

(Q Law of Conservation ofMomentum

P) Lawof Conservation ofAngularMomentum

7-4 A wooden block, with a coin

placed on its top, floats in water
as shown in figure-7.68. The
distance / and h are shown there.

After some time the coin falls into

the water. Then:

(A) / decreases and h increases

P) 1 increases and h decreases
(Q' Both / and h increase

P) Both I and h decreases

Coin

Figure 7.68

7-5 Ablock ofwood floats ina liquid inabeakerwith 3/4ths of
the its volume submerged under the liquid. If the beaker is
placed in an enclosurethat is falling freelyunder gravity, the
block will:

(A) Floatwith3/4thsof itsvolume submerged
P) Float completely submerged

(C) Floatwithanyfraction of its volume submerged
p) Sink to the bottom

7-6 Which one of the following statements is correct ? When
a fluid passes through thenarrow part of non-uniform pipe : '
(A) Its velocity and pressure both increase
p) Its velocity and pressure both decrease
(C) Its velocity decreases but its pressure increase
P) Its velocity increases but its pressure decreases

7-7 A solid iron ball and a solid aluminium ball of the same

diameterare released togetheron a deep lake.Whichball will
reach the bottom first ?

(A) Aluminium ball
P) Iron ball

(Q Both balls will reach the bottom at the same time
P) The aluminium ball will never reach the bottom and will

remain suspended in the lake •

7-8 Acube oficeis floating ina liquid ofrelative density 1.25
contained inabeaker. When the icemelts, the level ofthe'̂ liquid
in the beaker ?

(A) Rises.
P) Falls

(Q Remains unchanged
P) Falls at first and then rises to the sameheight as before

7-9 A boat carrying a number of large stones is floating in a
water tank. What will happen to the water level if the stones are
unloaded into the water ? The water level:

(A) Remains unchanged
p) Rises
(Q Falls
p) Rises till half the number of stones are imloaded and then

begins to fall

7-10 A bodyfloatsina liquidcontained in a vessel. Thevessel
falls vertically with an acceleration a (< g). IfV. and J^be the
initial andfmal volume pfthebody immersed intheliquid then:
(A) V.>V^
(Q Vr^f

P)
P) Datainsufficient

V:<V^

7-11 A medical suspension bottle is shaken well to disperse
the sediment uniformly andimmediate, thebottle isplaced ona
digitalweighing machinegently. If JVhe the actual combined
weight ofthebottle andthemedicine, then theweight recorded
by the weighing machine immediately after placing the bottle
will be:

(A) More than W p) Less than W
(Q Equal to W p) Nothing canbe said

7-12 Two vessels A and B ofcross-sections as shown contain
a liquidup to the same height. As the temperature rises, the
liquid pressure at the bottom (neglecting expansion of the
vessels) will:

Figure 7.69
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(A) Increase indecrease in 5

Increase in 5,"decrease in A

(Q Increase in both A and B but more in A
(P) Increase in both A and B equally

7-13 It is found that the measured weight zero) ofan empty
thin polythene bag has not changed when the bag is filled with

air. Two students were asked reason for this :

Saara: Air is so light that weighing machine need to have

large precision to measure weight offilled air.
Vasu: Force ofbuoyance increases by the same amount as the
weight ofadded air.
(A) Saara is correct, Vasu is wrong

(B) Vasu is correct, Saara is wrong

(Q Both are correct
(D) Both are wrong

7-14 A container contains liquid upto height//and kept on a
horizontal firictionless surface as shown in the figure-7.70. At

t= 0, the container is given a constant acceleration Oq along
positive A:-axis. The pressure at point P depends upon :

Y

"0

iKy) p ' = H

X

Figure 7.70

(A) Only on the x-co-ordinate of the point P
(B) Only on the y-co-ordinate of the point P
(Q On both x andy co-ordinates of the point P
p) None
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7-15 The weight of an aeroplane flying in air is balanced by:
(A) Upthrust of the air which will be equal to the weight of the

air having the same volume as the plane
(B) Force due to the pressure difference between the upper

and lower surfaces of the wings, created by different air
speed on the surface

(C) Vertical component of the thrust created by air currents
striking the lower surface of the wings

P) Force due to the reaction ofgases ejected by the revolving
propeller

7-16 A closed rectangular tank is completely filled with water
and is accelerated horizontally with an acceleration a towards
right. Pressure is (i) maximum at, and (ii) minimum at:

A D

B C

(A) (i)5(ii)D
(Q (i)5(ii)C

Figure 7.71

P) (i)C(ii)D

P) ii)B(n)A

7-17 A beaker containing a liquid is kept inside a big closed jar.
If the air inside the jar is continuously pumped out, the pressure
in the liquid near the bottom ofthe liquid will:

(A) Increases

P) Decreases

(C) Remain constant

P) First decrease and then increase
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NumericalMCQs Single Option Correct

7-1 A large open tank has two small holes in its vertical wall as

shown in figure-7.72. One is a square hole ofside 'U at a depth
'Ay from the top and the other is a circular hole ofradius 'R' at

a depth 'y' from the top. When the tank is completely filled with

water, the quantities ofwater flowing out per second from both

holes are the same. Then, 'R! is equal to ;

(A)
L

(Q J-.i

4j I

J

V/.'777^777777^7777/77777777/

Figure 7.72

(B) lid.

(D) Y
2%

7-2 A cubical block of copperof side 10 cm is floating in a
vessel containing mercury. Water is poured into the vessel so
that the copperblockjust gets submerged. The heightof water
columnis: (pjjg= 13.6g/cc, Pc„=7.3g/cc, p^,^^=l gm/cc)
(A) 1.25cm (B) 2.5cm

(Q 5 cm 7.5 cm

7-3 A block of silver of mass 4 kg hanging from a string is
immersed inaliquid ofrelative density 0.72. Ifrelative density of
silver is 10,thentension inthestringwillbe: (Take g= 10m/s^)
(A) 37.12N (B) 42.34N
(C) 73N (D) 21.15N

7-4 A tube inverticalplane is shownin figure-7.73. It is filled
with a liquid of density p and its end B is closed. Then the

force exerted by the fluid on the tube at end B will be.

[Neglect atmospheric pressure and assume the radius of the
tube to be negligible in comparison to /] :

T
2/

1

(A)

(Q (T'., +2p^/)X

Figure 7.73

•(cross section

area =yl„)

P) (^atn,+ 4pg/)^o

7-5 In the figure shown-7.74 water is filled in a symmetrical
container. Four pistons of equal area A are used at the four
opening to keep the water in equilibrium. Now an additional
force each of magnitude F is applied at each piston. The
increase in the pressure at the centre of the container due to
this addition is :

(A)

(Q

F_
A

A

Figure 7.74

IF

• T

P) 0

7-6 A block of iron is kept at the bottom of a bucket full of
water at 2®C. The water exerts bouyant force on the block. If
the temperature of water is increasedby 1°C the temperature
of iron block also increases by 1°C. The bouyant force on the
block by water:

(A) will increase
(B) will decrease
((2) will not change
(D) may decrease or increase depending on the values of their

coefficient ofexpansion

7-7 A C/-tube of base length filledwithsamevolume of two
liquids of densities p and 2p is movingwith an acceleration
'V on the horizontal plane. If the height difference between
the two surfaces(open to atmosphere) becomeszero, then the
height h is given by :

(A)

(Q

•I .
2^

g

Figure 7.75

3a

(B)

la

(D) ry
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7-8 The velocity ofthe liquid coming out ofa small hole of a
large vessel containing two different liquids of densities 2p
and p as shown in figure-7.76 is : ^

(A)

(B) 24^

(C) 242gh

p) 4^

2h

y

h • 2p

Figure-7.76

7-9 A non uniform cylinder ofmass m, length / and radius r is
having its centre of mass at a distance //4 from the centre C
and lying on the axisof the cylinder.'The cylinder is kept in a
liquid of uniform density p. The moment of inertia of the rod
about the centre ofmass is I. The angular acceleration ofpoint

A relative to point B just after the rod is released from the
horizontal position shown in figure-7.77 is :

(A)

(Q
7tpg/V^

II

C CM

zE^EEa-

Figure 7.77

(B)

P).

Ttpg/ V'
4/

Snpg/'r^
' '4/'

7-10 An incompressible liquid flows through ahorizontal tiibe
as shownin the figure-7.78. Then the velocity'v' ofthe fluid is :

A meter^ I

(A) 3.0m/s
(Q 1.0 m/s

V, = 3.0 in,'s

Figure 7.78

(B) 1.5m/s
-p) 2.25 m/s

7-11 Anunsymmetrical sprinklershownin the top viewof the
setuphasfrictionless shaftandequalfluid flows through each
nozzlewitha velocityof 10m/secrelative to nozzle. If theshaft
is rotating at constant angular speedthen its angular speed of
rotation is :

(A) 3 rad/s

(C) '2 rad/s

N—O.Sm- •Im-

U.

• ' 'I
lOin/sec lOm/sec

• Figure 7.79

(B) 4 rad/s
p) 10rad/s
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7-12 The centre ofbuoyancy of a floating object is :
(A) At the centre of gravity of the object.
P) At thecentreof gravityof thesubmerged partof the object.
(Q At the centre ofgravity of the remaining part outside the

fluid ofthe object.

P) At the centre of gravity of the' fluid displaced by the
submerged part of the object.

7-13 A imiform rod OB of length \m, cross-sectional area
0.012m^ and relative density 2.0 is free to rotate about 0 in
vertical plane. Therodisheldwitha horizontal string45 which
can withstand a maximum tension of 45A^. The rod and string

systemis kept inwateras showninfigure-7.80. The maximum
value of angle a which the rod can make with vertical without
breaking the stringis : (Take g = 10m/s^)

(A) 45"

(Q 53"

Figure 7.80

p) 3r

•p) 60"

Fixed
vessel

7-14 Atube with both ends open floats vertically in water.Oil
with a density 800 kg/m^ is poured into the tube. The tube is
filled withoiluptothetopendinequilibrium state. Theportion
outof thewater isoflength10cm.Findthe lengthof oil column:

10 cm

Water

(A) 50
(Q 90

cm

cm

10 cm

Figure 7.81

p) 60cm

P) 100cm
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7-15 Following are some statements about buoyant force:
(Liquid is of uniform density)
(i) Buoyant force depends upon orientation of the concerned

body inside the liquid.
(ii) Buoyant force depends upon the density of the body

immersed.

(iii) Buoyant force depends on the factwhether the system is
on moon or on the earth.

(iv) Buoyant force depends uponthe depthat whichthebody
(fullyimmersed in theliquid) isplacedinsidetheliquid.
Of these statements :

(A) Only (i),(ii) and (iv) are correct.
(B) Only (ii) is correct.
(Q Only (iii) and (iv) are correct.
(D) (i), (ii) and (iv) are incorrect.

7-16 An ideal fluid is flowing through the giventubeswhich
isplacedona horizontal surface. If theliquidhasvelocities
and andpressures and atpoints ^4 andBrespectively,
then the correct relationis (A and B are at same height from
groimd level,the figure shoyTi-7.82 is as if the system is seen
from the top):

2ci

Figure 7.82

(A) V,>V„P,<F,

(Q =
(B) yA<yB'PA>PB
w yA>yB'PA-PB

7-17 There is a small hole in the bottom of a fixed container
containing a liquid upto heightThe topofthe liquid aswell
as the hole at the bottom are exposed to atmosphere. As the
liquid comes out ofthe hole. (Area ofthe hole is 'a' and that of
the top surface is M'):
(A) The top surface of the liquid accelerates with

acceleration = g
(B) The top surface of the liquid accelerates with

_2

acceleration = g—

(C)Thetopsurface of the liquidretardswithretardation = g~
A

(D)Thetopsurface of the liquidretardswithretardation =

Fluid MechanicsJ

7-18 A fixedcontainerof height'//' with largecross-sectional,
area 'A' is completely filled with water. Two small orifice of
cross-sectional area 'a' are made, one at the bottom and the
other on the vertical side of the container at a distance HH

from the top of the container. Find the time takenby thewater
level to reach a height oiHH from the bottom ofthe container.

— (V2-l)j-

3/4, /T \H(O—(V2-1) -
2a V g

7-19 The manometer shown below is used to measure the

difference in water level between the two tanks. Calculate this

difference for the conditions indicated..

Liquid
(specific gravity = 0.9)

W^ter

(A) 2 cm

(Q 6c^

cm

Figure, 7.83

(B) 4 cm

(D) 8 cm

7-20 A cylindrical vessel filled with
water is released on a fixed inclined

surface of angle 0 as shown in
figure-7.84. The friction coefficient of
surface with vessel is |r (< tan 0). Then
the constant angle made by the surface
of waterwith the inclinewillbe: (Neglect
the viscosityof liquid)

Water

Fixed

Figure 7.84

(A) tan ^n
(Q 0 + tan"^ p

(B) 0 - tan-^ p
(D) cot~^ p

7-21 A copper piece of mass 10 g is suspended bya vertical
spring. The spring elongates 1 cm over its natural length to
keep thepiece inequilibrium. Abeaker containing water isnow
placed below the piece soas to immerse the piece completely
in water. Findtheapproximate elongation of thespring. Density
of copper = 9000kg/m^. Take g = 10m/s^.
(A) 0.45cm (B) 0.89cm
(C)1.02cm (D)1.86cra

7-22 Avessel contains oil (density =0.8 gm/cm^) over mercury
(density = 13,6gm/cm^). Auniform spherefloats withhalf its
volume' immersed in mercury and the other half in oil. The
densityof the materialof sphere in gm/cm^ is;
(A) 3.3 (B) 6.4
(Q 7.2 (D) 12.8
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7-23 Ablock ispartially immersed inaliquid and the vessel is
accelerating upwards with an acceleration "a". The block is
observed by two observers Oj and O2, one at rest and the
other accelerating with anacceleration "a" upward. The total
buoyant force on the blockis :

0;

(at rest)

Figure 7.85

(A) same for 0^ andOj
(Q greater for Oj than 0^

(B) greater for Oj thanO2
P) data is not sufficient

7-24 Acubical block ofwood ofedge 3cmfloats inwater. The
lower surface ofthe cube justtouches the free end ofavertical
spring fixed at the bottom ofthe container. Find the maximum
weight that can be put on the block without wetting it. Density
ofwood=800 kg/m^ and spring constant ofthe spring =50 N/m.
Takeg=10m/s^.
(A) 0.1N'
P) 0.35N

(Q 0.5N
P) 0.7N

" 4671

7-28 Acircularcylinder ofheight /i^ =10 cmand radius =2cm
is opened at the top and filled with liquid. It is rotated about its
vertical axis. Determine the speed of rotation so thathalf the
area ofthe bottom gets exposed, (g= 10 rii/sec^):
(A) 25rad/s (B) 50rad/s
(Q lOOrad/s P) 200rad/s

7-29 Water flows ina horizontal tubeasshown in figure-7.87.
The pressure ofwater changes by 600 N/m^ between Aand B
where the areas of cross-section are 30 cm^ and 15 cm^
respectively. Find the rate offlow ofwater through the tube :

Figure 7.87

(A) 600cmVs P) HOOcm^/s
(Q 1800 cmVs P) 2400 cmVs

7-30 The cubical container which iscompletely
filled with an ideal (nonviscous and incompressible) fluid,
moves in a gravity free space with a acceleration of
a =QQii-j +k) where is a positive constant. Then the
only point in the container where pressure can be zero is :

Figure 7.86

7-25 Alarge block ofice cuboid ofedge lengthand density
p. =0.9 p^, has alarge vertical hole along its axis. This block
is floating in alake. Find out the length ofthe rope required to
raise a bucket ofwater through the hole :
(A) H2 P) ^^4
(Q.//8 P) ^/lO

7-26 For a fluid which is flowing steadily, the level in the
vertical tubes is best representedby :

J
P)

(A) B

(Q E

y
H

Figure 7.88

P) c

P) H

7-27 A cylindrical wooden float whose base area S and the
height Hdrifts on the water surface. Density ofwood d and
density ofwater is p. What minimum work must be performed
to take the float out of the water?

S^gd
(A)

(Q

2p

Sgd^H^
2p

P)

P)

Sgd'H'

P

2S'gd'
pH'

7-31 To measure the atmospheric pressure, four different tubes
oflength Im, 2m, 3m and 4m are used. Ifthe height of the
mercury column in the tubes is h^, /ij, hy respectively in the
four cases, thenhyh^hyh^is :
(A) 1:2:3:4 P) 4:3:2:1
CQ 1;2:2 :1 p) 1:1:1:1

7-32 An open tank 10m long and 2m deep is filled up to 1.5 m
height of oil of specific gravity 0.82. The tank is uniformly
accelerated along its length from rest to a speed of 20 m/s
horizontally. The shortest time in which the speed may be
attained without spilling any oil is ; [g = 10 m/s^]
(A) 20 s P) 18 s
(Q 10 s P) 5s
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(A) P,tm=P
(Q Patm=P/2

FliiidilVlecbanics,

P) =

P) P.un=P '̂̂
7-33 Water (density p) is flowing through the uniform
horizontal tube ofcross-sectional area A with a constant speed
Vas shownin the figure-7.89. The magnitude of force exerted
bythewateron thecurvedcomerof the tubeis (neglect viscous
forces)

7-36 One end ofa long iron chain of linear mass density Xis
fixed to a sphere of mass m and specific density 1/3while the
other end is free. The sphere along with the chain is immersed
in a deep lake. If specific density of iron is 7, the heightabove
the bed ofthe lake at which the sphere will float in equilibrium
is (Assume that the part of the chain lyingon thebottomof the
lake exerts negligible force on the upper part of the chain.):

(A) yj3pAv^

(C) yJlpAv^

Figure 7.89

(B) IpAv^

pAv^
P)

7-34 An open rectangular tank 1.5 m wide 2m deep and 2m
long is half filled with water. It is accelerated horizontally at ^A)
3.27 m/sec^ in the direction of its length. Determine the depth
of water at rear end of tank. [g^ = 9.81 m/sec^]
(A) 0.9m ' (B) 1.2m ^ 2?.
(C) 1.5m P) 1.7m '

7-35 In a given U-tube (open at one-end and closed at other
end as shown) find out the correct relation betweenpand:
GivenJ2 =2x 13.6 gm/cm^ c/j = 13.6 gm/cm^

y= 25 cm

x=26 cm

Figure 7.90

16 m

Figure 7.91

P)

P)

7m

3^

8m

Ix
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Advance MCQs with One orMore Options Correct
7-1 An ideal liquid flows through a horizontal tube. The
velocities ofthe liquid in the two sections, which have areas of
cross-section^j and^^j, areVj and respectively. Thedifference
in the levels of the liquid in the two vertical tubes is h :

Figure 7.92

(A) The volume of the liquid flowing through the tube in unit
timeis^jVj

(B) Vj - Vi =

CQ v^-vf =2gh
(D)- The energy per unit mass of the liquid is the same in both

sections of the tube

7-2 An object is weighted at theNorth Pole by a beam balance
,anda spring balance, giving readings of Wg and respectively.
It is again weighed in the same manner at the equator, giving
reading of Wg andWg respectively. Assume thattheacceleration
due to gravity is'the same everywhere and that the balances are
quite sensitive :
(A)Jrs=fVg (B)

(Q Wg-^B (D)

W'=W'

Wg'<Wg

7-3 A spring balance reads when a ball is suspended from
it.Aweighing machine reads W2 when ballisplaced onit.Now
ball is submerged in a tank ofliquid and also suspended with a
spring balance, if thespring balance reads W.^ andtheweighing
machine reads then which ofthe following is correct:
(A) W,>W, (B)
(Q (D)

7-4 In the previous Q. No. 7-3 :
(A) + + (B)

W2>IV^

(Q W^ + W^=W2+W^ P) None of these

7-5 A massless conical flask filled with a liquid is kept on a
table in vacuum. The force exerted by the liquid on the base of
theflask is ITj. Theforce exerted bytheflask onthetableis :

Figure 7.93

(A) W^ = W2 (B) W^>W2

(Q
P) The force exerted by the liquid on the walls of the flask is

(W^-W^)

7-6 The vessel shown in the figure-7.94 has two sections of
areas ofcross-section ofdensity p fills both
the sections, up to a height h in each. Neglect atmospheric
pressure :

Figure 7.94

(A) The pressure at the base of the vessel is 2hpg

P) The force exerted by the liquid on the base of the vessel is

2hpgA2
(C) Theweight of the liquid is < 2hpgA2
p) The walls of the vessel at the level X exert a downward

force hpg {A^-A^ on the liquid

7-7 A tank, which is open at the top, contains a liquid up to a

heiglit H. A small hole is made in the side ofthe tank at a distance

y below the liquid surface. The liquid emerging from the hole
lands at a distance x from the tank :

H

Figure 7.95

(A) If^' is increased from zero to H, x will first increase and then
decrease

p) Xis maximum for^=^/2
(Q The maximum value ofXis
P) The maximum value ofx will depend on the density ofthe

liquid
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7-8 In the figure-7.96, an ideal liquid flows through the tube,
which is ofuniform cross-section. The liquid has velocities

and and pressures andpg at pointsA andB respectively:

(A) V^ = Vs
(C) Pa=Pb

Figure 7.96

(B) v^>v^
P) Pb^Pa

7-9 A liquidof densityp comes out with a velocityv from a
horizontal tube of area of cross-section A. The reaction force

exerted by the liquid on the tube is F:

(A) F<x.v (B) F cc

(Q Fa:A (D) Fee p

7-10 A pieceof ice is floating in a liquid.Whathappens to the
level ofliquid when all ice melts ?

(A) level remainssame if liquid is water
(B) level falls ifliquid is water

(Q level will rise ifliquid is denser than water
P) level will rise ifliquid is lighter than water

7-11 Abeakerexactlyfiill of waterhas an icepiece floating in
it. As the cube melts, what happens to water level ?
(A) it remains unchanged if the cube contains an air bubble

(B) the level falls if the cube contains some lead pieces inside
it

(Q the level will rise if the cube contains some cork pieces
inside

p) the level remains the same if the cube contains some cork

pieces inside it

7-12 An iron castingweighs27 kg in air and 18 kg in water.
Densityof ironis 7800kg/m^:
(A) outervolume of castingis 6000cm^
P) outer volume ofcasting is 9000 cm^

(Q volume ofcavity inside the casting is 780 cm^
P) volume ofcavity inside the casting is 5538 cm^

7-13 A ball of density p is dropped onto a horizontal solid
surface. It bounces elastically from the surface and returns to
its original position in time . Next, the ball is released from the
same height, but this time it strikes the surface of a liquid of
density p^ (> p but less than 2p), and takes second to come
back to its original height;

Fliiid Mechanics

(Q the motion of the ball is not simple harmonic

p) If p = pg, thenthe speedof the ball insidethe liquidwillbe
independent of its depth

7-14 Siphonis a device to transfer liquid froma higher level to
a lower level. The condition ofworking ofa siphon is :

Figure 7.97

(A) > /j,
P) h^ = 2h,
(Q should be less than the height of corresponding liquid

barometer

p) hj should begreater thantheheight ofcorresponding liquid
barometer

7-15 Equalvolumes of liquidarepouredin the threevessels.^,
B and C. All the vessels have same base area. Select the correct

altemative(s):

Figure 7.98

(A) The force on the base will be maximum in vessel

P) The force on the base will be maximum in vessel C

(Q Net forceexertedby liquid in all the threevesselsis equal
P) Net forceexerted by liquid invessel is maximum

7-16 Water isflowing instreamline motion through a tubewith
its axis horizontal. Consider two points A and B in the tube at
the same horizontal level:

(A) thepressure atA andB are equal foranyshapeof the tube
P) the pressure can never be equal
(Q the pressures are equal if the tube has a uniform cross-

section

P) the pressure may be equal even if the tube has a non-

uniform cross-section
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7-17 A vessel is filled with mercury to. a height of 0.9 m.
.Barometric height is 0.7 m. mercury:

(A) the vessel can be completely emptied with the aid of a
siphon.

(B) the vessel cannot be emptied completely with the aid of a
siphon

(Q the vessel can be emptied with at least 0.7 m height of
mercury remaining in the vessel

(P) none of these

7-18 A tank is filled upto a height h with a liquid and is placed
on a platform of height h from the ground. To get maximum
range a smallholeispunched atadistance of^- from thefree (A) x^ = 2h
surface of the liquid. Then: • (Q T ~ ^

Figure 7.99

(B) x„=\.5h
(D) y^OJSh
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UnsolvedNumericalProblemsfor Preparation ofNSEP, INPhO &IPhO
For detailedpreparationofINPhO andIPhOstudents can referadvance studymaterialonwww.physicsgalaxy.cora

7-1 A blockofwood floats in water with two-thirds ofits volume

submerged. In oil the block of floats with 0.90 of its volume

submerged. Find the densityof (a) wood and (b) oil, if density
ofwater is 10^ kg/m^.

Ans. [(a) 667 i,(b) 740-i]

7-2 A balloon filledwith hydrogenhas a volumeof 1m^ and its
mass is 1kg.What would be thevolume of theblockof a very
light material which it can just lift? ' '

Ans.

7-3 Ahorizontal pipe line carrieswater in a streamline flow. At
a point alongthepipe wherethe cross-sectional area is 10cra^,
the water velocity is 1m/s and the pressure is 2000 Fa. What is
thepressureof waterat anotherpoint wherethecross-sectional
area is 5 cm^ ?

Ans. [500 Pa]

7-4 A glass tube of radius 0.8 cm floats vertical in water, as
shown in figure-7.100. Whatmassof leadpellets would cause
the tube to sink a further 3 cm ?

Figure 7.100

Ans. [6.03 g]

7-5 When equal volumes oftwo substances aremixed together,
the specific gravity ofthe mixture is4.But when equal weights
of the same substance are mixed together, the specific gravity
of the two is 3. Find the specificgravity of two substances.

Ans. [6 and 2]

7-6 Water from a tap emerges vertically downwards withan
initial speed of 1 m/s. The cross-sectional area of the tap is
10"^m^. Assume that the pressure is constant throughout the
stream of water and that the flow is steady. Find the cross-
sectional areaof thestream 0.15 ra belowthe tap.

Ans. [5 X 10"^ m-]

7-7 Apieceofmetalfloats onmercury. ThecoefBcient ofvolume

expansion of themetal andmercury areYj andyjrespectively. If
the temperature ofboth mercuryand metal are increased by an
amount AT, by what factor the fraction of tlie volume of the
metal submerged in mercury changes? '

Ans. [(y2 - Yi) AT]

7-8 A largeopentankhas twoholesin the wall. Oneisa square
'hole ofsideL at a depthy fromthe top and the other is a circular
hole of radius ?? at a depth Ay from the top. When the tank is
completely filledwithwater, thequantities of waterflowing out
per second from both holes are the same. Find the value ofR.

L ,
Ans.

7-9 A tank 5 m high is halffilled with water and then is filled to
the top with oilof density 0.85 g/cm^ What is the pressure at
the bottom of the tank due to these liquids?

Ans. [4.53 x lo" N/m^]

7-10 Astone ofdensity 2.5 g/cm^ completely immersed insea
wateris allowed to sinkfrom rest.Calculate the depthtowhich
the stone would sink in two seconds. Neglect the effect of
friction. Specific gravity of sea water is 1.025 and acceleration
due to gravityis 9.8 m/s^.

Ans. [23.128 m]

7-11 A cube of wood supporting 200 g mass just floats in
water. Whenthemassis removed, the cuberisesby 2 cm.What
is the size of the cube?

Ans. [a = 10 cm]

7-12 Water is flowing continuously from a tap having a bore
of internal diameter 8 x 10"^ m. Calculate the diameter of the
water stream atadistance 2 XlO'̂ mbelowthetap.Assumethat
the water velocity as it leaves the tap is 0.4 m/s

Ans. [3.6 X 10"^ m]

7-13 Acertain block weighs 15 Nin air. Itweighs 12Nwhen
immersed inwater. When immersed inanother liquid, itweighs
13 N?Calculate therelative density of(a)theblock(b)theother
liquid.

Ans. [(a) 5, (b) 2/3]

7-14 A cylindrical tank 1 m in radius rest on a platform 5 m
high. Initially.the tank is filled with water toa height of5 m. A
plug, whosearea is 10^ m^, is removedfroman orificeon the
side ofthe tank at the bottom. Calculate the following :
(0 initialspeedwithwhich thewaterflows from theorifice.
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(ii) initialspeed with whichthe waterstrikes the ground.
(iii) time takento emptythe tank to half its original value.

42
Ans. [(i) 10 m/s, (ii) 14.1 m/s, (iii) -3140

.n1/2

7-15 A vertical uniform U tube open at both ends contains

mercury.Water is poured in one limb until the leyel ofmercury
is depressed 2 cm in that limb. What is the length of water'
.column when this happens. .

Ans. [54.4 cm]-

7-16 Apieceofcopper having aninternal cavityweigh 264gm
inairand221gmin water. Findthevolume ofcavity. Densityof
copper is8.8 gm/cm^

Ans. [13 cm^]

7-17 A beaker ofmass 1 kg contains

2 kg of waterand rests on a scale.A
2 kg block of aluminum (specific
gravity 2.70)suspended froma spring
scale is submerged in water, as shown

in figure-?.101.Find the readingsof
both scales.,

Ans. [Reading of lower scale = 36.66 N,
Reading of upper scale = 12.34 N,]

//////////.

ipi

Figure 7.101

7-18 Apieceofbrass (alloyofcopperandzinc) weighs 12.9g
in air. Whencompletely immersed in water it weighs 11.3 g.
What is the mass of copper contained in the alloy ? Specific
gravities of copper andzinc are 8.9 and ?.l contained in the
alloy? Specific gravities of copper and zinc are 8.9 and ?.l
respectively.

Ans. [7.61 g]

7-19 Figure-?. 102 shows ahydraulic press with the larger piston
ofdiameter 35 ,cm ataheight of 1.5 mrelative to the smaller
piston of diameter 10 cm. The mass on the smaller piston is
20 kg. What istheforce exerted ontheload bythelarger piston.
The density ofoil in the press is 750 kg/ml Takes g=9.8 m/s^.

1.5 m 20 kg

Figure 7.102

Ans. [1.3 X 10^ N]

473

7-20 Two identical cylindrical vessels (area of cross-section
3.5 X10"? m^) with their bases atthe same level contain liquid of
density 800 kg/m^. The height of liquid in onevessel is 0.3 m
and in the other it is 0.1 m. Assuming g = 10 m/s^, find the
workdone by gravityin equalising levelswhen the vesselsare
interconnected at bottom.

Ans. [0.28 J]

7-21 Anopencubical tankcompletely filled withwateriskept
. on a horizontal surface. Its acceleration is then slowly increased
to 2 m/s^ as shownin the,figure-?. 103.'Theside of the tank is
1 m. Find the mass ofwater that would spill out of the tank.

1 m

Ans. [100 kg]

1 m

Figure 7.103

-¥ 2 m/s^

7-22 A vertical.CZ-tube of uniforminnercross-sectioncontains
mercury in both its arms. Glycerine (density 1.3 g/cm^) column
oflengto 10 cmisintroduced into one ofthearms. Oil ofdensity
0.8 g/cm^ ispoured into the other arm until the upper surface of
oilandglycerine areinthesame horizontal level. Find thelength
ofoil column, (density ofmercury is13.6 g/crn^)

Ans. [9.61 cm]

7-23 Water flows through thetubeshown in figure-?. 104. The
areas of cross-section of the wide and the narrow portions of
the tube are5 cm^ and2 cm^ respectively. Therateof flow of
water through the tube is 500 cm^/s. Find the difference of
mercury levels in the U-tube.

I
Figure 7.104

Ans. [1.97 cm]

7-24 A person can change the volume ofhis body by taking
airinto hislungs. Theamount of change canbe determined by
weighing the personunderwater. Suppose that underwatera
person weighs'20.0 Nwith partially full lungs and 40.0 Nwith
empty lungs. Find the changein body volume.

Ans^ [2.'64 X10"^ m']



7-25 A vessel contains oil over mercury. A homogeneous
sphere floats with half volume immersed in mercury and" the
otherhalfinoil. If density ofoil. If density of oil is 0.8gm/cm^
andthat ofmercury is 13.6 gm/cm^ what isthe density ofmaterial
of sphere.

Ans. [7.2 gm/cm^]

7-26 The tension in a string holding a solid block below the
surface of a liquid (of density greater than that of.solid) as
shown in figure-7.105 is Tq when the system is at rest. What
will be the tension in the string if the system has upward
acceleration a? .

Figure 7.105

Ans. [7'=7i[I+(a/g)]]

7-27 AJ-tube, shown infigure-7.106, contains avolume Vof
dryairtrapped inarm.<^ ofthetube. Theatmospheric pressure is
H cm of mercury. Whenmoremercuiy is pouredin armB, the'
volume of the enclosed air and its pressure changes. What
shouldbe thedifference inmercurylevelsin the twoarmsso as
to reduce the volume of air to 1/2. '

Ans. [H cm]

air

volume = V

Figure 7.106

7-28 AblockoficewithanareaAanda height h floats inwater
ofdensity pg. What work should beperformed tosubmerge the
ice block completely into water ifdensity ofice ispj?

Agh^ion-a,)^ :Ans. [W = ^ 12po J

7-29 Asolid ball ofdensity halfthat ofwater falls freely under
gravity from aheight of,19.6 mand then enters water. Upto what
depth will the ball go? How much time will ittake tocome again

Fluid MechanicsJ

to the water surface?Neglectair resistanceand viscosityeffects
inwater, (g=9.8 m/s^)..

Ans. [19.6 m and 4 s]

7-30 (a) Consider a stream offluid ofdensity pwith speed Vj
passing abruptlyfrom cylindrical pipe of cross-sectional area

into a wider cylindrical pipe ofcross-sectional area Aj (see
figure-7.107). The jet will mix with the surrounding fluid and,
afterthemixing, willflowonalmost uniformly withanaverage
speed v^. Without referring to the details of the mixing, use
momentum ideas to show that the increase in pressure due to
the mixing is approximately

(b) Show fromBemoulli's principle thatina gradually widening
pipe we would get

and explain the loss ofpressure [the difference is -jp(Vj - Vj)^]
due to the abrupt enlargement of the pipe. Can you dhaw an
analogy with elastic and inelastic collisions in particle
mechanics ? • -

1 ^ >1
' As'S\ • •

•

Figure 7.107

7-31 A CZ-tube containing a liquid isaccelerated horizontally
with a constant acceleration cfg. If the separation between the
vertical limbs is/, find the difference inthe heights ofthe liquid
in the two arms.

Ans. [oo l/g]

7-32 Thetankinfigure-7.108 discharges wateratconstant rate
for allwater levels above theairinletR. Find theheight above
datum to which water would rise in the manometer fribes M

and N.

open to
[ atmosphere

40 cm

20 cm

Datum

Figure 7.108

Ans. [20 cm, 60 cm]
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7-33. The time period ofa simple pendulum is T.Now the bob is
immersed in a liquid ofdensity a. If density ofmaterial ofbob is
p, what will be the new time period ofthe pendulum.

Ans. [T ,1^]

7-34 A rubber ball with a mass Marid radius R is submerged

into a liquid ofdensity p to a depth h and released. What height
will the ball jump up above the, surface of water? (Neglect
resistance ofwater and air.)

, P ^

7-35 A cubical vessel of height 1 m is hill of water. Find the
work done in pumping out whole water. ,

Ans. [4900 J]

7-36 A tank of cross-sectional area A is filled with water to a

height U. A hole is punched in one of the walls at a depth h
below the water surface, (a) Show that the distance x fi:om the
foot ofthe wall at which the resulting stream strikes the floor is
given by X = -h). (b) Could a hole be punched at
anotherdepth to produce a secondstreamthat wouldhave the
same range? If so, at what depth? (c) What is the time taken to
emptythe tankif a holeof areaAq is punched at thebottom of
the tank?

Ans. [(b) yes, at depth (H- h) (c) t = (AlAf) •yl(2H/g) ]

7-37 A large block of ice 5 m thickhas a verticalhole drilled
through and is floating in the middle of a lake. What is the
minimumlength of a rope required to scoop up a bucket full of
water through the hole ?

Ans. [0.5 m]

7-38 A rectangular container of water undergoes constant
acceleration down an incline as shown in figure-7.109.

Determine the slope tan 0 of the free surface using the
coordinate system shown. Take g = 10 m/s^.
Ans. [0.23]

o = 3m/s2

Figure 7.109
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7-39 An iron casting containing a number ofcavities weights
6000 N in air and 4000 N in water. What is the volume of the

cavities in the casting? Density ofiron is7.87 g/cm^.

Ans. [0.12 m^]

7-40 A^uniform rod of lengthb capableof tuningaboutitsend
which is out ofwater, rests inclined to the vertical. If its specific
gravity is 5/9, find the length immersed in water.

Figure 7.110

Ans. [b/2]

7-41 AcubicalblockofwoodofedgeS cm floats in water. The
lower surface ofthe cubejust touches the free end of a vertical
spring fixed atthebottom ofthepot[seefigure-7. 111]. Findthe
maximum weightthatcanbeputontheblockwithoutwetting it.
Density ofwood = 800 kg/m^ and spring constant ofthe spring
= 50N/m. Takeg = 10m/s^.

Figure 7.111

Ans. [0.35 N]

7-42 Atank is filledwith a liquid upto a heightH. Asmall hole
is made at the bottom of this tank. Let be the time taken to

empty first half of the tank and the time taken to empty rest

half ofthe tank. Then find y.
h

Ans. [0.414]

7-43 A containerof largeuniformcross-sectional area^^ resting
on a horizontal surface, holds two-immiscible, non-viscous
incompressible liquids of densities d & 2d, eachofheight HI2.
The lower density liquid is open to the atmosphere having
pressurePp. Ahomogeneous solid cylinder oflengthL{L<HI2)
cross-sectional area ^4/5 is immersed such that it floats with its
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axisvertical at the liquid-liquid interface withthelength LIA in
the denser liquid.'Determine: (i) Thedensity/) of thesolid &
(ii) The total pressure at the bottom of the container.

Ans. [(i) 5/4d, (ii) Pg + 1/4 (6H + L)dg]

7-44 Inthe arrangement shown infigure-7.112 aviscous liquid
whose density is 1gm/cm^ flows along atube out ofawide tank
A.Find thevelocityof the liquidflowif = 10cm, = 20 cm,

= 35 cm. All the distances I are equal.

Figure 7.112

Ans. [1 m/s]

2-45 Ablock ofwood weighs 12 kgand has arelative density
0.6. It is to be in water with 0.9 of its volume immersed. What
weight ofametal isneeded (a) ifthe metal isonthe top ofwood,
(b) ifthe metal isattached belowthe wood? [RD ofmetal = 14].

Ans. [(a) 6 kg, (b) 6.5 kg]

7-46 Alevelcontrollerisshownin thefigure-7.113 itconsists
ofathin circularplug ofdiameter 10 cmand acylindrical plug of
diameter 20cmtied together with a light rigid rod oflength 10
cm.The plug fits in smoothlyin a drain hole at the bottom of the
tank which opens into atmosphere. As, water fills up and the
level reaches height h, the plug opens. Find h. Determine the
level ofwater inthetankwhen theplugcloses again. The float
has a mass 3 kg and the plug may be assumed as massless.

'Mtdat

rjr.r-.ro cm

Figure 7.113

. „ 2(3 + 7:) . 3 + n.
Ans.[A,- —]
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7-47 Two communicating cylindrical tubes contain mercury.
Thediameterof one vesselis threetimeslargerthanthe diameter
ofone vessel is three times larger than the diameter ofthe other.
A column ofheight 68 cm is poured into the narrow vessel. How

much will the mercury level rise in the other vessel and how

much.will itsinkin thenarrowone? Howmuchwill themercury
level rise in the narrow vessel ifthe column ofwater ofthe same

height is poured into the broad vessel." ' •

Ans. [0.5 cm, 4.5 cm, result will be same]

7-48 The CZ-tube acts as a wat^rsiphon. The bend in the tube
is 1 m above the water surface. The tube outlet is 7 m below the

watersurfabe. Thewaterissues from thebottom of thesiphon
asa free jet atatmospheric pressure. Determine thespeedof the
freejet and the minimum absolutepressureof the water in the
bend. Given atmospheric pressure = 1.01 x l(}^N/m^,g=9.8 m/s^
anddensity ofwater= 10^ kg/m^.

Ans. [11.7 iii>s, 2.27 x lo" N/m^]

7-49 The interface of two liquids of densities p and 2p
respectively lies at thepoints ina Utube at rest. Theheight of
liquid column above A is Sa/3 whereAB = a. The cross sectional

area of the tube is S. Withwhatangularvelocitythe tube must
be whirled about a vertical axis at a distance 'a' such that the

i

interface of the liquids shifts towards B by 2a/3.

8a/3

2p

•A

Figure 7.114

7-50 Figure-7.115 shows the top view of a cylindrical can
mounted ona turntable. The canis filled with water. Ata depth
h below the water surface are two horizontal tubes of length /
andcross-sectional areaa, withright-angle bends at theirends.
Show that, as thewater jets emerge from the tubes, there is a
torque t exerted onthesystem given bythe expression r=4pg/i
ir + l)a, where p is the densityof the water.
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7-53 Asmall tube isbentintheform ofacircle whose plane is
vertical. Equal quantities by volume oftwo fluids ofdensities p
anda fill halfthetube. Find theangle cj) thattheradius passing
through the common surface makes with the vertical.

Figure 7.115

7-51 Awooden stick of length I, radius R anddensity p hasa
small metal piece ofmass m(ofnegligible volume) attached to
itsone end. Find the minimum value for the mass m(interms of
given parameters) that would make the stick float vertically in
equilibrium inaliquid ofdensity ct.

Ans. [uR Lp If-'
Figure 7.117

7-52 Acontainer oflarge uniform cross-sectional area^ resting
on ahorizontal surface holds two immiscible, non-viscous and
incompressible liquids ofdensitiesifand 2d, each ofheight///2
as shown infigure-7.n6. The lower density liquid isopen to
the atmosphere having pressure F^. Atiny hole ofarea s(s « A)
is punched on the vertical side of the container at a height
/j (/j <H/2). Determine:

Ans. [tan(ti =

hh

Mil

Figure 7.116

(i) the initial speed ofefflux of the liquid at the hole.
(ii) ' the horizontal distance xtravelled by the liquid initially,
and

(iii) the height at whieh the hole should be.punched so that
the liquid travels the maximum distance initially. Also
calculate x^.

(Neglect the air resistance in these calculations)

Ans. [(i) V= , (ii) ^[(3H-4h)h] ,

(iii).

7-54 Arectangular, air mattress has a length 2.0 m, a width
0.50 m and thickness 0.08 m. What is the maximum mass ofa
man who lying on the mattress can float on water ifthe mass of
the mattress is 2.0 kg. What is the density ofthe mattress?

Ans. [78 kg and 25 kg/m']

7-55 Awooden plank oflength Im and uniform cross-section
is hinged at one end to the bottom oftank as shown in figure-
7.118. The tank isfilled with water upto aheight of0.5 m. Find
the angle 0 that the plank makes'with the vertical in the
equilibrium position. [Exclude the case 0=0].

:

Figure 7.118

Ans. [0 '= 45°]

7-56 The cross-sectional area ofthe U-tube shown inthe figure-
7.119 is everywhere uniform and ofvalue 1.25 x10 ^m.The
horizontal section ofthe tube isof length 20cm. When atrest,
the limbs ofthe tube contain aliquid ofdensity 2.5 up toequal
heights. Ifthe tube is rotated with angular velocity of 8.4 rad/s
about one limb, calculate the volume ofliquid that flows from
one limb to the other.
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-20 cm-

Figure 7.119

Ans. [88.2 cm^]

7-57 Calculate the rate of flow of glycerine of density
1.25^10^ kg/m^ through the conical section ofapipe ifthe radii
ofitsends are0.1 raand0.04mandthe pressure drop across its
lengthis 10N/m^.

Ans. [6.44 x IQ-^ mVs]

7-58 Acube ofice ofedge 4cmisplaced inanempty cylindrical
glass ofinner diameter 6cm. Assume that the ice melts uniformly
form each side so that it always retains its cubical shape.
Remembering that ice is lighter than water, find the length of
theedge of the icecube at the instant itjust leaves contact with
the bottom of the glass.

Ans. [2.26 cm]

7-59 A cylindrical tankhaving cross-sectional area^ = 0.5m^
is filled with two liquids ofdensities pj = 900 kg/m^ and
p2 ~ kg/m^ to aheight h=60 cm each as shown in figure-
7.120. Asmall hole having area a=Scm^ ismade inright vertical
wall at a heighty = 20 cm from the bottom. Calculate
(a) velocity ofefflux

(b) horizontal force F tokeep the cylinder instatic equilibrium,
if it isplaced ona smooth horizontal plane and
(c) minimum and maximum values ofF tokeep the cylinder in
static equilibrium, if the coefficient of fiiction between the
cylinder andtheplaneis p = 0.01.g= 10m/s^.

Figure 7.120

Ads. [(a) 4 m/s, (b) 7.2 N, (c) Zero, 52.2 N]

Fluid Mechanics

7-60 A conical vessel without a bottom stands on a table. A

liquid is poured with the vessel & as soon as the level reaches

h, the pressure ofthe liquid raises the vessel. The radius of the

base of the vessel is R and half angle of the cone is a and the
weight of the vessel is W. Whatis the density of the liquid ?

"^^TTTpTTTTTTTTTTWTTZ^TTTTTTTTTTT?
•IK-

Figure 7.121

W
Ans. [p =•

nh pgtana|̂ .R-yAtanaJ

7-61 Water flows ina horizontal pipewhose oneendisclosed
witha valueand thepressuregaugefalls to 1 x 10^ N/m^ when
the valve isopened. Calculate the speed ofwater flowing inthe
pipe.

Ans. [20 m/s]

7-62 A liquidis kept in a cylindrical vessel which is rotated
along its axis. The liquid rises at the sides. If the radius of the
vessel is0.05 mandthespeed ofrotation is2 rev. persec., find
the difference in the height of the liquid at the centre of the
vessel and at its sides.

Ans. [0.02 m]

7-63 A cylindrical tank of basearea^ has a smallhole of area
'cr' at the bottom. Attime /= 0,a tap starts tosupply water into >
the tank at a constant rate a m^/s.

(a) What is the maximum level ofwaterin the tank?
• > niaX

(b) Findthe timewhenlevelof waterbecomesh (<

Ans. [(a)
2ga

2 .(b)
ag

7-64 The figure-7.122 shows a siphon in action. The liquid
flowing through the siphon has a density of 1.5 gm/cm^
Calculate the pressure difference between

(a) Points A and D,

(b) Pints B and C
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Figure 7.122

Ans. [(a) 0, (b) 26460 N/m^]

7-65 A water clock used in ancient Greek is designed as a
closed vessel with a small orifice O. The time is determined
according to the level ofthe water in the vessel. What should
be the shape ofthe vessel be for the time scale to be uniform.
Find mathematical equation governing curve AOB.

r•n n.

T A

80cm

Figure 7.123

Ans. [y= 4 X10 ^x"]

479 5

7-67 Two identical containers are open at the top and are
connected at the bottom via a tubeof negligible volume anda
valvewhich is closed. Bothcontainers are filled initially to the
same height of1.00 m, one with water, the otherwith mercury, as
the drawing indicates. The valve is then opened. Water and
mercury are immiscible. Determine the fluid level in the left
container when equilibrium is re-established.

Valve

Figure 7.125

Ans. [1.46 m]

7-68 Athin rod oflengthL &area ofcross-section 5" ispivoted
at its lowest point P inside a stationary, homogeneous &non-
viscous liquid (Figure-7.126). The rod is free to rotate inavertical
plane about ahorizontal axis passing through P. The density
ofthe material ofthe rod is smaller than the density d^ ofthe
liquid. The rod is displacedby asmall angle 0from its equilibrium
position and then released. Show that the motion of the rod is
simple harmonic and determine its angular frequency in terms
of the given parameters.

7-66 Asphere ofradius i?, made from material ofspecific gravity
SG, is submerged in atank ofwater. The sphere is placed over a
hole, ofradius a,in the tank bottom. For the dimensions given,
determine the minimum SG required for the sphere to remain in
the position shown.

R=2Qmm

if = 0.8 m ;

0=2 mm

Flgure-7.124

Ans. [5G > 0.70]

Figure 7.126

Ans. [(0 = 2diL

1/2

]

7-69 Asyringe ofdiameter D=Smm and having anozzle of
diameter c/= 2nim isplaced horizontally ataheight of1.25-mas
shown in the figure-7.127. An incompressible and non-viscous
liquid is filled iii syringe and the piston is moved at speed of
V= 0.25 m/s. Find the range ofliquid jetonthe ground.
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v^0.25it2/s

h-l.25 m

Figure 7.127

Ans. [2 m]

7-70 A water pipe with internal diameter of2 cm carries water
at the floor of a house with velocity 2 m/s and at pressure
2 XlO^N/m^.Anotherpipeofintemal diameter 1cmisconnected
to it and takes water to 1st floor, 5 m above ground. What is the

velocity andwater pressure at 1stfloor? (Takeg= 10 m/s^).

Ans. [8 m/s, 1.2 >< 10^ N/m^]

7-71 Water and oil are poured into the two limbs of a t/-tube
containingmercury(figure-7.128). The interfacesof the mercury
and the liquids are at the same height in both limbs.

Determine the height of the water column if that of the oil
/?2 = 20 cm.The densityof the oil is 0.9.

Ans. [18 cm]

T
h

i

I

\J
Figure 7.128

7-72 Purewateris addeddropby drop to a vesselofvolume V
filled with a salt solution ofspecific gravityy which is allowed
to overflow. Find the specific gravity of the solution when a
volume U ofwater has been poured.

Ans. [p = 1 + (y- 1) e '̂̂ ]

7-73 Water flows outof a bigtank alonga tubeat right angles.
The inside radius of the tube is equal to r as shownin figure-
7.129.Thelength of the horizontal sectionof the tube is equal
to /. The water flow rate is Q litres/second. Find the moment of
reaction forces of flowing water, acting on the mbe's walls,
relative to the point O.

Fluid Mechanics!

Figure 7.129

Ans.

7-74 Acylindricaltankwitha height/? = 1m is filledwithwater
up to itsbrim, (a)whattimeis requiredto emptythe tankthrough
an orifice at its bottom it the cross-sectional area ofthe orifice is

that oftank? (b) Compare this time with that required for

the same volume of water to flow out of the tank if the water

level in the tank is maintained constant at a height h = \m from
the orifice.

Ans. [(a) 3 min. (b) 1.5 min.]

7-75 An open rectangular tank with dimensions5mx4mx3ni
contains water upto a height of2 m is accelerated horizontally
along the longer side.
(a) Determine the maximum acceleration that can be given
without spilling the water.
(b) If this acceleration is increased by 20%. Calculate the
percentage of water spilt over.
(c) If initially, the tank is closed at the top and is accelerated
horizontally by9m/s^, find the gauge pressure at the bottom of
thefront andrearwalls of the tank. (^=10 m/s^)

Rear

3m

5m

r?

T
2m

1

Front

Figure 7.130

Ans. [(a) 4 m/s^ (b) 10% (c) Zero, 4.5 x 10^ pa]

7-76 Twoholes, eachofarea^ = 0.2 cm^ are drilled in the wall
ofa vessel filled with water. The distances ofthe holes from the

level ofwater areand A+//. Find the point where the streams
flowing out ofthe holes intersect. The level ofwater is maintained
in the vessel by regulated supply.
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•-rf"-
.•zH-i
;-±

Figure 7.131

Ans. [x= 2^h{h +H) ,y = H+2h]

7-77 A vertical tube has diameter 0.016 m at its bottom end

from which water flows out at the rate of 1.2 kg per minute. The
pressure at the end is atmosphericpressure 0.7 m ofmercury.If
the diameter ofthe tube is 0.004 ra at a height of0.3 m from the
bottom end, find the pressure there.

Ans. [0.7303 m of mercury]

7-78 A cylinder tank ofheight 0.4 m is open at the top and has
a diameter 0.16 m. Water is filled in it upto a height of0.16 m.
Calculate how longwill it taketo emptythe tankthrougha hole
ofradius 5 x 10~^ m in its bottom.

Ans. [46.265 s]

7-79 A largeopen top containerof negligiblemassand uniform
cross-sectional area A has a small hole of cross-sectional area

y4/100 in its side wall near the bottom. The container is kept on

a smooth horizontal floor and contains a liquid ofdensity p and
mass Wq. Assuming that the liquid starts flowing outhorizontally
through the hole at r = 0, Calculate
(i) the acceleration of the container, and
(ii) its velocity when 75% of the liquid has drained out.

Ans. [(i) 0.2 m/sec^ (ii) 10 1^1

7-80 A cylindricalbucket, open at the top, is 0.200 m high and
0.100 m in diameter. A circular hole with cross-section area

1.00 cm^ is cut in the centre ofthe bottom ofthe bucket. Water
flows into the bucket from a tube above it at the rate of

1.30x10"^m^/s. Howhighwillthewaterinthebucket rise?

Ans. [8.6 cm]

7-81 A uniform cylindrical block of length I density d^ and
areaof cross section Afloats ina liquid of density dj contained
in a vessel {d^> J,). The bottom ofthe cylinder justrests ona
spring of constant k.The otherendof the spring is fixed to the
bottom ofthe vessel. A weight that may be placed on top ofthe
cylindersuch that the cylinderis just submerged in the liquid.
Find the weight.

A

W

Figure 7.132

Ans. [i(^d2'do(~+Agj ]

481'

7-82 A ball of density d is dropped onto a horizontal solid
surface. It bounces elastically from the surface and retums to
its original position in a time Next, the ball is released and it
falls through the same height before striking the surface of a
liquidof density d^.
(a) if <7 <d^, obtain anexpression (interms ofd, andd^) for
the time the ball takes to come back to the position from
which it was released.

(b) is the motion ofthe ball simple harmonic ?
(c) \fd-d^, howdoes the speed f theballdepend onitsdepth
inside the liquid ? Neglect all frictional and other dissipative
forces. Assume the depth of the liquid to be large.

diAns. [(a) I,
d, -d

, (b) No]

7-83 A side wall ,of a wide open tank is provided with a
narrowing tube through which water flows out. The cross-
sectional area of the tube decreases from S = 3.0 cm^ to
5' = 1.0cm^. Thewaterlevel inthetankisA = 4.6 mhigher than
in the tube. Neglecting the viscosity ofwater, find the horizontal
component of the force tending to pull the tube out ofthe tank.

1 I ,s_

J.

Figure 7.133

Ans. [6 N]

7-84 A ping-pong ball has a volume Vand density (l/10)th of
water. What force would be required to hold it completely
submerged under water?

Ans. [(9/10) Vq downwards]
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7-85 Water leaks out from an open tank through a hole ofarea
2 mm^ in the bottom. Suppose water is filled up to height of
80 cm and the area of cross-section of the tank is 0.4 m^. the

pressure at the open surface and at the hole are equal to the
atmospheric pressure. Neglect the small velocity of the water
near the open surface in the tank, (a) Find the initial speed of

\ water coming out ofthe hole, (b) Find the speed ofwater coming
Vut when half ofwater has laked out. (c) Find the volume of

water leaked out during a time interval dt after the height
remained is h. Thus find the decrease in height dh in terms ofh
and dt. (d) Fromthe resultof part (c) fmdthe timerequiredfor
half of the water to leak out.

Ans. [(a) 4 m/s, (b) m/s,

(c) (2 mm^) ^2gh dt, ^jlgh x 5 10"® dt, (d) 6.5 hours]

7-86 A Steel ball floatsin a vesselwithmercury. How will the
volumeofthe part ofthe ball submerged in mercury change ifa
layer ofwater completely coveringthe ball is poured above the
mercury? If and p^ are the densities of water, steel and
mercury, find the ratio ofthese two volumes interms inofp^,p_j'
and p^.

Ans. [
Vo l-pjp„

L^i i-PJPs

Fluid Mechanical

7-87 Water flows through a tube shown in figure-7.134. The
areas of cross-section at A and B are 1 cm^ and 0.5 cm^

respectively. The height difference between.^ and 5 is 5 cm. If
the speed ofwater at^ is 10 cm/s fmd (a) the speed at B and (b)
the difference in pressures at A and B.

Figure 7.134

Ans. [(a) 20 cm/s, (b) 485 N/m^]

7-87 A jet of water issues vertically at a speedof 30 feetper
second from a nozzle of 0.1 square inch cross-section. A ball
weighing onepoundis balancedinthe airby impactofwateron
its underside. Findtheheight of theball abovethe level of jet.
Takeg=3fVs^.

Ans. [4-6 feet]
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ANSWER & SOLUTIONS

CONCEPTUAL MCQs Single Option Correct

1 (B) 2 (A) 3 (C)
4 (C) 5 (C) 6 (A)
7 (C) 8 (B) 9 (A)
10 (D) 11 (A) 12 (A)
13 (D) 14 (A) 15 (A)
16 (C) 17 (A) 18 (D)

19 (B) 20 (A) 21 (A)
22 (A) 23 (A) 24 (A)

25 (C) 26 (B) 27 (D)
28 (B) 29 (C) 30 (B)
31 (C) 32 (B) 33 (B)

34 (B) 35 (A)

NUMERICAL MCQs Single Option Correct

1 (D) 2 (D) 3 (A)

4 (C) 5 (B) 6 (C)
7 (D) 8 (B) 9 (C)

10 (D) 11 (D) 12 (B)

13 (C) 14 (A) 15 (D)
16 (C) 17 (D) 18 (A)

19 (A) 20 (D) 21 (B)

22 (D) .23 (C) 24 (D)

25 (D) 26 (B) 27 (G)

28 (D) 29 (B) 30 (D)

31 (B) 32 (B) 33 (B)

34 (C) 35 (B) 36 (C)

37 (A) 38 (B) 39 (A)

40 (C) 41 (A) 42 (B)

43 (B) 44 (D) 45 (C)

46 (B) 47 (C) 48 (B)

49 (B) 50 (C) 51 (B)

52 (A) 53 (C) 54 (C)

55 (B) 56 (D) 57 (C)

58 (B) 59 (D) 60 (A)

61 (A) 62 (C) 63 (D)

64 (D) 65 (D) 66 (B)

67 (D) 68. (A) 69 (D)

70 (B) 71 (C) 72 (B)

73 (D) 74 (C) 75 (A)

76 (B) 77 (B) 78 (A)

79 (C) 80 (D) 81 (A)

82 (A) 83 (A) 84 (A)

85 (A) 86 (B) 87 (D)
88 (C) 89 (B) 90 (C)

91 (C) 92 (D) 93 (A)

94 (C) 95 (B) 96 (B)

97 (C) 98 (A) 99 (D)
100 (C) • 101 (B) 102 (D)

103 (B) 104 (A) 105 (A)

106 (B) 107 (B) 108 (D)

109 (B) 110 (A) 111 (A)

ADVANCE MCQs One or More Options Correct

1 (A) 2 (A, B. C) 3 (B. D)
4 (A, C, D) 5 (B, C) 6 (B. D)
7 (B, C) 8 (A, C) 9 (A, B, C)
10 (B, C, D) 11 (B. C) 12 (A, B. C)
13 (A, C, D) 14 (A, C) IS (A, D)
16 (B, C, D) 17 (C, D)

Solutions ofPRACTICE EXERCISE 1.1

(i) For^
t

30
20

t

t=-jhr=9^mm

For 5 actual riding time is

VOmin = —hr
0

30 180= y X6=— =25.75 Iqjh

(ii) Time for sound to travel 1 km

100

N= 3 for r = 0,1 and 2 secondsThus

10
(iii) Time to overtake t = ~ = 2s

Road distance covered =25x2 + 5 = 55m

Civ)

We use

aiid

KU) I

V, Vj

21
Mean velocity =

Vi

ri = //vo

, ^1^2 . V2^2

2 2

21

h= V, +v.

21

I
— + .

Vq V,+V2

21

2vo(vi+Va)
v,+V2+2Vo

483
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(v) If car turn off the highway at a distance x from point
D{CD=x)
time to reach point B by car is

dsminwhen ,

Which results

L-x yflF^
t= + ,

V o

dt

X-

(vQ If Vj and are velocity of soundand windweuse

/

Solving we get

and

V,+V2

^2
V, -V,

Vi + V2=-

vi-v,= -

2

Vn = —
2 2

v'l '2

'̂1

(vii) Ifsides are x and x + 1, we use

X+(x+1) + (x-i-1)^
^^ =0.54 4 ,

on solving we get x = 3 & x+l=4

(viii) Time taken by car to reach wall

• 20
'=^=0.5hr

Total distance travelled by fly in 0.5 hr is
5 = 100x0.5 = 50km

Each trip distance will be in converging GP so number oftrips
will be 00

Solutions ofPRACTICEEXERCISE 1.2

(i) During acceleration v-= a/ = 4 x 5 = 20 m/s

5i =|a/2=^x4x(5)2=50ni

During uniform motion ^

During retardation 1 20
t- — = — -10 sec

a . 2

i 253 = v/- -at

Kinematics^

=20x 10-i x2x(l0)2=i00m
Total distance = 50 + 500 +100 = 650m

(ii) (a)

(b)

(c)

a =

a =

48x— .

^ = 3.7m/s^
3.6

48x

10.2-3.6
^ = 2.01m/s'

140x —
18

\2

a =

2s 2x400
= 1.89m/s2

(iii) As time are equal t =
l-JlL 2L

2V2L 4L^
a . '

a =

y[2L

0v) Overtaking time

Ifcar's initial speed is u,

600

20
= 30s

1
600 =4(30)+-(1) (30)2

=> > M= 5m/s >

After 30 sec car's speed v= 5 + (1) (30)= 35 m/s
innext20 secsepbetween car & truck= (35-20) x20 = 300m
Note: This problem can alsobe sloved easilyusinggraphs.

(v) Time to which motorcycle accelerates

rj =-^ =̂ =105
' a. 1

and •5,= 2(0(10)'=50m



{Kinematics

Time to which car accelerates

2 0.5

and ^2 = -(0.5) (30)2=225 m

Ifovertaking occurs at time t, we use

50 + 10(^-10) = 225 +15(/- 30)

10/-50 = 15^-225

5r = 175

175
t~ =35s

at r = 35s

Distance is 5 = 50 +10 (35-10)

- =300m

Note: This problem

(vi)
(20)'

30=20/„+2^
^ 2a

• (10)^I0 =l0r,+ ^
Solving (1) and (2) we get

a = 10 m/s2

= 0,5 sec

Thus at 15m/s 5 = 15r^+ (15)^
2a

225

(™>]~ 2, c • B

For unform acceleration + 2al

v] =u^ + 2al

Solving

Also

and

= 15x0.5 +
20

=7.5 + 11.25 = 18.75m

/

V. =
v2+«2

V = w + 2at
C

v = v^+at

Substituting and elaminating at we get

v = 7m

(vlii) If / isnormal runing time then

/

80

SOkph 100 kph

Delhi Pune
t, •

Here /, = —+ 2
> 80

100-80

^2" 20- = lhr

^3- 100

4851

Here A:2 = 80(l)+~(20)(l)2=90km

Thus total time

(X, , //-x-90^
^+2 +1+ 5

1,80 ) 1, ,100 )

Soving it gives^ ^~ ~ ^ ^

(ix) Distance ofevent-1 is

/=/,+/,+/,= —
' ' ' 80

_L
80

5i'=350+ ^X0.03 X(30)2=363.5 m

Distance of event-2 is x0.03x(90)2 = 121.5m

Distance between event-1 and 2 frame oftrain

=350 m

Distance between event-1 and 2 frame ofgroimd

= jj-52 = 242m

Speed of frome in which both event occur at same place

' 242

=4.03 m/s

v =

(x) Stopping distance ofcar-1

Stopping distance ofcar-2

Separation between cars

(10)^
2x2

(12)1
2x2

= 25m

= 36m

= 150-25-36 = 89m
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(id) After time/

1
40/ = - X4 X/2

2

/ = 20.s

Distance between then at time t

x = A0t-2f

xis max\\iien
dx
— =40_4/ = 0 =>
at

^n^ =40(10)-2(10)2

/=10s

=200 m

Solutions ofPRACTICE EXERCISE 1.3

(i) Given that

First mark is at

Fourth mark is at

1.6 = —a (4)^ whichgives

0 = 0.2 m/s^

5i =io(2)2=-io.2x(2)2=0.4m

0.2 X(8)2=6.4m

(ii) Total time offall is t= ^ ^6s

Time internal between drops = 2s

Location of second drop =̂ x9.8 x(4)2=78.4m

Location of third drop = —x9.8x(2)2= 19.6m

(Ui)

Max hight in

h = uT-gT^ gives

I -2h.-gr
u =

H=
u' (2h+gTy
2g SgT'

(w) Projection speed u=.^[^ =lOm/s

Total time ofmotion t= — =2s
g

Internal between balls = 0.5s

Height of2"^ ball ^3 =̂0 (1.5)-1 (io) (1.5)2=3.75 m

Kinematlcsl

Height of 3*^ ball

Heightof 4''̂ ball

;;5=10(l)--(10)(l)2 = 5m

h.= 10(0.5)--!-(10)(0.5)2=3.75m

(v) If at the bottom & of window speed of potential is u and v

v = m-32x0.5

and v2 = «2_2x32x5

Solvingwe get u = l6fs;v = 4fsGC
Height above window the potential rises is

2g 2x32 16

(vi) Given that -A = w/j --g/,

h = ut^+~gtl

Solving(1), (2) and (3) we get

'3

(vii) We use

^^\lg '̂ 340
Solving we get A=40.7 m

(viii) Iftime to fall is t, we use

60 = 5/-!- -(10)/^

/2-!-/-12=0

/ = 3 sec

Distanceof teacher frombuilding

=2x3=6m

(ix) Fall in 3^ is A= -(10)(3)2=45m

Total time offall for boy =^ ~

Time available for batman = (y/w-3)s =1.472?

...(1)

...(2)

...(3)

We use

Solving we get

100 =u(y/2d -3)+1(10)(^-3)'
w=60.5 m/s



iKinematics

(x) Given that - 27.3 =«(16)-^ {9.8) (16)2
Solving we get u= 76.8 m/s

v2

Max height by apple 77=~+27.3= 327.45m
2x9.8

(xi) Height ascend in 1 min is

;, =ix30x(60)2=54000m

(1800)^ 324x10'Further height reached - ^ =——— =162000m

maximum height attained =54000+162000m
=216000m=216km

Total time taken

=447.84 s

Solutions ofPRACTICE EXERCISE 1.4

^ 1800 2x216000
f = 60+ + J

10 V 10

(i) Total distance travelled can be calculated by area imder v-t
curve shown in figure

5= —X30x50 = 570m
2-

30ni/s

(ii) Average velocity is zero at /= 15s when displacement is
zero. This can be shown by dotted line in graph mentioned
below

5 10 15 20 25

(iii) Given that

Total distance is

/j + /2=4min.

=2km/min

...(1)

Here we also have a,~ — and a~= —If 2 #
'1 h

2 2
From equation (1) — + — =4

a, a-,

4min

0v) Below given v-t graph shows the motion

v_ = 60 km/hr

St I

Area under v-t curve
Average speed =

10/

—X 60x18/
2

10/
= 54 kph

(v) Motion v-t graph is sown below

25

Total distance = 65

Total time= + ^2 ^3

Angular speed =
6s

/,+/2+/3

2s 6s 2s
.Max speed we use = — = — = ~

/, /j /j

Ratis ofaverage speed to max speed

6s

2s 2s 6s /
— + — + —/

/

A-1
10~5

4871



(vii) (a)

(b)

Total displacement

Total time

= — = 0.1m/s
20

^max ^ slopeofcurve

=^=0.25 m/s
4

(c) Instant velocity and mean velocity equal at the point where

tangent to cuve passing through origin touches i.e

at / = 16s

dv

dx
(vill) acceleration a=v.

= 3x1 -- = -1.5m.s

(Ix) Position time curve ofparticle distance travelled in

^ = 0 to t= 10s

10 20 30 40 50

s^=- x5x(10)2 =25Qm

/= 10 to / = 20

52 = vj'=50x 10 = 500m

t —20 to / = 30

53 = 55 = 250m

/• = 30 to ?= 40

54 =0

r = 40 to r=50

53=55=350m.

Solutions ofPRACTICE EXERCISE 1.5

(i) Given that ' yfx +3

x={t-3f = f--6t + 9

dx
v= — =2?-6 = 0

dt

x=0mat f = 3s

(11) Given that
^ x^+2

dx 3

dt x^ +2

h

\{_x'+2)dx =^2dt
2

3('2"'i) = — + 2x
3

'2 3
64 o 8 ,
— + 8 4

3 3

— + 4
3 " 9 ^

Kinematicsj

Average velocity
4-2 2x9

V..., = = = 0.264 m/s
^^8 t^-t^ 68

(Hi) Given that a = b-cx

dv
v-=(A-„)

0 I

^vdv =^{b-cx)dx
0 0

[limits for vare taken 0 to 0 as car stops at both stations]

0 = bx —

bi-^ =0
2

/- —
c

cx'



{Kinematics

Ov)

at

(V)

(a)

x = t^-6t^ + 3t + 4

v=— = 3t^-l2t +3
• dt

dv
fll = 6/-12 = 0
dt

^ = 2 sec

v= 3(2)2-12(2)+ 3

=-9m/s

r=6/(l-a0 •

V = — = b-2bat=b{l-2at)
dt

a — — ——2b(X
dt

(b) At which position r =0
=> ? = l/a

For uniform acceleration distance covered in accelerated and

retardedmotionareequalin equaltimeintervalsototaldistance
is

(vi)

s- b
'±
,2a

2a

a = ~kv

vdv ,

V, /

^dv =-\kdx

v^-Vo =-W

V/= VQ-fc/

1-a
rj_
2a

x2

When box is at a distance a: from starting potential ts speed is

V= Vq - fct

dx

I— =U') y, -Iry Jv^-kx0 *^0

t= -7[ln(Vo-AAc)]i
k

= —In
k

(vii) a = C^

7 I, 2nK

J V •'

[inv] '̂' =~27lRC

In —g-2nRC

- ,.„-2t:RCVy.= ue

Solutions ofPRACTICE EXERCISE1.6

(i) 4 kph

: kph

here

Time to cross the river -

N

= sin * — = 30"
2

r =
0.5 0.5

t= —i=hr
^yl3

=4.33 min

50x^25

(li) w- ->E

resultant speed of plane is

Vr= V(50)'+(25)'-2(50)(25)cos45=
=36.837 kph

Displacementofplane in 2hrs

=36.837x2=73.67 km

(iii) u

489!



Time to cross the river

- v_ cos I

Total drift 5C=(w + v sin 9)-
cos 0

Time to return form C to £

BC

h

Total time

^ 0.5 ^ 0.5 (2f3sin0)
3 cos 8 3cos0

dT
Twill be least when — =0

a0

^sec0tan0+-^(2sec0tan0+3sec^ 0) =o
5 tan 0 + 2tan 0 + 3 sec 0 = 0

7tan 0 = - 3 sec 0

sin0=-y =25°22'

cos 0 =

Here 0 could be negative to reduce distance BC

d 0.5
Time to cross is /, =

' v„cos0

= 0.1845 hrs

0.5

3 cos

/• /

2+3
-3

L7-Timeofwalkis t^ =
ISsin I

= 0.263 his

fiv) Total time T= 0.1845 + 0.0263 = 0.2108 hrs

= 12.65 min

Boat B Boat .4

V + «

Kinematic^

/ I

v + u v-u

21

ylv^-u^

Time ofmotion ofboat ^4

Time ofmotion ofboat B

Ia_

h

8kph 4 kph

W\ VJ
\ '̂ RM /^\

^ ^RM

[given that v= 12u\

Here

Thus

(w)

^RM= 4>/3^;i

v^=V8' +(4V3)^

= 4-v/7kph

a^3= (a+0.3?)m/s^

Vab ~40m/s

j=225m

If intime/j, trains arejustabout tocollide then

0 ,'i

J =-\ia+0.3t)dt

Also

40 =.t.+ ^
• 2

"AB I

J ^AB =j(a+0.3t)dt

225 'i

^ds =^AQ~at—^—dt
) 0 ^

225=40/,--^-^
From (1)and (2) we get a = 2.5 m/s^

fi = 10s

.(1)

•(2)



(vii) v, = v \/2af
A

• ®
5 V, = t/r

v^,= v~aT
a2i=-a

s = ~oT
2

Using

We get

1 2
5=V2j/+-a21^

2 ^ ^ 2

—(v-flr)f+r^=o
a

Difference of roots ^"2 - ^ "47

= -ylv(y-2aT)
a

Here ?jand are times when displacements ofboth bodies are
equal.

N

(viil) v„ = 20m/s

t

fV-

/' AB = 500 km

-*•£

In the vector triangle we use

sin 30° sin0

sin0 = —sin30=

20

150''2 15

. 1
0= sm —
^ 15

Time taken to go fromX to5 is

.45cos30'^
t = = 50min

v^ + v„cos(0 + 3O°)

'•Jv^ -u

(ix) (a) H

V + «

time to complete the square is

a a
t= +

a
: + + -

V + « v-M

(b)

2av 2a
t= r +

v+yjv^
/= 2a

v'-u'

- M

sin0

u

sin a

= V2v,

= V2v

sin0 = sina =

Time to complete the square is

42v

2a

491]

2a

u u
vcosa + —vcosa—1=

Ji V2

/=2a
2vcos0

u
V cos 0

cos 0= Jl-
2v'



t=2a

t = 2a

2sl2
4v V2v

u' )

2>/2V2v'-m^
2v'-2w^

2y/2ayj2v^ -u^

(X)

Time to cross t =
VCOS0

Total drift / = (vsin 0+ Mq)
VCOS0

/=(/tan0+-^^
VCOS0

u^d
v =

{l-d tan 0) COS 0

v =

dv
visminimum when 37=^0

a0

- / sin 0-i/cos 0=0

dtan 0=-y

/cos0-£/sin0

sin 0 = -

and cos 0 =
I

From (1) we have v - =
Ur,d

yfl

Solutions ofPRACTICE EXERCISE 1.7

(i)

(ii)

(lii)

as

y=^f
V=2^t

x = 2-at

v^ = ~a

i7_=0 : ••

v=

= Vl2.96 +12.96/^
<3 = 2p = 3.6m/s^ >

v,.3= 712.96(10) =11.38 m/s
ij^^3 =3.6m/s^

dy

= 5m/s^

12 5 2
-2 2

a = 10- lO^m/s^

V ^

JviA' =J(10-10;')(/j

Y =10>'-5/

^ -v^=^20y-\0/
J'

1

i["n-'(7-i)]:=r
(1) sin-^0-l)-sin"'(-l)= ^J\Ot

From equation (1)

sin"'(y-l-)-7c=

2yfx =sin"'(>'-l)-7c

a=ay^

^y=-g

3',= w'-yg?

a_= a

dv

It

..(1)

-d)

-augt



IKinematics

2.2 , agV
= t7M^r + -augr dt

dx au^t^ ^ag^t^ augt'̂
dt 3 20

au t' âgY augt'
3 20 4

au^t^. ag^t^ augt^
12 "^120 W

Diplacement

(iv)

r= yjxj +yf

a__ = bt^

bt^dt

dx ; bt^

dt 3

r- rbt'

bt'

Substituting time offlight in (1) we get

bR^
In

R+yl2RH-H^
x =

48go'

a, = -'gfl-
/̂?

.Z. =

"2
gpy

R

|v/v, =- jso^i-y
0 H ^ ^ ^

+goy

R-H

dy

H

gpy

R
•gpy

gpH^
R

dy= ^^\iR-yf-(.R-nf]dt

-•gpH

...(2)

dy f 1^dt

In
{R-y) +^{R-yj^-{R-Hy

R-H
-I H

In
R+^2-RH-H^

R-H

(v) Given that

Here

(vi) Given that

From (1) and (2)

at t = 0

r = A sin 0)/ + c cos o)t

b - bi

c=cj

=> x = bsinG>t

y = cos cot

Squaring and adding (1) and (2), we get

0 c

x =

y =

y =

y=

2 cos 7C/

1-4 005 271/ •

l-(2 cos^ 7i:/-l)
5-8 cos^TC/

y = 5-2:^

v_ =

dx
— =-271 sin ;r/
dt

- 87t sin 271/

dv « 2
.= -271 C0S7C/

dt

= 167:^cos 271/

v_ =

;493,

...(1)

...P)

...(1)

...a)

a^ =-27r^
ay= 1671^

= 0 =158.98m/s^v =

at t= 1.5 s

v„ = 271

—Stt

«,=0
0^=1671?

V? +vj =28.89 m/s

= 6.28 m/s

al+a^y =167^

= 157.75 m/s^
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Solutions ofPRACTICEEXERCISE 1.8

30m/s

(i) (a) 50m

w^ =30cos30°= 15^/3 m/s
M^ =30sm 30°= 15m/s

Ift is the time of flight, we use ,

-50 = 15?-5/2

/2-3/-10=0

/2-3/-10 = 0

(/-5)(/+2)=0

/ = 5 sec

(b) Distance ^=15^/3 x5=75^ni

(c) Atthetimeofhit = 15^ m/s
And Vj, =w^-g/=15-10x5 =-35m/s

=43.58 m/s

(d) a = tan"' —
X ^

(ii)

= tan"'
35

15^3 (ii

• Wj. =24 cos 30° = 12>/3 m/s
M, =24sm30° = I2m/s

If t is time of flight, weuse

-20=12/-5/2

5/2-12/-20=0

12±V25 + 400
/=

10

= 1.2 ±2.06

/=3.265

Distence on ground where stone will hit

s-uj

' =12^/3 X3.26

=67.75 m

Kinemati^

(iii)

Velocity ofbodies 1 and 2 after time /

Vj = Vg cosa,i +(Vo sina, -gt)]

Vj = Vq cosaj + (Vf, sin - gt)j

v« = Vz-v,

= [(cos 0-2 - COS ttj)i + (sin0.2 - sinai)y]

|Vj, I= V(,[(cosa2-cosai)^+(siha2-sinaj)^]^^^

= Vo[2-cos(a2-ai)f^

. f a, - a,=2v„sin|̂ ^y-!-
Distance between bodies after time t is

. I a, -tti
j = v^/= 2vo/sin| ^

(iv) If ball hits the edgeofn''' step, its coordinets are-

nb

•~nh

2u^

gn'b'
lu"

2hu^

Equationof trajectory y =

Subsituting values ofa: &y

nh =

n -
gb'

(v) Time offlight ofshot

/ =
2v2 sin a

.g

Velocity ofshot relative to boat in horizontal direction is

V2 cos a - Vj



|Kinemat1cs

Time offlight ofshot
2v2 sin a

g

Range of shot with respect to boat is

(vi)

Velocity of 2 w.r. to 1 is

2v, sin a,
— (vj cosa-v,)

g

V, =(25-100/

- 25?
Vj - 2 '

^25^/3
-10/

V„ = V, -V

Separation after

25?
= —I +

2

(25^
-25

/= 1.7 sec is

5 =

•I?
=22.0m

f25>/3
• 2

\2

-25 xl.7

if /^ and t2 aretime ofcrossing point P then

^-1
^*2

and

:C= Wj/j = ^2^2

y=^\h-\st1 =^2^2-\stl

«,/,

^"2 7

1

2 ^

\2

V,M.

= 0V, --

/, =

/o =

♦2 J

2(V2"i -Vi"2)"2
g{uf -ul)

M/i _ 2(v^Mi -v,mOm,

^ «2 ^(wf-"2)

2(V2M, -VjMj)
A/ =/,-/, = ;2 1 gCWi+Mj)

(viii)

For ball to graze top oftower

sin 20

g
r =

495

- rg-iP sin20

After grazing, equation of trajectory

-/j = xtan(-0)-
2u^ cos^ 0

l^^ysec^ 0j+j:(tan 0)- =̂0

g yx

X-

sinO
2u^ cos 0

^COS0

-u^ sin 20 ± sin^ 20 + cos^ 0

2^

-2u^hcos^ 0=0

-u^ sin 20

2g
x = + sin^ 20+Zgh cos^ 0

[discarding - ve sing]

M^sin0cos0 2m cos 0-Jm^ sin^ 0+2gh
2g

ttcosO
x =

g

yju^ sin^ 0+2gh -H sin0j

(ix) 2m

15/«

Ifprojection speed is u
In X direction

15 = Mcos 0x0.75

20x2 40
u = = —F"m/s

V3 Vs

Rawna's face



U9&

In;'direction

-^sin30'
.^3

X0.75--(10) X(0.75)2

= {h+\.7-2)

S.66-2.Sl = h-03

/i=6.15m

Velocityat the time ofhitting rawana's face

' 40Vy= 20i +
A2^/3

-7.5 1/

(X)

= 20/ + 4.04y

Vy=.20.40 m/s

By equation of trajectory we use

-lOO = xtan0-

_ dx
Formaxrange 3^7

aO

Solving we get 0 =46.3°

Solutions ofPRACTICEEXERCISE L9

(i)

5x^

(150)^ cos^O

In y direction

In X direction

-(7= Msin 01- ~(gcos60°)/'^ ...(1)

- . 0 = wcos 0 - (g sin 60°)/

2mcos0
/ =

g

...(2)

From(l)

-d= Msin
2wcos0

sin 20- M^cos^0

•V3g

4m^cos^"^

~d=

m2 = 2gd X 1

cos^ 0-^^sin20

For u to be maximum we use

j '

— (cos^ 0- sin20) =0
d^

- 2 cos 0 sin 0- 2^3 cos 20 = 0

-sin20- 2-v/3cos20 =0

tan20= -2^3

2yl3

From(l)

sin 20= -
Vi3

cos 20 = . —
Vl3

(11) Timeofflight / =
2u

gcosa

(lii)

7?,= i^sina/^

7?j+7?2=^gsma(20'

7;i+/;2+^3=

7?2 = 37?,
Rj = 5R^

ff,;722:7?3 = l:3;5

Kinematicsi

...(1)



^Kinematics

Wesolvethe problemby consideringmotion starts fromA
If particle starting frompotentialAthen its speedat B

v=

^AB V, g

Velocity at point C is V = Vg sin a + ^ sin a {t,^

and

Total time offlight

(iv)
Vh cos 9

V= ^2ghsina +gsma.
2^'

g

V^= 3->j2gh sin a

Vy= .y^cosa

V- yj2gh(9sin^ a +cos^ a)^

K=^/^(l +8sin'a)"'

T=
\

1^+2^
g y g

f

^= 6
g

= 6.— = 6

x2

gVl +8sin^ a

6K

gVlTisin^ a

Iftime offlight is t we have
=> O=MCOs0-gsin0/'

Along}'direction

h cos 0

WCOS0

gsin9

g sin0j 2

- + —

g 2g
h = — + — cot

\2

. MCOS0 11 MCOS0
= wsin0l l+ -gcos

• ^sinuj

u =

2gh

2 + cot 0

Distance along plane / = sin 0 +

/ = /?sin 0 +

(w cos0)^
2gsin0

h cos^

(2cot^ 0) sin0

sin^ 0(2 +cot^ 0)+cos^ 0
sin9•(2+cot^ 0)

2h

(ii)

l^h

1 =
sin0(2 +cot^ 0)

Solutions ofPRACTICEEXERCISE LIO

d (dx _v
(i) FormidpointM ^ j

% d,
1 dy

ITt

= — = —vcot0
2 2

= —cosec0
2

B

/y
' Va= V cot

yY xi2

'

'////////////////////////Z
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We use
dt

v =

dx

dt

Also + (x-y)^ {L-y)^

Differentiating w.r.t to t

J dx dy
~dt~Yt_

(-Vq-v) cosa=-v

v(l —cosa)
Vn =

(iii) We use in figure shown

A 3

Shadow . y

dx ' dy
we use v = — and v =

dt ' dt

cosa

y

X

sin p sin(a + p)

xsin(a + P)

^ sinp

dy dx sin(a + P)

dt dt sin p

sin(a + p)
V = V-

sinp

(iv) We use from figure

y7777777777777777777777777777777777?7/

dy dx
we use v„= —- and u = —

^ dt dt

h'̂ + x^ = {L-yf

24=2(L-^)f4
dt V dt

w cos y = V
B

(v) We use from figure

y////A

2.8 m

•I.2m

dx dy
we use ~r = u and — = v

dt dt ^

— = 1.
2.8 -4

y-
i£
2.8

dy A dx _ A ^
dt ~ 2.8 dt ~ 2.8

= 4m/s

(\^ We use from figure

^ , dy
we use — = V, + Vt and —— = v» + v,

dt ^ ^ dt

+x^ +y^ ^L-1

Different w.r. to t

dx
4=0

^i>y+7 dt *

7Zyy7P9777>
•y^

Kinematics?



y<inematics _

(Vj + V2)COS0i-(V2 + V3)cOS02=O .

(Vi +V2)COS0,
Vo =

cos 01
-Vi

(vii) IfAismoving atv^, we can use velocitycomponents along
string for both masses to be equal

V, = V sec

Solutions ofPRACTICEEXERCISE 1.11

(i) We use t then

(a) K^ =2Fp-F5 =2x5-10 =0m/s
(b) K^ =2F^-Fg=2x5 +20 =30m/s

(ii) (a) j:^ +2x5 +2Xc-0
+2^3 +2a^=0taking all indownward motion

(b) 2;c^ +x^ +2xj^=0

^ 2^^ +05 +2a^ =0taking all in downward motion

(ill) (a) If5movestowardrightbyA:and^movetowardright
byy and / is lengthwound on motorweuse

2;c+y = /

2vg+ v^=v

(b) Ifi4 goesupby.xand5goesupbyy&/islengthwond on
motor we use

4y+x = l

4vg+ v^ = v

0v) (a) If5 moves down byXand goes upbyy weuse
y = 2x;

(b) If^ goes upbyx andB moves down byy weuse
y = 3x

(v) IfBmoves down byx and Amoves up byy and Cmoves
toward rightbyzwehaveconstrained relation

3y-4x = 2

...(1)

...(2)

From (1) =3X3- 4 X20 =- 71 cm/s (left ward)
1 2

s=ut+

27=-71x3 +ixax9

499:

(27 + 243)x2 ,
= 60cm/s^ (rightward)

From(2) a. = -^ =20 cm/s^ (upward)

(vO If^ goes down byx, B goes upbyy and C goes down by
z, constrined relation is

z= =>v^=

3y 3 3Y=>v^=-v,

After 12 s, velocity of^ will be

v^=a^(12)

7.2-a/12)

^5=p4=4m/sn

a = = 2m/s^4
^ 2

at /• =8is Vg =<3g(8) - 4x8- 32 m/s t
Displacement ofblock5 after8 secis

1 2s=-at^
2

15= —x4x(8)2=128mt

(vii) If^ goes up by x,B goes down byy, Cgoes up z and D
goes down by w, we use

y-x
w = = => 2a^=a^+a^ ...(1)

z=z(y-x) =:> Vc^2vg-2v^ => a^-2a^-2a^ ...(2)
Given that

...(4)

...(3)

-.(4)

aD + a^ = n

From (1) 2(11 - a^) - - a^

From (2)

a^ + a^=22

6-03 2flg 2a^

3^5-20^=6

From(3)and(4) Sa^- 50

a„ = 25 m/s^

From (3) 6-0^ =6-25 =-19 m/s^
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Velocity ofblock C after 3s fi-om start is

=£7^(3) = 19 X3=57 m/s l

Solutions ofPRACTICEEXERCISE 1.12

(i) If 5 moves down byx, A moves up byy we have

y = 2x

(ii) If^ move toward left bya:, Bmoves along ^ byy we use

' y = 'h:

aR_ = 6cos30°-3= 3^3-3 m/s^*Bx

= 6 sin 30° = 3 m/s^

^B= =^(3^/3-3)'+ (3)'

= V27 +9-I8V3+9

= >/45-18v^

= 3V5-2V3 m/s^

(iii) Here from figure we use

r-x

Vfl \y
) '

\ B\

dx dy
we use V= — and v„ = —-

dt ^ dt •

We have y^ +{r-xf- = {L-xy
Differentiating w.r. to t

^,dy dx dx

dt

- cos 0 - V sin 0 = - V

v(l-sin 0)

COS0
Vr. =

(iv) (a) If^ goes toward left byx andBmoves toward right on
A hyy we use

y = 2A:

and

^BA '̂ ^A

^BG~^^A~^A^^A

Kineniat^i]

(b) If^ moves toward leftbyx, B slides down byy onA, we
use

y = 3x

i^BG

^ 7(3ocos0 +£3)^ +(3asin0)^

~ aVlO+ 6cos0

(v) Ifpulley goes up byx block will move upby2x. IfpointP
on string goes down byy pulley will go up byy/2. Thus we
have

y _

2 ^
or y=2x

^block=^P=^

(vi) Ifblock Bgoes down byxandblockAgoes upbyy andC
moves toward left by z, we use

2(2x-y)=z

4x-2y=z

Reltation in velocities oiA, B and Cis

=> 4ag= 2a^+a^

SolutionsofCONCEPTUAL MCQSSingleOption Correct

Sol. 1 (B) Initial velocity istime derivative ofdisplacement
with t = 0 which is equal to C and initial acceleration is time
derivative ofvelocitywith t = 0 which isequal to2Bsotheratio
is C/2B.

Sol. 2 (A) As throughout motion the slope of graph is
constant, speed is not changing.

Sol. 3 (C) Asboth are accelerated bysameacceleration and
project at same initial velocity magnitude then at same
displacement their final velocitiesmust be same in rectilinear
motion.

Sol. 4 (C) As both cars are moving at same velocities, they
will be at rest with respect to each other.

Sol. 5 (C) As throughoutmotionaccelerationis constantand
positive taken in downward direction, speed increases initially
and changesdirection at everyimpact.'

Sol. 6 (A) Inportion Q/4 slope ofgraph isincreasing which is
indicating accelerated motion.
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Sol. 7 (C) In portion AB slope of curve is constant hence
uniform motion.

Sol. 8 (B) In portion slopeofgraph is decreasing whichis
indicating retarded motion.

Sol. 9 (A) As particles are equally accelerated with same initial
speed then always they will be at rest with respect to each
other.

Sol. 10 (D) As shown in graph speed first increases at a
constant rate thendecreases at the samerate sopossible option
among the^iven cases only (D) iscorrect.

Sol. 11 (A) In option (C) there are portions of vertical lines
which is not possible as it indicates several velocities at same
instant.

Sol. 12 (A) The area between speed time graph and time axis
gives the distance travelled.

Sol. 13 (D) Sum ofpositive and negative displacements with
signs of particle gives the total increase in displacement but if
we add the areas as asked in question, it gives the total distance
travelled.

Sol. 14 (A) Sum of the vectors along the three sides of a
triangle will be zero and the remaining CAwill be the resultant

ofall the forces.

Sol. 15 (A) Withuniformaccelerationthe velocityofparticle
increases at constant rate till 2 seconds then due to negative
acceleration it decreases at same rate and drop to zero at
4 seconds.

Sol. 16 (C) At point B the velocityof particle is decreasing
which indicates that particle is retarding hence the force is in
the direction opposite to the motion.

Sol. 17 (A) As vertical motion ofboth bullet and stone is free
fall under gravity,both will reach simultaneously.

Sol. 18 (D) As throughout motion the ball has acceleration
in downward dirction so slope ofv-t graph.must be constant.

Only possible option here is (D).

Sol. 19 (B) Maximum acceleration will have maximum slope
of V-;curve which is the portion BC in the given curve.

Sol. 20 (A) The relative velocity of rain drops with respect to
car will be inclined to the direction opposite to motion ofcar so
drops will hit the front screen only.

50IJ

Sol. 21 (A) To cross the river in shortest time swimmer has to

headin direction perpendicular tothe bankofriverso that his
crossing velocity will be maximum.

Sol. 22 (A) Asslope of^ is more thanthat of5 hence option
(A) is correct.

Sol. 23 (A) If motion is not defined we can only state that
average speedwill always begreater than or equalto average
velocity magnitude and no other inference can be deduced but
for instantaneous motion option(A)is always correct.

Sol.24 (A) For first halftimevelocityincreases at a constant
rate so slope of v-t curve increases upto half time then
acceleration decreases so slope of v-t curve decreases for last
halftime and finally acceleration becomes zero so v-t curve will
become horizontal

Sol.25 (C) Relation in velocity anddisplacement ofa freefall
motin is = Igs which is a paraboliccurvesymmetricaboutj
axis hence option (C) is correct. ^

Sol. 26 (B) A balloon is rising up with an accelerationa and
stone is falling down at acceleration g so the acceleration of
stone with respect to balloon is (g)-(-a) downward = g + a
downward.

Sol. 27 (D) First and second part of journey is symmetric
hence only possible option is (D).

Sol. 28 (B) As both particles have same acceleration, their
relative acceleration is zero hence the path of motion of one
with respectto other will be a straight line and the line isvertical
becausetheir relative velocityalong horizontal is zero.

Sol. 29 (C) The square of speed of ball projected vertically
up varies with height h ofthe ball in a linear manner hence the
graph ofKE versesheight willbe a straight line betweenh = 0
to h. Hence option (C) is correct.

Sol.30 (B) As initial velocityis positiveand decreasingthat
indicates initial acceleration is negative then after time t it
becomes positiv hence option (B) is correct.

Sol. 31 (C) Speed of ball decreases as it reaches maximum
height and then again increases in a non linear manner hence

among the options given only possible option is (C).

Sol. 32 (B) Concept acceleratesso the speed increaseslinearly
with time.But thedistancefallenincreases as f-. Sotheaverage
speed occurs at halfoftime taken to pass the window, which is
before it has covered half of the height ofthe window.
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Sol.33 (B) Particle comesto rest when sum ofarea undera-t Total distance traversedby the particle in 12 seconds,
curve is zero which happens at ?= 0,2,4. 5 = 5j + ^2

j=25m+49m

Sol.34 (B) Forthemotionfrom^to5 5^74m
applying 5 = v/

2 = 0.25/
AB

^AB °
For the motion from 5 to C

^ _ 0.125
dl TZ

2

0.250

0.125

J_
471

dv dt

1! ""It

2 2+71/2 2+7! 4+7! 2+3rc/2 4+2;!'2

tBC , 0.125 ,C dt _ r dv
J 4;i J V

0.25

/2C~471/«2

^BC ^ ^CD ^ ^EF ^ ^FG
^AB ^ ^DE
Total time will be sum ofall times = 16(1 +nln2)

5(m)

Sol. 2 (D) Area covered under velocity-time graph gives
distance covered by body

Thus, area covered from Is to 7s

5 6 7

5 = -x(3-l)x(20-0) + (6-3)x(20-0)

+ -(7-6)(20-0)

s, - —X2x20 +3x20+—X20
1 2 2

= 20 + 60 +10 = 90m

Distance covered by particle from 5s to 7s,

5,=(6-5) X(20- 0) +^ X(7 - 6) X(20 -0)

Sol. 35 (A) Vector sum offour vectors can be zero if they form
a closed polygon so that net displacement will be zero, that is

possible only with option (A).

Solutions ofNUMERICAL MCQS Single Options Correct Required fraction

52^20+-X 20

5'2=30m

_ 5^_30_j_
5, ~ 90 ~3

Sol. 1 (D) Since the direction of acceleration is opposite of
initial velocity, first let us check ifbody comes to rest at some
timebefore 12seconds. Letthis timeis /j.
Using V-U+ at

0=10-2/,
/, = 5s

Distance travelled byparticle in 5s,

•51 =10(5)-^(2X5)'
5, =25m

Now, body starts to move in negatives-direction and accelerates

for

(12-5) = 7 seconds

^,= 0+i(2)(7)'

^2 =49m

Sol. 3 (A) The velocity of particle becomes zero after,

0-6',= Tr=3s

Velocityofparticle after 4s,
v = 6- 2x4 = -2 m/s

When particle reaches O, its displacement becomes zero. Thus,
are ofvelocity - time graph must be zero '



!Kinematics

-x(3-0)x(6-0)

|x{4-3)xC2-0)+(?-4)(2-0)

— x3x6
2

-x2 + 2(t-4)
2

= 0

9_l_2(/-4) = 0
2(/-4)=8

/-4-4

t = Ss

Sol. 4 (C) Velocity of car is
V = 6 +

= 0

dt dt

<3 = 8-2/

Instantaneous acceleration at

t=4.5s.

Sol. 5 (B)

dv

~dt = 8-2(4.5)
$S

a=- Im/s^

•i{s)

A

/K
/ l\ D E

/ ^ ! \s II

1 2 3\4 5
Mil

C

Displacement = (areas ofI+11) - (areaofHI)

^x(3-0)x(2-0)+(5-4)x(l-0)

x(4-3)(2-0)

= 4-1

=3m

Sol.6 (C) Slope ofvelocity-time graphgives acceleration,

2-0

^OA = 1 m/s^
2-0

503

Sol. 7 (D) Slope of portion DE is zero. Hence, DE will have
zero acceleration.

Sol. 8 (B) Initial velocity,

w = 17m/s

Acceleration, a = -2ni/s^
Since the particle is continuouslyexperiencingretardations, let
the time at which its velocity becomes zero is ' /'
Using v = u + at

0=17-2/

t = ^.Ss

Os

A
8s-

9s'
C

B

8.5s (v = 0)

Distance coveredby particle in 9*^ second
=AB+BC

Velocity of particle at
= 17-2(8)

Distance AB,

Distance5C,

25m

• a

• •

• •

• •

— I m/s

2a"AB

. _o-a) 1
— = 0.25ot

2(-2) 4

S n/-
"BC 2a 2(2) 2

Thus, distance covered in 9'̂ second of its motion
= 0.25m+(i.25m

=0.5m

Sol.9 (C) TimetakenbybaIItogofi:omv4to5

= - = 2s
2

ii
•••• r

A

•''///y'?//?//////////////. •
0

Let velocity ofball at A is

Using v = w+ fl/

0= v^-(10)(2)

= 20 m/s
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Using v^ = iP- + las

0=vJ-^2gh

0= (20)2-2 X10X/,

h=2(}m

Thus, maximum height reached by the ball,

s = 25m+20m =45w

Using v^-u^ + las

0 = m2_2x 10x45

w2=900

w=30 m/s

Sol. 10 (D) Velocity ofparticle is
v = x^+x

dv _ dv

a= {x'^+x)~{x^^x)
dx

a = (;c2+;c)(2i+l)

4=2«,= [(2)'+2][2(2)+1]

<3 = 6x5

<3 = 30 m/s2

Sol. 11 (D) After 120jfromstartofitsjourney,thedirectionof
rocket is reversed. So,therockethasreached itsmaximum height
at 1205

Area under velocity-time graph from 0 to 1205is the maximum
height reached'by rocket

=> Area under curve ^ = —x (120 - 0) x (1000- 0)

= -xl20xI000
2

=60000 m

= 60 km

Kinematics

Sol. 13 (C) Mean velocity =
Total height reached

T otal time taken

60000w
v„ =

120s

= 500 m/s

Sol. 14 (A) The rocket accelerates from Osto 20s,
acceleration = slope of v - ?graph

1000
a —

20
•- 50 rn/s^

Sol. 15 (D) Distancecovered= 1.5km

= 1500 m

Iv{mls)

and

From (1) and (2),

= 5

= 10

5^1 = 10^2
'l ^2^2

Area under v-t graph = distance covered

^C'i+'2)xv„ ^1500
-(2t2+i2)xl0t2 =1500

3/2=300

/| =100
/j = 10s
/j=2/2 = 20s

Total time to cover 1.5 km

= /, + /2
= 20s+10s

= 30s

><(5)

...(1)

-(2)

...(3)

S0I.I2 (B) Areaundervelocity-time graphfrom 0 to20s, S0I.I6 (C) Distance covered byfirstball (4) in 3s,

^2= -x(20-0)x(l 000-0)

= -x20xl000
2

= 10000 m

= 10km

M=0

/yy///yO

s = ?

AO
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AP= -x2xl0
2

j = 0+-xlOx(3f =45m
A " • 2

Distance covered bysecond ball(5) in 2s,

s =ixl0x(2)'=20in
5 2

Separationbetween .4 and5,

=25m

Sol. 17 (D) Area under F-/graph=change in momentum

+[2xl0] + -x2xlO
2

= 10 + 20 + 10

= 40N-s

Sol. 18 (A) After Is, the ball has reached its maximumheight

o

f= Is

r
'),

tttttPttttP?

Using

Now,

V = u + at

0 = H-10C1)
M= 10m/s

+ 2as

0=(10)2-2x IQxs

100 ^.= ^=5m

Sol. 19 (A) Using v-u+at
V = 0 + aw

v = aw

Displacement ofbody in last 3seconds - _3

s= ^v«- •^(n^-6M +9)

v« v« ^ ^
2«

.= ^(6«-9)

505^

Sol. 20 (D) Slope ofdisplacement-time graph gives velocity,

and,

K^=tan30<'-^

=tan60" = >/3
£>

7, 1 1 1

Sol. 21 (B) Initial velocity, H=9m/s
Acceleration, a=- 2m/s^
Let body comes torest attime t

Q= 9-2t

t = 4.5s

V

a = —
n

.(1) 9m/s ,4s- «j(v=0)

Distance travelled in n seconds,

5 =MW+ -rarP-
" 2

2l^w

5„=-VW

Distance travelled in(n- 3)seconds,

5^ 3=«(w-3)+ -^a(,n-3f

•(2)

Oh

Velocity of body at A,

Using

Similarly, ^ba , ..
• Distance covered by particle in fifth second ofits motion,

^=^,^B +-^a^=0.25m+0.25m
=0.5m

5s•<—

v^ =9-(2)(4)
= Im/s

v^ = u'̂ + 2as
0= v]+2a(s^)
0=(1)2_2(2)(5^)

5^^=0.25m
,95^=0.25m
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Sol. 22 (D) Areaunder v-1 graph gives displacement
Displacement = (area of upper trapezium) - (area of lower
trapezium)

•(4-0) +(3-1)
(4-0) -

(8-4) + (7-5)
(2-0)

= 12-6

=6m

Thisdisplacement is thedistance ofparticle from origin.

Sol. 23 (C) Let the drops fall at an internal off seconds

n = 0

1 3

20-

30-

s^=-g(2tr=4(s,)

53=^^(3/)'=9(5,)
Thus, separation between 3 successive drops below the roof
are in ratio

5]: 52-5,: 53-^2

5j: 35j : 55j : = 1; 3 :5

Sol. 24 (D) We have a = 32-4v

^ =32-4v -
dt

dv

32-4v

Integrating both sides, we get

dv

= dt

I = f•'32-4V J

--[ln(32-4v)]^ =In2-0

In
32-4v'

I 16 .
= In

32-4v = l

4v=31

31
v =

16

Sol.25 (D) Change in velocityis given as

^2\40°

from figure shown as | Vj |= | Vj |= vweuse

|Av[ =2vsm20'*

(

Sol.26 (B) Initial velocity, w= 0
Let acceleration ofcar is 'a'

Using 1 2
s= ui+—at

0+~a{l0f

x-^a{100)

Kinematicsi

•X = 50a .. .(1)
In2O5 from start ofjourney, thecarcovers a distance (x +>>)

x+y=0+̂a{20f
x+y=200_a

Dividing (1) by (2), we get

50a

200a

x + y 4

4x=x+y
y = 3x

Sol.27 (C) Initial velocity, w= 0
acceleration a = kt

dv
=> ~r

dt

0 0

Integrating both sides, we get

^ 2

dt ~ 2

...(2)
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=> \dx =]-f-dt
0 0'^

Again integrating bothsides, we get

1 2

Sol. 28 (D) Slopeofv-tgraphgivesacceleration
i3n^= slope of5C

60-20 40 . .2
n = — = 4m/s
"max 40-30 10

Sol. 29 (B) Retardation = slope ofCD

0-60 -60

Sol. 31 (B) 0

m =
= -2m/s^

70-40 30.

Magnitude ofretardation =2m/s^

Sol.30 0) Velocityrequiredbyrocketattheendoflmin(605'),
V = 0+10 60

v = 600 m/s

Now, after the fiiel is exhausted, itcontinues to move up under
the action ofgravity, i.e. its motion will be retarded, let its
velocity becomes zero after t seconds,

0 = 600-10/

/=60^

4\IV 5

Area under v —t graph

I:-

n:

ni;

-x2x20 =20
2

3x20=60

-xlx20 =10
2

IV: 1x1x40 =20
2

Distance covered by body

= 20 + 60+10 + 20

= 110m

Displacement ofbody =(20 +60 +10) - 20

=70m

Sol.32 (B) Displacement ofparticle is

.= --/'+16^ + 2

Differentiating w.r.t. f, we get

v=^=-|(20+16
at i

4^A) = h 16

For v = 0,

— =16
3

/ = 12s

Sol. 33 (B) Displacement ofparticle is
x = 2-St + 6t^

Differentiating w.r.t.time, we get

,= ^ =-5+12r
dt

at /=o,

v=-5m/s

,507

Sol. 34 (C) Distance covered by parachutist in 105 before
parachute opens out.

H = 0

2495nj

2495-s

77777777777777^7777777/.



5= 0 + -xl0x(10?
2

s=500m

Velocity acquired by parachutist before opening parachute,

v = 0+10xl0

v = lOOm/s

Now, after openingparachute,

his initialvelocity, w= 100m/s

Distance it has to reachfurther,

=2495-500

Retardation,

^2 = 1995m

a = 2.5m/s^

v2 = (100)2-2x2.5x1995

v2= 10000-9975

v2=25

v = 5m/s

Sol. 35 (B) Acceleration ofparticle is
a = kt-\-c

dv
Y,=ki+c

dv = {kt+ c)dt
Integrating both sides, weget

kt'
V = — + ct

2

I

n

IE

IV

•

i B

iiXc D

/ I n i
I IV
1
1
1 .

•

/(5)
" 1-23

Area under v—/ graph = distance covered
Area:

5"]= -xlx20 =10

5', = 1x20 = 20

3^== —xlxlO =5

5',=2x 10 = 20

Distancecoveredbyparticle in

= 10 + 20 + 5+20

=55m

Sol. 37 (A) Acceleration ofcar is

f=z a-bx

dv
f= V—~a-bx

dx '

V X

^vdv =^{a~bx)dx
0 0

Integrating bothsides, we get

v' bx^ .
~ = ax

2 2

= 2ixc -

^l2ax-bx^
The car starts moving from station Aand stops atstation B.
Therefore, to find distance between the two stations,

v = 0

2ax~bx^ = 0

x(2a-bx)=0

2a
x = 0,x=-

Now, tofind maximum velocity,

2yj2ax-bx^

dv

•{2a~2bx) =0

x= -r

V = A2a
max A

2a^

b

a

lb

a

~b

Sol.38 (B) Letthetimetakentostopthecaris fr'.
Ifretardation provided to car in first case is Oj,
Then,

0 = v-a,/ (As v = u+at)
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"• = 7

Also, 0= - 2a^x (As v^-u^ +las) Given that

j^=h+^[2(+1]
5j +^2= 100 cm

0=v2-2ly

2x
v = ...(1)

If speedbecomes '«v' and retardation is fl2(s^y)
Then,' 0= «v-«32^ (As v= m+ o/)

«v

Again, 0= (mv)^ - 2a2 '̂
where x' is the new distance over which the car can be stopped ^ ^

2x'
= «v

From (1) and (2), we get

Sol. 39 (A) 0

2x' f 2x

x' = wx

0=«V-2ly

Area of rectangle I = (2 x 4) = 8
Area ofrectangle U= (2 x 2)= 4
Area of rectangle in = (2x2)=4
distance covered by body = 8 + 4+4=16w
Displacementof body =8-4 + 4 = 8w

Sol. 40 (C) Distance travelled in second,

s^ =u+^(2t-l)
Distance travelled in (r+ 1)^ second,

s^=u+^[2(t+l)-l]

...(2)

M+^(2?-i)+M+^(2r+i) =ioa
2 2

f2w+Y[2f-l +2? +l] =100

2w +̂ (4O=100
2

2w+ 2/r = 100
h+^ = 50

FromI equation, v= m+// = 50cm/s

tram

. v(in/s)

Areal= —xlOxSO =150m
2

AreaII=20x30=600m

Areain= -x2x30 =30m
2

= 150 + 600 + 30m

=780m

Distance travelled

Sol.42 (B) Let stoneremains in air for « second
Distance covered by it in w'*' second,

As

Sj=0+|(2n-l)
Distance covered in first 3 seconds,

^2-0+1^(3)'=^
s, =s
•l -^2

^(2«-l)
2^ 2

2«-l=9

M =5^

5091
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Sol.43 (B) Here wedraw the correspondingvelocity-timegraph
from the given a-tgraph

.. v(m/s)

Areaof I=—x2x4 = 4
2

>/(5)

Areaof II = ~x2x2 = 2
2

Area of 111 = 2x4 = 8

Area of IV=—x4x6 = 12
2

Distance travelled by train before coming to rest,

5=4 + 2 + 8+12

5=26m

Sol.44 (D) Thiscondition ispossible onlywheninitialvelocity
and acceleration areopposite in direction, i.e. theanglebetween
these is 180° or n radians

Sol. 45 (C) Velocity of5 relative to

v^^=5mJs •

and, velocity ofC relative to^,

= 15 m/s

Let both cover the distance I in time t

For car5, /= St+-at^
2

FOTcarC, 7= 15/

As it is moving with constant speed

15 15

Substituting values of I and t in equation (1),we get

1500 =5(100)+-a(lOO)'

1000= -(10000)

a= — = 0.2 m/s2

...(1)

...g)

Sol. 46 (B) Let speed ofcars be v, and v.

and

Solving (1) and (2), we get

v, + v, =8
V, - Vj =0.8

2vt = 8.}
Vj =4.4 m/s

and V2= 8- 4.4= 3.6m/s

-KinematicsT

...(1)

...(2)

Sol. 47 (C) Total distance train has to cover

=200m+300m

.•=500m

Initial velocity, u = 3m/s

Final velocity, v = 5m/s

Let time taken to cross the bridge is 7' and acceleration is 'a'

we use

Using v = u + at

v^ —u^ + las

(5)2 = (3)2+ 2^(500)

25 =9+1000a

t = 1255

Sol. 48 (B) Let they cross each other at

lOOm

• D
O •
• •
• •
• •
• •
• •

= 0

(IOO-;t)

= 50m/s
IV777Z^7777^777777777/.

For ball
1' 2

For ball 5, 100-x= 50r--gr=

From (1) and (2), we get

...(1)

...(2)

100--g?' =50t--gt^
2 2

/=25

Alternatively: Solve using relative speed of one ball with
respect to other

100
^= — =2.



[KinetTiatics

Sol. 49 (B) Initial velocity, = (20y) m/s

Final velocity, = (20i) rn/s

^ - V,. = 20i - 20y

N

(V-

20>/2m/s

Av i=^l(20f+('-20f =20%/2 m/s
-20

tan0 =
20

= -l

0 = - 45° (south- East)

Sol. 50 (C) From graphweuse

1
V--—s + 50

2

Differentiating both sides, with respect tot,we have

v=-2--
dt

. dv
2— =-dt

V

' Now, integrating both sides

50 0

t=2[\nv]%

Sol. 51 (B) Initial and final velocities ofparticle are
V; - 5i m/s

Vj. = 5j m/s

r = l05

Vy -Vi 5y'-5i
a =

t 10

Sol. 52 (A)

W-

Initial velocity,

Force,

=> Acceleration,

At t= 10s

m = 2kg

N

rJlToJs

\45=

a = V2cos45°i' +>/2sin45°y

= (j + y) m/s

F = -0.2/A

. F -0.2/
=-0.1 i m/s^

w

V -« + flt

V=(/+j) +10(-0.1/)

v=i' +j-/

V=+j

Thus, velocity after 105 is Im/s due North

Sol. 53 (C)

Displacement,

= 3Gym

X2 - 20im

= -30V2cos45°i

- 30^/2sin45V

^3 =-30i-30j

X = + ^2 + ^3

=30y' +20/-30/-30j

= -10/

Thus, its position is 10w duewest

B\< 0.4 Ato-

1 : 1
a - —I +—J

2 2^
[North-West] 1

0.4A»J

T]Mra \ =

= -7=m/s^
>/2

1'.. = 1km/h

511i
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0.4
sin 0 =

0.4
v^cos9 + v^= —

From (1) and (2),

sin 0 = cos 0 + V
tn m r

5 sin 0 = 5 COS 0 + 1

component of velocity remains unchanged, while vertical
.. .(1) component is gainedunder the action ofgravity

=> Resultant velocity = +2gh

...(2) Ratio ofvelocities =1:1

Sol. 57 (C) Areamade by v- / graph = distance covered

v{mls)

Sol. 55 (B)

5-n/I-cos^ 0 = 5 COS 0+ 1
•25(1 -cos^G) = 25 cos^ 0 +1 + 10cos 0

5Ocos^0+ lOcos0-24

3 4
cose = -,--

0=53®

8m

8m
N

8m./

^S2 =(16)2+(16)2

^= V5T2 =16V2m

Sol. 56 (D) When particle is thrown in vertical downward
direction with velocity u, then final velocity when it reaches
ground,

^Ju^+2gh

A B u

r

'///////A////////////////////////y>/y>^//f

Another particle (B) is thrown horizontally. The horizontal

Area of 1= —x2x8 = 8
2

Area of 11= —x3xl2 = 18
2-

Distance moved by particle

= 8 + 18

=26m

Sol.58 (B) Velocity of carw.r.t. ground,

^cg = 81 m/s
Velocityoftrain w.r.t.car,

v,c = 15ym/s

Velocityof train w.r.t. ground.

\ =l5j + Si

'̂g I= V(15)'+(8)=

= ^fm
= 17 m/s

Sol.59 (D) Velocityofrainw.r.t. ground,

Vrg =-3y* km/h
Velocity ofman w.r.t. ground,

^mg ~ km/h
Velocityofrain w.r.t. man.

^rm ^rg ^mg

^rm = (-3y-4i) km/h

v™ I = V(-3)'+(-4)^

= = 5 km/h
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Sol. 60 (A) Velocityofman w.r.t; ground,

V
mg

Velocityofrain w.r.t. man,

v„g = 51 km/h

^rm ~ ^rg ^mg

tan 6 = 1 =
rg

Thus, downward velocity ofrain drops
= 5-km/h

Sol. 61 (A)

hn/s

A[

y y

C comes down by (3x - 2y)

v^ =3x-2y =(3x3)-(2x2)

v^ = 9-4

V =5 m/s
C

Sol.62 (C) Athighestpointofprojectile,theparticlehasonIy
horizontal component of velocity

>x

3 m/s

Thus,anglebetween velocity & acceleration = 90®

Sol.63 (D) Horizontal range=Maximum height

sin20 _ sin^ 0
g 2g

sin^ 0
2 sin 0 cos 0 =

4 cos 0 = sin 0

tan 6 =4

513

Sol. 64 (D)

9 m/s

10 m/s
Police

catches thief

100 m

Letpolicemari takes t second to catch the thief

100 + x

For thief.

10 =

X9=7

x = 9t

From (1) and (3), we get
10f = 100 + 9f

/ = 1005

Sol. 65 (D) Using relative speedofthird car,-we have
30km/h

>-
30km/h

•'/////////////////////////////////////y
!•< 5km *{

v-i-30~ f

5x60
v+30 = ^— = 75

...(1)

...(2)

...(3)

=> v = 75-30 = 45km/h

Sol.66 (B) Anglemadebyprojectile withhorizontal,
8=30°

when projectile ismaking 90® with the initial, then, theprojectile
makes an angle 60® with the horizontal. Since there is no
acceleration in horizontal, horizontal component of velocity
remains same

1 lOm/s

Mcos 30° = v cos 60®

y/S V
iio^i

2 2

v= 110>/3m/s
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In vertical direction,

- Vsin 60° = Msin 30° -10^

-IIOn^x^ =110x--10/
2 2

-330 110
-10/

11 33

2 2

44

2

t=22s.

Sol. 67 (D) Range, i? = -
sin 20

g

Maximum height reached.

Time offlight.

New range,

sin^ 0

2u sin 0

H=

7=
g

1
R'= uT+-aT^

2

_ 2wsin0 1 g
R -u cos B- +—• —

g 2 2

2m sin 0

g

R'=R + 2H

Sol.68 (A) Letthesq)arationbetweenthemis 125/«aftertime
and 5 has covered a distance 'x' in this time

For^,

ForB,

«, = SOrn/s

B
J<2 = 0

H

125+x = 50/

x=i(10)/^

125/n

...(1)

•••(2)

From (1)and (2),we get
125 + 5/2 = 50/

/2-10/ + 25=0

t = 5s

Sol. 69 (D) Acceleration ofstone relative to aeroplane,

^sa ~ ^sg ~ ^ag

Kinematicsl

= -10y-5y

(Consideringdownward as negative)

Thus, is 15 m/s^ downward

Sol.70 (B) Theacceleration willremainequalto 9.8m/s^ as at
highest point speed is zero and no air resistance acts on it

Sol. 71 (C) y^x-x"

Comparingit with equationof trajectory,

y= xtan0-

= ATtanO-

gx'
2u^ cos^ 0

tan0

R

tan 0 = 1

0=45"= (angle ofprojection)

Also, we use

Time of flight.

tan 45°
= 1

R

R = \m

g

2u^ cos^ 0

10

= 1

2m^ cos^ 45° " ^
m2 = 10

M= VlO m/s

2Vl0sin45°
T=

10

r=0.45j

Maximumheight h =
M^ sin^0

2g

lOxj^
2x10

(Range)

= 0.25m

Sol. 72 (B) To calculate the maximum height reached by the
rocket, letsfind areaunder v-1 graph before velocity becomes
zero.

i.e. in/quadrant

Area= —xl32xl200
2

i/=79200m

//=79.2km

Sol. 73 (D) Let speed ofstalled escalator is Vj and that of
person is Vj. If length of escalatoris jc ^
Then,

90
...(1)
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When person walks on moving escalator

V] +V2=y

XXX

90 60 ~ ?

t =
(90)(60)

(90)+ (60)
= 365

...(2)

...(3)

Sol. 74 (C) The horizontal component of velocity always
remains unchanged

H

The initial velocityin vertical is zero

The vertical component ofvelocity as it reaches ground,

v^ = 0^+2gH

v=V2^

Sol. 76 (B) Initial velocity, « = 50/km/h

final velocity, v = -50i km/h

515-'

(North)

(West)

Change in velocity, Av = v-u

= (-50/-50/) km/h

\Iv\=yl(-50f+(-50f

= 45m

= 50^/2 km/htowards south-west

Sol. 77 (B) Velocity ofbird
v=|r-2|m/s

dx
— =/-2
dt

dx = {t- 2)dt
Integrating both sides,

X t

^ciK =l(t-2)dt

x = -—2t
2

;c = 8-8 = 0

The displacement ofbird is zero
Let time afterwhichbird changes itsdirectionofmotion is /j

v=0

/ = 25i.e.

Resultant velocity = +{yj2gH^ =2.y[gH Distance, D =

z •*

^{t-2)dt +\it^2)dt

Sol. 75 (A)

40 knv'h

60 km/h

Let distance between A and 5 is .r

2xAverage speed is ^ ^

40"^^

2x

3x + 2x

120

2a:xl20

5j£:

=48 km/h

Since the train returns to its initial position,
Total displacement = 0

Average velocity = 0

D = 2 + 2

D=Am

Sol. 78 (A) Let us make some assumptions first
Initial velocity = u

Height oftower =H
For particle^,

//

^77777^777777/7777777?.

v}= u^ +2gH

...(1)
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For particle5,

For particle C,

H

H

V7777777/.

{-y,? ={-uf +2i-g){H)

V5= + 2gH

y77/7?7777//777777777777777777777:^)^^-'''-

Vc'=0^ +(-g)(-ifl

ycy=^
The horizontal component of velocityremains unchanged

=> Resultant velocity

^u^+2gH

Sol. 79 (C) Horizontal component ofvelocityremains same

Mcos 0 = Vcos (Jl

v = u cos 0 sec (j)

Sol. 80 (D) Horizontal range,

sin 20

g
R =

Sincehorizontal range fora projectiledependon initial velocity
and angle of projection, it is not possible to predict in these
situationas the questionsaysnothing about their initial velocity

Sol. 81 (A)
////////////////////////////////////,

2v, cos 0 = Vj

COS U =
2vi

1= COS
-1 ^^2 ^

v2vi^

N
. k

I8km/h

. 45\
* 152>^Sol. 82 (A) }V<

iKinematicsl

Component of velocity ofboat along the shoreline,

v = 18cos(45=^+15°)
v=18cos60°

v = 9knVh

Sol. 83 (A)

Range ofgun,

u

g

sin 29

-^max

R =

D

max

sin 20

• ' g

sin 20 = —
2

20=30°

0 = 15°
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Sol. 84 (A) Let boy catches bus after time seconds then
we use

10 m./s

• 48>n

For Bus, x=|(iy
For Boy 48+^ = 10/
From (1) and (2), we get

1 m/s

Boy
catches

Bus
X-

-0)

...(2)

48 + — =10/
2

96 + /2 = 20/

=:> . /2_20/+96=0
/=125, 8^

So, the boy catches the bus at 8 seconds

Sol.85 (A) Writing equation for straightlinefrom 0to 65

dv 5

Integrating both sides, we get

dx 5 2

Thus, velocity at end of 6 seconds

=15m/s

Distance covered till 6 seconds,

o = —/' = — (6/ =30m
•^6 36 36

From6sto 12s,the aeroplane hasconstant acceleration,

s^i2^15{6) +i(5){6)^
= 90 + 90

= 180m

=30m+180m

=210m

Total distance covered

Sol. 86 (B) The cyclist should drive along the direction of
rainwith wind speed, sothathorizontal relative speed ofwind
becomes zero w.r. to man

V =2m/s North
m

517

Sol. 87 (D) The information given in the question is not
sufficient

compared
sufficient as without numerical values and Xg cannot be

Sol. 88 (C) Accelerationofparticle during motion

W±F

m

forupward motion ifacceleration is for downward motion it
is Oj, weuse hence /j <

Sol. 89 (B) From figure

and

tan 0 = — - 3

vt

y = 1t

x+y =
vt

3-/2 V2

_1 1_
^/2 3V2.

/ '•

I3V2,

= 2

=2

V= 3-\/2 m/s

6/--

Sol. 90 (C) Let speed of bullet is v
Velocity ofbulletrelativeto car alongx-axis

= (vcos 0- 13)

and alongy-axis =-vsin 0

2
(v cos 0-13) = —

3
=i> Vsin 0 = -

From (1) and (2), t =
13

•"2
tan0

j., (2) = 0.1-5^
13

vt vt

...(1)

...(2)

Sol.91 (C) In ordertoholdumbrella exactlyvertical, thecylist
has to travel in the direction of horizontal component ofrain

^ South

Amis*-

^ = 4 sin 30° due South

V = 2 m/s towards South
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Sol. 92 (D) = a

^ —(2t)v =
2

s= af-

Thus, time to go to another station,

2/

Sol,93 (A) Taking originat O and OCas>'-axis equation of
bridge is

y- 20

So, slope at
£5^- _ 2x 2 X10
"^"20" 20

1 mv
At point F, mg—;=-N =

V2

AtF,

R

mg mv mg
N r=r — and / = —^

>/2 ^ -^'42

R=^—- 20>/2 (metre)
Ta

.3/2

N=

L

lOw lOOw _ 5m

V2 20V2 ~

10m

n

XT.^- 25 100 ^ 5 5Net force = =5^^- =5000J-A

Sol. 94 (C) At the instant shown,

Xq +16 —L

So 3v„+ , -^=0
2 dt

So, v„ = 0.6in/s

Kinematicsl

Sol. 95 (B) With respect to wedge, the particle moves at 30®
from theplaneoftheincline atspeed of 10 m/s. Alcmg normal

to the inclines S=ut+ \rafi
2

0^ 10 Vs sin 30°/- -^gcos 30°/^

=> Q =
2

=> / = 2s

Sol. 96 (B) T
d ^ d

^ v+v^ v-v,„ ^0" V

7;--fT^+T^lx=^ &x<l^ vl^l + X 1-xJ V

2d
T = —

W y

1

.1-x^

Hence

Sol. 97 (C) v^^=5,v^^=5

5>/2 =7.1 m/sapprox

=> /'=V3/

/' co' cos 30° = Vcos 30°

/ co = cos60°(v+ /'od') = cos60° (2v) = v
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co= v//= =400rad/s
0.1V3

Sol. 99 (D) Area under acceleration-time graph gives change
in velocity

Hence . _4x4 , ,•^total 2
= 8-4

1^-3=4

Vj.= 7m/s

Sol. 100 (C) If particle travels from ^ to 5 in time t we use
6 = ©? and

AN=R sin —

dv .

a _5
V~7

So, at f = 5 sec, ~ = 1

a = v

Sol. 103 (B) /? =
g^(l + sina)

ul =i?g(l + sina)

2R cos a = —
g

1/3 = 2 Rg cos a

5-i;9i

..(i)

••(n)

.(iii)

Now, M1H2 = Vl-sin^a =-Sg cos a=^

(at
^A^=i?sm —

CO/
AB = 2R sin —

A

^ 2/2 . . CO r27c^ ^S(aRaverage velocity=— =^^cosm- =1.3^J" 271

S0I.IOI (B) V =vsin30®-gcos30°/

vsin30° V 1 1

gcos30° gS V3

Sol. 102 (D)
0

^ V=f =C/5

g cos 30°

I/? = 2u,u
ri

dv

It
Sol. 104 (A) a = -

c/v f, r c/v

1 1
A:/+ — = -

Vn V

v =
I + Avq/

dv

Sol. 105 (A) Forfirstparticle, H/-=

u±^u^ +2gH u+yju^ +2gH
gg

For second particle,

1
W/+ •^gt^=+^

h
-u ±yju^ +2gH _-w +yju^ +2gH

g ~ g

At = 2ulg
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Sol. 106 (B) The velocity triangle is drawn in the adjacent

figure: = velocity of river water, 7*2= velocity ofswimmer

withrespect towater, and AQ theresultant. Formaximum 0 (i.e.,

for minimum drift) will be tangent to the circle ofall possible

choices for

4
sin 0 = —

4tan 0= -j

x:=3km

Sol. 107 (B) From 0 to 2 seconds, the blocks will move up. At
2 seconds, it will be at rest and there after starts to move down

h
A

•y///////////////////A

^3
c

/j + 2/2 + ^3 = constant

Differentiating w.r.t. t, we get

- Vj + 2y2 + V3 = 0

-(2x5) + 2v2 + 4-0

2v2=6 .

V2 = 3m/s

Kinematics)

So, pulleyXhas to go up by distance

X

1
2 8'

The same constrained relation exists for velocities and

acceleration ofblocks A and B so we use

^^2 1

Sol. 109 (B) Consider pulleys as X, Yand Z as shown. The
block A is tied to two strings which pass over two pulleysXand

Y and B is connected to Z

X,

\3x

18cm/s

1.5j:

If mass A goes up by a distance x, point P and Q also go up by
distance x and pulley Ygo down by distance x

Thus, the length ab and cd and the distane x by upward
S0I.IO8 (D) Ifblock.4 goes down bya distances, string 2will movement ofgis 3x. So,B goes down by 1.5x
goup by same distancex and due to this, string 3 will go down

The same constraint relation applies to velocity
K

/////////////.

Sol. 110 (A)

rf) (')

1.5v, = 18

18
v^= —= 12cm/s

r
y//y///////////////////j^/////y////////



iKinemaUcs

If B goes towards right by x, then A goes towards right by y.
This can seen from figure above

Same constraint apply to displacement and velocities ofblocks

2^=3y

Sol. Ill (A)

Let time offlight is T

Range,

2vn 2x300wm/s
V, =

=200mm/s

M^ = 0, a^ = ^sina
Uy =20 veils, a^ =g cos a

« = 20 m/s

0= 20r-|(10sin37°)r^
.47^-207

T-Ss :

^ = =

5=0 +-fl0x-
21 5,

s =75m

(5)^

ADVANCE MCQs One or More Option Correct

521!

changes direction possible option is (B) and (D) as velocity is
changing due to change in direction and this is an accelerated
motion.

Sol. 4 (A, C, D) In case ofmotionofa particle on closed path
displacement is zero in complete motion but average speed will
be non sero hence option (A) is correct. Option (B) is valid
only for imiform acceleration which is not specified so it is not
always correct. (C) is correct by definition ofaverage velocity.
Option (D) is correctas ifparticle is moving in negative direction
its velocity is negative and if it is decreasing than it indicates
that acceleration is opposite to velocity so it is positive.

Sol. 5 (B, C) Acceleration of a particle changes either the
magnitude of velocityor its direction or both hence option (B)
is correct. If a particle is moving in positive direction then its
velocity is positive and if speed is decreasing that means it is
retarding hence accelerationdirection is negative hence option
(C) is correct.

Sol. 6 (B, D) Option (A) is not possible as at one time instant
two speeds are shown and Option (C) is also not possible as it
containes vertical straight lines.

Sol.7 (B, Q Asbothman and plankgainsspeeddueto friction,
work done by friction is positive for both.

Sol.8 (A,Q Vb ^Vba +-Va

\Vb\ =\Vba+Va\

= +vl = =5Vio m/s

Vr,A = 5 in/s

tan 0=tan Îj

0=tan M̂

-777ZW77777777777777?
Vj= 15 m/s

Vji {5m/s) end point
Sol. 1 (A) As after atime the slope ofgraph is becoming zero 9 (A B C)
which indicates thatparticle is coming torest. ' '

Sol. 2 (A, B, C) As starting point and final point is same,
displacemeiit and averagevelocityis zerio and as it is moving
with uniform acceleration in upward and downward journey
with start or final speed 0 or u, its average speed is u/2.

---Ffi-C>53>jn7s.-3

Sol. 3 (B, D) An object moving moving at uniform speed if start point
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The velocity ofmotor boat is given as v„ =

5 _ 5^3
sin0 sin 120°

=> sinO =i
9 = 30°

Sol. 10 (B, C, D) Displacement is given as

x = 3t^-lSt^+36t
=> v = 9(l-2y

a=lS(t-2)

Sol. 11 (B, C) Time offlight is

2wsin0 2xl0x-—-^ =isec
2 10

T

/\30".
L._.

307

Sol. 12 (A, B, C) By constrained relation we use

-2rx6 + 32a^= 0

= 4ni/s^

-2rx3 + 3rv^=0

- 2m/s^

rx2-2rx3 + 7Vc = 0

v^=4m/s

Sol. 13 (A, C, D) From A to B, = ~

Fromyl to C,

X D

A X B

...(i)
...(ii)

...(iii)

...(1)

Displacement, AC^ sj(ABf+(BC)^ +2(AB)(BC)cos60°

AC= +2x^ X^ =xy/3
^ ^/3•
t + i

Displacement,

^AC t + t 2 V

AF=x

X . V

^af='^ = '5

Kineinatfcsi

...(2)

...(3)

Sol. 14 (A, C) Initialvelocity, M= lOm/s

Acceleration, a = - 5m/s^
Let displacement ofparticle before coming to rest is s, then

0= (10)^-2(5)5' (As v^ = u^+2as)

100
.= —=10m

If particle reverses its direction ofmotion after t seconds,
0=10-5/ (As v = u + at)
t=2s

Distance travelled in first 3 seconds = Distance travelled in first
2 seconds + Distance travelled fi^om 2^ to 35

= 10m+

= 10+2.5

= 12.5 m

0+i{5)(l)= m

Sol. 15 (A,D) Area under a-/graph gives change in velocity,
from this, it can be inferred that the velocity changes by more
than 7m/s, so it has to be zero once before the particle changes
direction ofmotion.

However, the displacement of body can never be zero as the
particle continues to move further.

Sol. 16 (B, C, D) Velocity ofparticle at

V2 = 13m/s
Average velocity from AtoB

V, +v.

7 + 13
= lOm/s

Average velocity from 5 to C

2

13 + 17
= 15m/s

= 5/169
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13-7_6

a a

17-13 4

Timetogofrom ^ to5, /j =

Time togo from5 to C, t2=
a a

U 2

Sol. 17 (C, D)

^77777777.
A = 3 m

* # * *

dx
-r =0

X

^"5^4

\^b\=1^a

dt'
- V

h'

2 16
an = —r

(5)^
*B

16 2

dx

3

523:



Forces arid Ne^on's Laws of Motion

ANSWER & SOLUTIONS

CONCEPTUAL MCQs Single Option Correct

1 (B) - 2 (B) 3 (D)

4 (A) 5 (D) 6 (D)

7 (A) 8 (B) 9 (C)

10 (A) 11 (B) 12 (B)

13 (B) 14 (B) 15 (D)

16 (C) 17 (B) 18 (B)

19 (A) 20 (D) 21 (B)

22 (D) 23 (B)

NUMERICAL MCQs Single Option Correct

1 (A) 2 (B) 3 (A)

4 (B) 5 (C) 6 (B)

7 (C) 8 (D) 9 (B)

10 (A) 11 (B) 12 (B)

13 (C) 14 (D) 15 CD)

16 (A) 17 (B) 18 (B) .

19 (C) 20 (B) 21 (D)

22 (B) 23 (B) 24 (A)

25 (D) 26 (B) 27 (C)

28 (C) 29 (A) 30 (C)

31 (C) 32 (C) 33 (B)

34 CA) 35 (A) 36 (C)

37 (C) 38 (C) 39 (C)

40 (B) 41 (A) 42 (B) ,

43 (C) 44 (C) 45 (A)

46 (B) 47 (D) 48 (C)

49 (B) 50 (A) 51 (C)

52 (A) 53 (D) 54 (C)

55 (C) 56 (D) 57 (B)

58 (B) 59 (C) 60 (C)

61 (B) 62 (D) 63 (A)

64 (B) 65 (D)- 66 (D)

67 (B) 68 (A) 69 (C)

70 (A) 71 (B) 72 (C)

73 (C) 74 (B) 75 (B)

76 (A) 77 (C) 78 (A)

79 (D) 80 (B) 81 (A)

82 (A) 83 (C) 84 (D)

85 (A) 86 (B) 87 (A)

88 (A) 89 (B) 90 (C)

ADVANCE MCQs One or More Options Correct

1

4

7

10

13

16

(C, D)

(A, B, C, D)

(B, D)

(A, B, C)

(A, D)

(A, C)

2

5

8

11

14

17

(B, D)

(A,'B, C, D)

(B, C)

(B, C)

(A, B, D)

(A, C)

3

6

g

12

15

(A, C)

(B, C)

(A, D)

(A. C)

(A, B, C)

Solutions ofPRACTICE EXERCISE 2.1

(i) By constrained relation we use

and equation ofmotion we can write

Wjg -T^ = m^a

...(2)

T^ = m^i2a) ...(3)

(1)+(2) + 2 X(3) ^ m^=(m^ + m2 + 4m^)a

m.

Tj—27*2 =

a =

^3+^2+ 4w,
g

''°°g=^ =2.35m/s2
1700 17

a2= a^ =2.35m/s^

ai-2x2.35 =4.7m/s2

Here7i = m3g-m3a=0.4(10-2.35) = 3.06N

T2 = m^(2a)

= 0.2x2x2.35-0.94N

(11) (a) As the two blocks move together their acceleration is

F 5
a =

rn^+m^ 1

= 0.714m/s2

(b) If Fl is the normal content four between the two blocks,
equation ofmotion for/«2 is

Ar ^ -5 20N = mM = 4x—= —
7 7

=2.85N

(ill) (a) String tension

2 2

As weight ofblocks is higher than T, no block will start so

a

(b) String tension

as T<m^g

andforblockB T-m^g =

T-mgg 147-100

F 294
= —= 147N

2 2

aA=0

tlr.=
10

=4.7 m/s^
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F 424(c) String tension T- —=—^ =212N

as T'^m^g and 7'>w^gweuse

T-m^g 212-200

m. 20
= 0.6m/s^

T-m,g 212-100
an= " rr = 11.2in/s'^

10

(iv) If T, and T2 bethetensions in leftandrightstrings equation
ofmotion we use

T^-mg^ma ...(1)

' T2-T,-f=lma ...(2)

12mg^-7'2= 12ma - ...(3)

Adding above equations

\\mg-f=l5ma

f=\\mg-\5ma

/=llx4xl0-15x4x5

/=440-380

/=140N .

f

(v) (a) If 5 kg blockmove downwith accelerationa, 2kg will
move toward right with 2a and equation of motion will be

T=2(2a)

5g-lT^5a

{1) X2 + (2) gives = 13a

5g -

Thus ^5kg~ downward and

lOg

13''2kg toward right

(b) We can write equation ofmotion as

0.5g-rj=0.5a

rj-r2-0.1g(sm30°)=0.1a

r2-0.05g = 0.05a

Adding (1), (2) and (3) we get

0.4g = 0.65a

8g

...(1)

...(2)

...(1)

...(2)

...(3)

a = — downward for B and upward for A

(vi) Acceleration ofblockand rope is

F

M^m

(a) Force which the rope exerts on block is

MF
T,=Ma=—

' M + m

(b) Tension at the mid point of rope is

^2=

(vii) Acceleration of masses

2m-m

2m+ m
a =

8 = -^ = 3.27 m/s'

M+-\F

2 J M +m

Speed of masses after travelling a distance of 6.54 m is

525

v= V2x3.27x6.54 = 6.54 m/s

Nowstring is cutandbothmasseswillbe in fi-ee fall so if /j and
are time taken by masses to reach ground, we use

For massm -19.62 = 6.54 /j -4.9

A F

For mass 2m

•4/j-12=0

4±Vl6 + 144
= 2.78 s

6.54 =6.54^2 +4.9/^
4=4/2 + 3/2

3^2+ = o

-4 + V16 + 48
h 6 -

4 2

~ 6 ~ 3 ^

(viil) If.^ sidesdown at accelerationa B willmoveup relativeto
A with same acceleration. We drawF5D of.^ and B as

Equations ofmotion, we use
+ Mg sin 0 - 7= Ma
mg sin 0 - Wj = ma

T—wgcos 0 = wa

From (1), (2) and (3)

{mgsin 0 - ma) + Mg sin 0 —{Ma+ mg + cos 0) = Ma

...(1)

...(2)

...(3)
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a(M+ 2w) = ^(M+ m) sin 0 - w cos 0)

{M + w) sin 0 - /« cos 0
<3 =

M + 2m
g

Thus

and a= yl2a

Solutions ofPRACTICE EXERCISE 2.2

(i) Forequilibrium ofweight Wj weuse

WjCos 53°+ W3 cos37° = W2

and Wj sin53°= ^3sin37°

4wj= 3^3
from (1) and (2) we have

3wi 4^3

5 "Y
3W] + 4^3=2000

and

^3w. ^
+ 4w, =2000

\ ^ y

25^3=8000

W3== =320N

1

3'w
w. = —= 240N

4

(ii) For equilibrium ofthe twostring joints wewrite

f =F = = 42.42A^

also H-=—= 42.42#

(hi) //////////////////////////////////////.

From(l)

•lOOkg
K-30cm^

For equilibrium ofrod we have

T^ + T2-120g ...(1)
Torque about point A is

T^=20gx30 + 100^x50-r2x 100
-0

60+ 500-7'2=0
^2= 560#
Fj = 1200- 560= 640N

...(1)

..;(2)

Forces and ,Newton!s Laws of Motion

(iv) (a) For equilibrium ofweight, we use
Tjsin30°+ sin45°= w

T T
' j. 2•;r + ~p" =w

2 V2

7:+V2r, =2w
and Tj cos 30°= T2 cos45'

" = V27;

From (1) and (2) 7\ + = 2w

and from (2)

2w

y/6w

(b) Forequilibrimnofweight, weuse

Fj cos 60°+ w= ^2 sin45°

Fi +2w= y/2T^
and Fjsin 60° = F2 cos 45°

^^7; = ^/2F2

from (1) and (2) . ^37] - 7j =2^

2w

and from (2)

200 N

•JSw

HI.

For equilibrium ofboom, we use

F+Fsin 0 = 1200

and #=Fcos0

Taking torque about hinge A, we have

200 X 2.5 + 1000 X 5 - Fsin 0x5 = 0

Fsin0='-^^=11OO
5

.1100
F=

3/5
= 1833.33N

...(1)

...(2)

...(1)

...{2}

...(1)

...(2)



IF^es 0d Newton's Laws,of Motion

From{l) • K= 1200-1100= lOON

5500 4
From (2) H= x- = 1466.67N

3 5

(vO For equilibrium of masses if tension in stringsare T^, Fj
and Ty we use

and

.r^ T^. ^3

4Mg =3r2 ^ ...(1)

27^2 =7ngsin0 ' ...(2)

From(1)and(2) AMg'= sin0

M 3 .
— = —sm0
m 8

(vii)If is the force required to crack the nut using nut cracker
we can use

F^><25=Fx2

^ 25

\t 25cm

Solutions ofPRACTICEEXERCISE 2.3

(i) Ifw and Mmove together acceleration of system will be

Ms
a =

M^+m + M

FBD ofm relative to wedge is

•N

Ma- _6

mg

for m not to slip on M, we use

wgsin0 = wa cos0-

or cr = g tan 0

From(l)
Mi+m + M

= g tan 0

M, =
m + M

1 (cot 0-1)

...(1)

(ii) FBD ofWj and relative to thewedge are

N

M,g

A.

/P

*N

Forequilibrium ofWj and Wj, weuse
Wjg sin a = Wj/cos a + r

r+ W2 g sin p = Wj/cos p
(l) + (2) =>

g(W[ sin a + Wj sin P) cosa + W2 cosP)

f=g
sina + Wj sinp

m^ cosa + Wjcosp

from (1) substituting/ we get

w,m2gsin(a-p)

m, cosa-Wj cosp

527

...(1)

...(2)

(iii) IfMmoves toward right with acceleration a, m will move
down with same acceleration relative to M

FBD ofm and Afare

N-^

N,

Mg + 2T "'g

Equations ofmotion ofblocks
T-N^=Ma
mg—T~ma

=ma

Adding (1), (2) and (3) we get

mg~{M+2m)a

m

a =
M + 2m'

Acceleration ofm w.r. to ground is

a_ = V2a =

'N,

mg

M + 2m

Civ) HereF'5Z)ofMis

N,

N.-

\
Mg

'N,

Here N. = mg cos a

...(1)

...(2)

...(3)
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For equilibrium ofprism, we use

A^2 ~ ^3 sin a = mgcosa sin a
7/j = Mg + cosa
N, = Mg + mgcos^ a

and

(v) IfMsIides toward left at acceleration a, m will slide down
with twice the acceleration w.r. to M FBDs ofm and A/are-

IT-

N.

Mg

FBD ofM

Equations ofmotion
2T+ N^sma-Tcos a = Ma
Nj + ma sin a = mg cosa
ma cos a + wg sin a - 7= Ima

From(l), (2) and (3)
{ma cosa + wgsin a - 2ma)(2- cosa)
+ (wg cos a-ma sin a) sin a = Ma
2ma cos a + 2wg sin a - 4ma
- ma cos^ a —wg sin a cosa + 2 macosa
+ wg cos a sin a - ma sin^ a - Ma
a(M+ 5w- 4wcos a) = 2wgsin a

.alv

F6£)ofw w.r.tA/

a =

2mg sin a

M +w(5-4cos a)

a^^ = 2a cos a-a
% =2fsina

~ V5-4cosa

2wgsinav5-4cosa

M +w(5-4cos a)
^7 =

...(1)

...(2)

...(3)

(vi) If man andplatform hasan acceleration a upward, wwill
have an acceleration la, we use

mg-T=lma •••(!)
lT-Mg = Ma ...(2)

(l)x7 + (2)

(7w - M)g = (49w+M)a

' Im-M "

,49w + M^
g

From (1) tension in string
T=mg-7ma

(49w^-7wM)g
T=mg-

A9m + M

T=
SmMg

49m+M

Forces and Newton's L^s of Motion I

Solutions ofPRACTICEEXERCISE 2.4

(i) (a) To start the blocksliding in upward direction

Fcos a> wg-sina+ p^ •••(!)

A/= mg cos a + F" sin a •••(2)

From(l) &(2) Fcos a> wgsina + p^(wgcos a +Fsina)

(sin a + p cos a)
or

IfF->oo

or

F>mg
(cos a - p^sin a)

a mg

cos a = p^ sin a

p^= cot a

(b) If p^ < cot a and blockslidesthen to maintain its uniform
speed, force must be equal to

wg(sina + Pt cosa)
F=

(11) FBD ofthe two blocks

N,

(cos a - pj^ sin a)

N,

W^ + N. w.

To start sliding F=p(Af,+Af,)

T

= piV,

N^ = W^+N^

From (2) and (3) + p772 " ^2

100

From (4)

From(l)

= — = SON
2 1.25

A^,=280N

7-6.25(280 +80)

=^ =90N
• 4

7=0.25 XS042=2Q-j2N

-(1)

-a)

...(3)

...(4)



[Forces and:Newton's Laws of Motion

(ui) man+plank

To start sliding

From (1) and (2)

or

N+T

\xN-'

{m+M)g

T=^\iN
N-^T={m+M)g

T= \x{{m-^M)g-T\

T=
\i(M + m)g

1+ H

(iv) For limitingequilibriumofladdo*
N^ + 0.5N2=2(}0

N^ = 0.5N^
From (1) and (2),

Wall

B uAT,

200
TV = = 160iV

> 1.25

...(1)

...0

...(1)

...g)

N^ = ^ON
Taking torque about point B • ..

Xg = 200 X1.5 cos 0- 80 X3 sin,0 - 40X3 cos 9=0
180 cos 0=240 sin 0

180 3
tanO =

or

240 4

=37°

(v) For block B, not to slide
mg = iAN

Here acceleration of system is

and

From (1) and (2)

a =
m + M ^

MF
N=Ma =

m + M

/wg =
\xMF

m + M

P I Mj

...(1)

...(2)

(vO Equation ofmotion for ^ and Care
M^-T= M^a

T- p(Mj + Mj)g = M^a

- (l) + (2) =>
Mjg- + 2M^g = (Mj +M^a

M^g-\y.{M^+2M^)g
a =

Mi + Mj

529-

•••(1)
...(2)

(vli) We consider M move toward right at acceleration a, m
goes down w.r to M with same acceleration
FBDs ofM and m are

r+w,

w.

Mg+2r

Equations ofmotion
T-N^=Ma

N^=ma
mg-T- piV, = ma

From (1), (2) and (3)
mg - (A/+ m)a- yma = ma

mg

mg
a =

M + 2m + 4m

^/2^
Acceleration ofmis a= -J^a =

2 + P + —
m )

...(1)

...P)

...(3)

Solutions ofPRACTICEEXERCISE 2.5

(1) Ifweconsider bothblocks move together thenacceleration
would be

15-5
a= —::— =2m/s^ [/bottom "tllPg)]

Considering friction at 2/:^blocktobe/its equation ofmotion
5-f=2a

/=5-2x2=1N

Aslimiting friction between theblocks is4Nhence thisis static
friction so both blocks will move together

''2kg=''3kg=2m/s'

(ii) (a) Limitingfriction at top &bottomsurfacesare
/^=0.2x2x 10=47^

' - ^ =0.1x6xi6 =6A

A-

1 2kg

4fe

-A
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Sliding will start at top surface
F=/j,=4N

(b) AtF> 4^, 2^willmove withacceleration

a=^m/s'
and Akg will remain atrest as/j can never exceed^
Thus for ' F=2N,
Both blocks will be at rest

and for F=6N,

6-4
a,,..= = 1 m/s®

and

'2kg

"41,8=0

(ill) (a) Sliding willfirststartatbottom face asfofte isacting
onthe lowCT block. Unless lower blockwill Start moving, upper
block cannot slide.

f2.
Akg

f '^7777777777777?777Z^.

(b) LowerblockwillstartslidingwhenF>ji^
i.e. /^6N

(c) At F>6N
Both blocks will move together with acceleration

F-6
a = —— m/s-^

Equation ofmotion for2kg block

U =2a=l
F-6

At upper surface sliding will start when

/2=/r=4JV

4=2
F-6

F-6 = 12

F=18N

(c[)'AtF=3iV

^2kg =0;«4kg=0;/,=/2 =3N
at F= 12N

F-6
^2kg ^4kg = 1 m/s^;

and /i = 6A';/2 = 2a=2N
at F=24N

and

and

'̂ 4kg
F-6-4 14

~ ~r ^ 3.5m/s^;4 4

^2kg=7-=2m/s2;
/i=6N,/2=4N

Forces and Ne^n's iiivvs of Motion i

Limitihg frictions at thetwosurfaces are
/j^=0.2x3x10 =6N
f^ =(y.5^\^Y6 =5N

- ~ 2kg

Ik

Ifall Sfr&ve together, acceleration is

F ,2
5

EqUltion ofmotion for lArgblbCk is

1kg\vill s'tairt sUdifrg wheti

t = 5N-

^ F=25N

Equation dfmotion for lower2/t^block is

Sliding at lower surface Will WhCn

/i =6=2(f]
F=1-5N

Thus sliding will start between lower ah'd middle blocks at

(b) At F> 15N,
Upper twoblocks willmove together with acceleration

^-1 ,2
tJ =

1kg block will slide when
3

-hi/s''

/•-^1546 = 21N
(c) For F= ION,
All blocks will move together at

<3 =y =2m/s^;

/,=2o=4N;
^=la=2N

_ F
'lower 2kg"" 2 2

F-6 ,

For F=18.V, a._ =i^ = - = 3m/s=

^Ikg ^2kg = 4m/s^.

/, = 6Ar;/2=lcr =4N



Laws of Motion " _ i

For F=25N,

•flL _ ^ - , 1
«lower2kg=y-2

F-H
a.middle 2kg = lmJs\

/, = 5N;/2=6N

Solutions ofPRACTICE EXERCISE 2.6

(i) Tension in string r=m^g=2x9.8 = 19.6N

For block 5

T 19.6

For spring T=kx
pg 0.2x9.8

= 10kg

T 19.6V = — = = 0.0 Im = Icm
k 1960 , , ,

(ii) Spring force F =k(^U'"'
•{4 • 4

FBD ofring is shown in figure

Equation ofmotion in tangential direction is

fitsOTgcos30°+—cos30® =ma

2 8
mg

5V3g 25^/3

Along radial direction

A^ +-^sin30° =mg sin 30'

mg mg

^28

m/s^

3wg 30
= 3.75N

531

(ill) Initial tension in spring

F=rn^g'
Whenthe stringin cut springtensiondoesnot changeinstantly
soacceleration ofm^ willbezero

Forblockm^, weuse

m^'^F=m^a

a =

m^g + m^g _

m-. m-,
g

After string incut Wj isinfree fall soits acceleration will beg

(w) Friction on 2kg block is

/j=0.2x2xia=4N

Friction on 4kg block is

. ' • ^ ' /2 =0.1x4x10 =4N'

Equation ofmotion for2% blocksis

20-^-4 = 2x,2

kx = l2^

12
x =

1000

Equationofmotion for4kgblockis

fee - 4 = 4a

4a = 8

a = 2m/s^

Solutions ofCONCEPTUAL MCQsSingle Option Correct

Sol. 1 (B) Total displacement of wedge A with respectto B
mustbe equal to the increase in length ofstringonthe slant
surfaces of the two wedges.

Sol.2 (B) Smallersteps ensurelesshorizontal force byman
on ground dueto which friction willbe lessand maintained
belowthelimiting friction sothatwalking will bewithout sliding.'

Sol.3 (D) Inthe given system aspulley.4 is massless, string
tension will be zero for its equilibriumand C is in free fall at
acceleration g. Sobyconstrained relations Awillmove up by
twice the distance as that of C hence option (D) is correct.

Sol. 4 (A) Initially as height decreases velocityin downward
direction(negative) will increase and afterbounce it changes
to positive and becomeszero at = dH.

Sol. 5 (D) As acceleration of bicycle is positive, forward
friction on rear wheel must be more than backward friction on
front wheel.-

=0.012m
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Sol. 6 (D) As A is in equilibrium friction on it must act in
upward direction but in that case friction on B must be in
opposite (downward) direction and in that case it cannot be in
equilibrium, if5 fells then A will also fell so option (D) is COTrect!

j

Sol. 7 (A) If0 is the angle ofrepose then it is independent of
the mass ofthe body placed on the inclined plane.

Sol. 8 (B) If mass ofA is higher then its acceleration due to
gravity is g and due to air firiction isf/m so net acceleration of
A in upward motion is - (g +jlrri)which is lesscomparedto that
of B as its mass is higher so it will ascend more height than B.

Sol. 9 (C) When the two blocks move together the
acceleration of blocks are equal and when they start sliding
then the lower block will have a constant acceleration and

upper onewill have increasing acceleration so onlyoption(C)
can be correct.

Sol. 10 (A) The box can slide only when the force on it is
more than the limiting fi-ictionbetween box and the floor. For
this the certain case will be when \xM< p.'A/' which is always
there in case ofoption (A).

Sol. 11 (B) As angle increases the static friction which is
balancing the weight component of the block along the incline
also increases so static friction will be Mg sinS and when the
blockstarts sliding then it experienceskinetic fi"iction given as
\iMg cosB.

Sol. 12 (B) On the left side the force on arm ofbeam balance
is less than 'img as the system is sliding so the balance will
rotate toward right side.

Sol.13 (B) Contact force is the resultant ofnormal reaction^
and the friction acting on the body. If the angle between the
contact force and vertical is decreases then its horizontal

component which is friction will decrease. .

Sol. 14 (B) In fu-st casetheacceleration ofblockisg, in second
case it is gl2> and in third case it is gH hence option (B) is
correct. <

Sol. 15 (D) As angle ofrepose is different for the two blocks
that means the friction coefficient is different in the two cases

and angle of repose is independent ofthe mass of body placed
on incline so all cases ofmasses are possible.

Sol. 16 (C) Normal forceneverchangesthe speedofparticle
hence its KE must remain constant.

Sol. 17 (B) In equilibrium of a body, vector sum of all the
forcesacting on bodies is zero so at equilibrium acceleration of
body must always be zero.

Forces and Newton's Laws of Motion

Sol. 18 (B) Ifthe spring is cut in two parts (half length) then
the force constant of each part of spring become doubled so
the slope ofline will also get doubled as F= kx.

Sol. 19 (A) Ifthere is no acceleration in the elevator then coin
will fall with acceleration g relative to floor and will take equal
time in all cases.

Sol. 20 (D) Net content force between seat and man is the

vector, sum of normal reaction and friction so in case of

acceleration it is more than weight and for uniform motion it is
equal to weight. ' • ^ "

Sol. 21 (B) Ife^Or^oo

Sol. 22 (D) Static friction starts acting when some external
force acts on body. In this case T=mg sin 9.

Sol. 23 (B) BecauseindownwardjoumeyFandwg Bothwill
act downward, while in upward journey only mg will act
downward.

Solutions ofNUMERICAL MCQs Single Options Correct

Sol.l (A)

-V.

lOfcg
•he

imN

jVi=i6o
fcc-|iA^i = 10 xi2 ,

fcc-10 = 120

kx=m

yiN,-

20kg
*-200 N

laooAf
=200

1^2 = 20a

-130 -(0.1 x200)=20fl

-20 =20a

a
50

20
= 2.5 m/s~^'

...(1)



iForc^ and Newtonis: Laws of Motion

Sol. 2 (B) N=ma

Toprevent block mfromfelling,
\\N> mg

\ijna>mg

a>^

N

Sol. 3 (A)
e ""s

\iN

•N

'mg

mg sin 0 mg -ios 0

Since the body is at rest,
N=mg cos 0

Fr - mgsin 9
Magnitudeof forceacting oi)blockby inclined surface,

>= yjN^ +F^

= yj(mg COS QY +(mg sin 0)^

F= mgVcos^ 0+sin^ 0
F=wg

Sol. 4 (B) Let coefficient offriction is n

lo;^

r+10p=25

<N,-

•T

-pTV,

n20A't -fN,

iV2 =20+A^i =30

r=M(10)+^i(30)

r=40p

From (1) and (2), we get

Sol. 5 (C)

50p=25
p=0.5

.(1)

.(2)

N COS Q =
mv

2

sin 0 = mg

mg ^rg
Dividing (1) by (2) tan 9 =

Imv" 2v'

Sr

v2 =. Srg
2tan0

From figure,

2

v2 =
^/3rg 3rg

v =

Sol. 6 (B) Since 1OOg is at rest,
r=iN

lOOgm

From (1), we have

2T

I |20Qgm|2a

If OTj is going upat acceleration a, weuse

2T-m^g=m^a ...(1)

For lOOg tobeat rest,acceleration of200gmmassisla ifWj is
going up at a

2-r=0.2(2cr)
r-f

2-1=0.4^7 T

10 5

2(l)-10m,= m,|-

2= lOw, +

4=25m

2T

5wj

mj= — -0.16kg = 160g

533

...(1)

...{2)

200g

2N^
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Sol. 7 (C) N

1

Mg

N = Mg
Force by surface on body,

F=

This is the maximum value ofF"

If appliedforce(F^^,) iszero, then fi"iction forceacting onbody
is also zero. Hence force by surface on body,

F=^Mg

Thus, Mg<F<Mg^\^^

Sol. 8 (D)

Sol. 9 (B)

F
•fF

-fF

18%

iiso;180.V

3F=180

Force exerted by the ceiling on the system,
F =/\F •/////////////

= 4x60

=240N

m

F=
|(v-5)|

(10xl0-^ig)[5-(-5)]

T

V.

' •

FF FF

F=
0.01

F=
10"^xlO

10
-2

= 10N

Sol. 10 (A) y////////////''///////^

''T r

Forces' arid Newtdn's, Laws 'df Motion'

In figure

Double differentiating above equation

IA+ 21s + ~ constant

-a^-2cf5 + cfc = 0

(Assuming increase in length as positive)

^ 2

f-a
(upward)

F77777Z777P77777777777F7777777ZV777Z

2Mg-T=-2Ma^
T+ Ma2=Ma^

N=2Ma2

T-N=5Ma2

T=iMa2
From (2) & (5), we get

IMa^ + Ma^ —Ma^

Sflj=

2Mg-lMa2=2M^a^

2g

Sol. 12 (B) F-

•2ni/s-

1kg '\w

10-F^ = 2xa

F^=10-4 = 6A^

F^ = 3a

6 = 3a_

a = 2m/s^

'N ..

3kg

...(1)

...(2)

•(3)

.(4)

,.5)

(6)

Sol. 13 (C) Block B loses contact when normal reaction on it
becomes zero



pf̂ f^otiori'

^=•=30/7^

2f\"
r^ I %!

zvtttttMvttttttt)
4kg Ikg

i.e. ?r-49
T=m
F=3T

30^= 3(20)
30/^60

t = 2s

Sol. 14 (D) Situation is given as

A

4f
4kg

1 m

A'
-*-F=bt.

• ' '^77/77777777777Z^77777?-.

FBDs of^ and B as

• '̂Ja

Vg mg

f'

equations ofmotion of^4 andB when theymove together are
fi = ma

F-fi=ma
sliding starts when - \img

F-^mg = ^ung

F=2\img=bt

2^mg

Sol. 15 (D) FBD ofbiocks are

r

iiN'^

T40W

H. i—^

A^'=40N

7-2=40^1

30V

^120°

iN

'1 _

sin(90® + 60°) sin 90® siniaO^'

m

"71 •
2J2 _

IT
= 16

40^1 =
>/3xl6

535^

. ,=4,0.35 .•
Sol. 16 (A) Down>f(ard accelerationofbodyis

a =gsm§6-^^cose
(;j=5g[sin e-6,ljccos0]

wiHtemain +ve upto x = 10 tan 0
=> ^ ^ IQtap 0 bodystartsretardingand speeddecreases

Selt 17 (B), Angle ofRepose is 0=tan"' (p^)
=tan"'(0.75) =37®

370 = 1

7777777777777777777;^.

when 6 exceeds slightly above 37®, we use
a = g sin 0 - cos 0

10x|-0.5xl0xl
(3 = 6-4

a - 2m/s^

Sol, 18 (B) Maximum tension atbottom most point isgiven
by

Ty^mg4-~Y- •••(0
Minimumtension at top mostpoint is givenby

wv^
•mg ...(2)

I Us

mg



I53:6^

iL^5
T2- 3

2mg +mv^ 5
mv^ - 2mg 3

6g+3'i^ =5\^-10g
I6g=2\^

v2> = 80

v= ^/80 = 4^5 m/s

Sol. 19 (C) The acceleration of the blocks down the incline

willbeg sin 0 soFBD of/«wr to Min limiting state is

mgsin^Q
sin 0 (Pseudo force)

mg sin 0 cos 0

- ywgsi

r~4^®

•fmg

N=mg-fngsm^Q
liN=mg sin 0 cos 0

\i(mg~ mg sin^ 0) =mg sin 0 cos 0
,|i(l - sin^ 37°) =sin37° cos 37°

1 = -X—
25 5 5

10(16) = 12

2
4

Sol. 20 (B) F= ma

ma = BeT"

a -

m

dv Be~^'

~dt " m

' dv ^ f Be'^'

J m'

v(/) =
'• Be~^'

mC

at

When t is very large

1 = 0, v=0

B
k =

mC

B

Terminal velocity, v =
B

mC

dt

+ k

Forces and Newtqn'S faws^ of

f
Sol. 21 (D)

lg-T=la

T-3g = 3a
Adding (1) and (2), we get

4g = 10a

2g

Sol. 22 (B) v = ca4

Let tension in string is T

maximumtensionin string is

.2

T=mg +
mv:

I

2 a2

T=mg+
marA

I
= mg-\--

mA'

T=mg-i-mg—

for block not to slide

T=f<\i{4mg)

2 ~

<4\xmg1+̂

Sol. 23 (B)

, A'

kcc 1

A- -L-^
k' ~ i~' I

l[asto= ,

SoL24 (A) For equilibrium ofman and frame

4-T

\

mg Mg

A A'

4m

4mg

,..(1)
...(2)

-*-T



Forces and Neon's. Laws of Motion

2r=(M+7w)g

^ (M+m)g

Sol. 25 (D)

maximum acceleration ofcar is

o = Mg

1 2
s=-ar

2

Sol. 26 (B)

For/4,

For5,

ForC,

1 2
s=-\igi

f 2s
r= —

\^g

1

=> t=

t<x.

-////////////A

1!

ri-30 = 3a
ri=30 + 3a

30+r2-ri=3fl . •

30Ari -'T.
30-^2 = 3^1

7'2 = 30-3fl

SOA^

'30iV

From (1), (2) and (3),
30 + 30-3di-30-3a=3a

9a = 30

/2a = — m/s

72=30-3
no

3

...(1)

...(2)

...(3)

72= 20N=2kgwt

Sol.27 (C) /«! comes torest w.r.t. plank when relative slipping
between them stops.

53?l

Applying conservation oflinearmomentum tofindfinalvelocity
ofsystemw.rit. surface. '

lxl0=(l+2)v

So, for block,

and

we use

10
v = — m/s

M= 10m/s,

10 ,
V=

• a =-pg=-5m/s^ ..
V = w - af

10
y =10-5r

in 10 205^= 10 = —
3 3

4
r= —s

3

Sol. 28 (C)
Fi M

m

M

T
•*fx

20A^

=^iiN^=025^20 = 5N

^=0.5(10+20)
f2= 0.5x30=l5N

•iV,

•^F

lOJV N,

when both board and block start sliding at 7 > 15 N their
acceleration will be

F-15
a =

to start sliding between board and block we use

5^2
F-15

=> . _ F=22.5N

Sol. 29 (A) When lift goes upwards with constant
-acceleration a, '

W^=m{g+a) ...(1)
When lift goes downwards with constant acceleration a,

W2 = m{g-d) ...(2)



ms

Wi m{g+ a) _ 2

^2 1

g+a='2g-2a

3a = g

g '10 ,a=— = —=3,33m/^

Sol. 30 (C) Since the block does not move till the applk^jJ
force reaches ^N, there is a friction force with its limiting valug
to be 4A^

Now, when applied force is6N, body accelerates at1m/s^
From Newton's second law.

Sol. 31 (G)

AN-*—

(6-4)iV=mxlm/s2
m=2kg

•//////////////////////z

2F

"tn

•I>n/s

Y

F=mg

ji>'g

2F- mg = ma
2mg-mg = ma

ma = mg

a = g •

->6.y

Sol. 32 (C) Way up

Given

y/TTTTTTTTTTTTTTTT?

= - (g sin a + pg cos a)

1 2S=ut^~-{.g sina+pg cos a)r,

5" = - (g sin a - pg cos a)/2
4^ T

t =-^
2

...(1)

Forces»and

f ^pm Iequation while way up,
0 = M- (g sin a + pg cosa)i'j
M= (g sin a + pg cos a)/j

From(r)flnd(l),Wgggf

B= |Cf§ffi.«+pgcosa)/? .

2S

it ~2 vgsiupt-^gcosa

• 1 2S

g§lflgtl^GPsa

IS

g 5)p pt -+ p^cos a 4 g sina - pgcosa
4g§ip a - ^\Lg pps a=g sina + pg cos a

3g sin a = 5 pg cos a

(B)

-^tana =0.6tana

H= 0.5 2kg —>F =

4kg

777yy777:W777777^777/. •

-Q)

/ra?""
' =0.5x20 .

= 10N

to start alidlpg betwgen blocks we use

/inax =4o
and ^-/max = 2fl

=> F=^=^ =15N
=> at F= 12N,/< ION and both blocks move together

12 , .
^ a = ~r =2m/s^

0

Sol. 34 (A) lOOyV

lOAg

(block)

mg P,= 0.6, (1^ = 0.4

AQkg (slab)

V777777777777777777777/

•lOON 400Ni

-^max 0-bNj
=0.6x100

=60N

•jV,

40tg



Pwces and Newton's Laws of Motion

to start sliding between slab and block
F-/=10^j •

and /=40f7

5/=> F=^=75N
4

as F>75N,accelerationofslabwillbe

ft 0.4x100

Sol. 35 (A) V//-/////////,

9cm

Let spring constant of the spring is k

Und«: equilibriumconditions,

mg-= A(9cm) ' ...(1)

When spring is cut into 3 equalparts, the spring constant of
each becomes

k' = ^k

Ifelongation in spring is 'x'
V/////////////////////.

3fc'x= mg
3(3A:)x=mg

From (1) and (2), we get
9k = 9kx

x = l cm

Sol. 36 (C)

/i7, cos3p°

V7Z777^^7777777777777777777777777777/.

iVj cos30° =mg

...(2)

The ball leaves the frame when

A^2=0
=> sin 30° = mo

tan 30° = -
g

g
a =

1
Sol. 37 (C) ^

I

V 2.5%

ti /

37°?\

Sol. 38 (C)

mg cos 37°

A^=mg cos IT

mg sin 37®

7\^=2.5xl0x-

iV=20N

N cos 53°-*

53^
/ I

... f.'. 1 37°7\
/ 1

/ 1
1

+^7 sin 53®

Reading ofspring balance,
i? = Ncos53°

R=20x -j

i? = 12N

V//7//y/////////y>y////////////////////.

5gsm37° •^5gcos37°

r= 5gsin37° = 30N

539



ism''

T= 30N

Mg cos 53 ,X Mg sin 53'

r=30=il/xl0x -

30
M=—=3.75kg

Sol.39 (C) Let2/be the length of inclinedplane

Let/be the friction force in part BC

Work done against friction in part BC

w=fl

No work is done in covering upper part ^5.

U=mgh (at top ofplane)

h
sin30° = —

h = 2l sin

U=-w

mgl^fl

Sol. 40 (B) p7«gcos60° = w^sin60®

1^= ^/3
Now, if forcejpisappliedto pull it along the incline,

F=mg sin 60® + pwg cos 60®

' 2 2

F=5>/3N=8.66N«9N

Sol. 41 (A) H-0.5

Ifapplied force is —, i.e. 107/,

I0-(0.5)(10) = l xa

a = 5m/s^

'ION

N=P

/max = 0.5/>=10N
F=20N

lOA^

'N

Forces and Nevyton's Lfflvs of Motion -

Sol. 42 (B)
60kg

ieoQN

fs max ~
=0.5x600

=300N

F-fk 300-(0.4)(600)
a —

a —

m 60

300-240" 60
--=lm/s^

60

Sol. 43 (C) Downwardaccelerationheavybody= g
Upward acceleration of lighter body=g
If ris tension in the string

T~mg~ ma
T-mg = mg

T=lmg
Downwards force on pulley,

27'=4mg^

Sol. 44 (C)
T

Sol. 45 (A)

7m/s'

mg-T=ma

(20x10)-7=(20x7)
200-140 = r

T=6QN

A 2kg
0.2

B Skg • *'.F

2kg

Skg

•////////////y

%

limiting friction between surfaces is

/^ = 0.2x2xl0=4N

/2j.=0.5x(8 +2)x10=50N
to slide the blocks F>50

hence at F=25 N blocks

will not slide so friction between A and B remain zero.



fFOTceS and Newtpft's Laws of Motion

SoL46 (B) When man is sliding down we use
mg-j\mg = ma

• « = g(l-Tl)

Sol. 47 (D) ^

Mg-*-

(M+ m)g

Sol. 48 (C)

T^Mg

F= ^M'g' +{M +mfg'

jY • F sin0
k

0 •F cos 6

^^*777777^7777, 77777777777.

• ' mg

Force offriction = Fcos 30° (since the block is at rest)

11 = 0.5

i
Sol. 49 (B) %

I
0.1% •5N'

. /„^ = 0.5x5=2.5N
lf=0.1x9.8=0.98N

As block is held at rest, friction is given as
/=fF=0.98N

Sol.50 (A) Letinitialacceleration ofsystem is'a'

1%

f~ma

\mg = ma

a - 2m/s^

M 'kx

Sol. 51 (C)

Sol. 52 (A)

kx-f=Ma

1000x-2=4x2

1000x = 10

1

F=

IN=

v= m = lcm
100

GW]W2 ,

•G(lkg)(lkg)

• Am'
2i,a-2' ''G=lNm kg

W
T~Wy = ~{a +g)

^ g

W
W.y-T=—{a-g)

^ g
Adding (1) and (2), we get

W^a Wja ...
W.-W, = — +Wi+^—^2

g g

2W.-2W, = -iyf^i+^2)
^ ^ g

541

...(1)

.:.(2)

^ tV2+fri
Substituting value ofn' in (1), we get

g-

El''

Sol. 53 (D)

T= 2Wi

T=

JV2-Wj

1^1+1^2

2frjJV2 - 2Wi' +21 '̂ +21^11^2

+ 2fV,

fVi+fV2

T=
4JVifV2

acceleration ofblocks.is a =
•5g-4g, g



f542

For 1kg block we use ^2 - g="^

lOg
7^2 =

Sol. 54 (C)
^r'*77777ZV777777777777777,

F,=F,-^Fr
io=2+f;
F'̂ = 8N(left)

IfF, isremoved, thefiictional force isactingopposite toapplied
force of27/ and this will be balanced so block will remain at rest

and net force on it will be zero.

Sol. 55 (C)
(2kg) M

a= 5in/s
*•

ma cos 6 = 4A'
Vs

ma sin 6

mg cos 0
^mg sin 0 = 6A''

N= mg cos 0 + /wasin 0

4,^3
iV-=-lx lOx - + lx5x.-

7V"=8 + 3=11N

As we have mg sin 0 > ma cos 0,
The block cannot remain stationary w.r.t. wedge.
Acceleration ofblock w.r.t. wedge,

mg sin 0 - mo cos 0
a =

m

a=^=2valJ-

N F=sin 30°
k.

Sol. 56 (D)

'̂'̂ 7777777777ZV7777777777,^
\mg •

Let tension in string is F

F, = p;V
7/+Fsin0 = mg

=> N=mg-Fsm.Q

to start sliding F cos 0 = F^=
F cos 0 = \ij^mg - F sin 0)

=> Fcos 0 = p mg-p Fsin0

T
1Zpl3o;Fcos 30°

...(1)

Forces and Neon's La^^df:;MbUo

F(cos 0 + sin 0) = \i/ng

F=
. cos 0 + ^5 sin 0

Sol. 57 (B) FcosQ-^i^-ma
F cos0 - )4^{OTg - F sin 0) = mo

^ Fcos0-fi^g + (i^Fsin0 = mo
=> F(cos 0 + sin 0) - mg=ma

' F^
=> a =

mg
(cos0 + p^ sin 0)-i4t g

Sol. 58 (B)

From V-/graph.

m 2

2kg

V7777Zy7777, 7777777777/.

20iV

a —— —-2 m/s^
4

10p=2,

^=—= 0.2
^ 10

100 sin 37"

Sol. 59 (C) H=0.25 I ^mN
iZl^Zinn

37'
2kg

30V

v37"
-•100 COS37"

Limiting friction force = ^lA^I = 0.25xi/^

= 0.25 X 100 cos37°

upward sliding force

net upward force

^ = 0.6 Ug

= 25x -=20N

= 100sin37® = 100x - =60N

= 60-30 = 30N

This ismore than 20N soblockwill slideup and frictionwillbe
20N downward.

Sol. 60 (C)

•5m/s^

777777777777777777/777/
'lOV



Ions

Since there isnoslipping,

Ff icticHial ce,' =nid

= 1x5 = ^

M-6i '(Sj
T

C

M

2

. 2 ; g
iiilfkl acceleration is -jj - 7

2 2

' Mg gfisatseceleratlctti is 0^= JT'm ~ "2
2 2

p = 0.4

Skg

g0h62 (D) 77777777777777777777777777777777777,^

Common acceleration ofsystem is ,

_ Mg
M + 9,

4Mg
for 4kg block we use f-^a- ^ +9

to slide /= 0.4X4 X10
= 16N

^ M + 9 •
=> 40M=16M+144
^ M=6kg

¥
u V

Sol. 63 (A)

—= 3sin 30
2

643

2 sin 60® =4^

\N-*
lAf . 2cos60°=l

Resultant force on block is,

^ -3. 73 .
F =—I ]

2 2

ifi =J^4=J^=VIn
4 4 V 4

J

12

Sol.64 (B) Letlengthofbeamis 7', and thetwopansareat a
distanceof V and 7-x' fromthe hingedpoint. Iftrue weightof
body is A, then

Ax= 6{l-x) ...(1)
^(l-x)=24x •••(2)

Dividing (1) by (2), we get

L-A
X ~ 24

^2 =144
= 12gm

Sol. 65 (D) The blockstrikesthe floorafter 2^
•///////////////////Z/A

Si-
'T

_ Iw

VT/TTTTTTTTTT/.

20A-g

v///////////////////7//'yy/y/z'//y///^''^-
?oor

Using
1 2

5 = Mf + —

1=7x^(2)^
1

1 = —xax4
2

a= Ym/s^



r544;

mg~T=ma

m

mg-T--

7=20a=10N

From (1), we can write

m

lOw-r^ —
2

m

lOw- — =10
2

\9m
= 10

20
'«=T^kg

Weight of hanging block,

Sol. 66 (D)

w = mg

200
w=—N

w = 10.53N

}i= 0.8

mg cos 6

mg sin 6

Maximum friction force which can act on block is,

/rnax = l^
= 0.8x(l)(lO)cos37°

= 8xj=6.4N

Forces and Newton's of Mpjipn

When it slides on rough inclined plane,

v2
•(1)

1
5 = - (^ sin 0- (igcos0)(3O .. .(2)

From (1) and (3), we get

1 , 1 9
—gsmOf = —g(9/ )(sin0-pcos0)
2 2

sin 0 = 9 sin 0 - 9^ cos 0
9p cos 0 = 8 sin 0

I= —tan 0

;=-tan45® = -

F = 0.2
m

Sol. 68 (A) M •Vn = 4m/s

Blockwillcontinue toslideover theplatform tillrelative slipping
between them stops.

The initial velocityover the platform is 4m/s,
M=4m/s

a =-|ig=-0.2x 10 =-2m/s^
v = 0

5 = ?

Using " v^ = M^ +2as
0=16-2x2x5

5=4m

Sol.69 (C) Letacceleration of5 is a downwards usingF5D
ofA&ndB

+ 7" 427

a/2

'mg lti'8

mg sin 0=10 Xj =6N

=> mg sin 0 <f^, the blockwill not slideat also no tension is
required in string to hold it at rest.

Sol. 67 (B) Lettimetakentoslidedownsmooth inclined plane
is 'r'. Iflengthofplaneisi"

ma
2T-mg=—-

mg-T^ma

=> T=mg~ma
From (1) and (2), we get

_ . ma
2mg-2ma—mg—

wg =
5ma

~2~

'2g

...(1)

-C2)

S= -^(gsinOV^ •••(I)



oj Motion

F,

Sol. 70 (A)

If is upward buoyant force on block we use

^B-^g=Y

^fi = 12g
When sand of mass 'm' is put inside box

, i9-hm)g-Fs=(9+m)^

(9 + m)g- 12g = (9 +m)~

9 + m
9 + m-12= —-—

4

4(7«-3) ~9 + m

'4ot-12 = 9 + w

3m =21

m = 7kg

N=ma

frmx = \^=»'g
\xma = mg

g

.-(1)-

Sol. 71 (B)

Sol. 72 (C)

0.2 4%

= 0.1
5% 'F

/lmax=0-2>^40
= 8^1

Maximum acceleration of 4kg block

^ ./imax
4kg

' • = 2m/s^

•mg

4 .

0.3
2kg

Sol. 73 (C)
4Ag, —>F^5N 1

V7777777777777777ZV/7.

Limiting friction between blocks is

/max = 1^1 f'
=0.3x20

=6N

r
2kg

'20N

f iV,

Akg

i40A^ In,

'N

-*-F

To start sliding between blocks we use

/™.=2[- =6 F=18N

545

F 5
at F = 15N bothblocksmovetogetherat a = — = —m/s^

6 2

/=2a=2x|=5N

SoL74 (B) Initially, mass onthe right,
Afj = mj+ m2

On removing the clamp, total mass on right side should be

2T - ^ •
equal to —, where T- tension in the string

Change in mass,
g mi+m2

-(mi+ms)

AM=-M2-Ui

Am^mj
mj +m2

4mjm2 - mf ~m\- Iniiin^

+ m2

Negative sign shows that this mass has to be removed from
right side

Sol. 75 (B) Acceleration ofS5^tem,

P
a =

m^+mB

19 10 , ,2

,10-F^g = 2x2

^^=6N

Sol. 76 (A) The force offriction between the blocks can be in
vertical direction only.Since there is no net force or acceleration
in this direction, force ofinteraction between the blocks is zero

in all the cases.

Sol. 77 (C)

On+ "'2)



i5:46'-

As chain is in equilibrium

F=W^ + W2

Sol. 78 (A)

{y-x)M
(y-x)

Let mass ofrope is M

Acceleration of system, a =
F,

m

Tension at a distance x from the end,

(jy' - x)Ma

y

• y M y

Sol. 79 (D) Friction forceacting on block

it.yl2N

-JlN - mg cos 0
F=lyN

( mgcosS^

= >/2p mg cos 0

mg sin 0- yjlumgcos 0,
a =

m

a= (sin 0- >/2pcos 0)g

Sol. 80 (B) In initial position

mg

sin 90® sin 120'

2mg
^1=

90

5-*-

90

mg

After string is cut, at position B

T2 = mg cos 30'

Sol. 81 (A)

Sol. 82 (A)

Forces and Ne^dn '̂t^e^nLMoi

Smg
^2=

2

2mg

To yj3 VSimg

...(2)

wg=400N

w=40kg
wg + 7wc7 = 600N

(when he jumps up with acceleration 'cr')
40a =200

a = 5 ms"^

B A

iiN-*

'60A'

T=60N ...(1)

7'=|jN (Toprevent/4frommoving)

7'=K50+10m)

=;> p(50+10m)=60

50+10m=-^=200
^ w = 15kg

Sol. 83 (C) The least forcerequired to drag it is equal to value
oflimiting friction

jV FsinO

'[\Q
• ' » Fcos 9

/'

T
Minimum force isapplied atan angle 0, such that 0=tan ^p.

•(^) and the minimum value offorce is

F=

—j=x25xl0
\img _ V3

^ fi
250

/r= — =125N
2

F=12.5kgf



aijcl Ne^on's ;Laws ^ Motion

Sol. 84 (D) -////////////y
30

ION

For equilibriumofparticle

mg

sinl20° sinlSO®

0.5x10 10

2

Sol. 85 (A) Speed ofplane = 720 km/h = 200 m/s

Sol. 86 (B)

0.25.

\kg

75.V=F

a =

r =

N'*-

/ (200r 40000
a 9g-g 8x10

r=500m

10

75 sin 37° = 45N

,•<75

•75 cos37° = 60;V

if

/max = MN

= 0.25x60

= 15N

45-(10-l-15)
a =

1

a = 20 m/s^

Sol. 87 (A) Both the scales will read 10 kg as tension in ideal
balances connected in series remain same.

Sol. 88 (A) Since the rods are rigid and particles are attached
to vertices, resultant force on A is zero.

dx

Sol. 89 (B) •\N

L

Totalmass ofrope, M= '̂ki,x)dx
0

L

M=^e '̂̂ dx .
0

. . . . F 1 ^Acceleration ofrope, a=— = —-
Ml,,.. e-\

Mass ofrope from 0 to LH is

e"^-\
m= —

T=ma

T=

i/2

0

e"'-\ L

Sol. 90 (C)

V^-1
2.7-1

Man

150 kgU
Platform, 40 kg

3r=900

r=300N

e-l

= 0.38N

-547

ADVANCEMCQs One or More Option Correct

Sol.1 (C,D) Perpendicular force never changes the magnitude
ofvelocity so its kinetic energy will remain constant and ifat
uniform speed force is acting in normal direction, motion of

particle must be in circular path.

Sol. 2 (B,D) As Earth is rotating about its own axis as well as
revolving around Sun, its motion has two accelerations so it is
not an inertial reference frame.

Important: Actually Earth is a non inertial refa-aice frame but
on Earth due to its low acceleration we can apply Newton's



Laws for simplifcityofsolving the problems in small dimensions

of bodies and system boundaries as this acceleration is very
small.

Sol. 3 (A, C) When bicycle is accelerating then due to the
external paddling force the rear wheel rotates in such a way
that friction acts on it in forward direction which is the driving

force on bicycle. Front wheel is pushed due to the frame of
bicycle which is attached at the axle of the front wheel so

friction on it is in backward direction to oppose the motion.
When no paddling is done then friction on both wheels will act

in backward direction. So options (A) and (C) are correct for
these two cases.

Sol. 4 (A, B, C, D) As friction on car is acting in forward
direction and that on plank is acting in backward direction it
will tend to impart a!cceIeration to both bodies which will be
inversely proportional to their masses and string will maintain
their acceleration equal by tension ifacceleration ofcar is less
than that of plank in absence of string otherwise string will
become slack.

Sol.5 (A,B,C,D) gjj^(-9Qo^0^^ sin90° sin(180°-92)

Comparing I and IE terms, we get

mg

180°-e

90°

c

96^2

'mg

'F^mg

mg mg

cos ©2 sin 02

tan 02= 1

02-45^

Comparing I and II terms,

mg

Hco =7^2cos45 ^

7^2 = -Jlmg

\—,i80°-e.

i80°-e

mg

sin ©2

sini[l80^
mg

+0,-82]

r- ^ y/lmg ^ mg
' sin0, -sm(0,-45°)

Comparing II and El terms,

-V2. , 1-

sin©, sin©, cos0,

^""TT
-sin 0j + cos0j = sin0,

2sin ©j = cos 0j

tan 0, =-x
2,

1sme, =^

Ts

7\= 75 mg
I^ ' J

p
Sol. 6 (B, C) Acceleration of system = —

5m

mP

P

P-Pab=-^

Pab*-

i

Thus, resultant force between A
p

and 5 is —
5

Similarly,

Sol. 7 (B,D)

4P

^AB~ 5

3P 2P
^BC= 'Y andi^cz)= —

r2=4©0N

0.^90°

400yV'

- ' • 300;\^



and Ndwtonls: bawis erf Motion •

300 400

sm(9O + 0) sin90° sin(180-e)

300 400
= r, = ^^

549:

Thus, in 5 seconds, it willbe in its sameposition anddistance
covered bydt '- .

Z) = 5'+5=17.5m

cos I

• 4
tan0='y

0=53°

sin 0
•lO.V

'

Sol. 9 (A,D)
.

v/zzz/zzzz? '•zzzzZZ/Z/z.

••• . •9.8Af .

400
r, = = 500n

' sm53°

0.5kg

Sol. 8 (6

From (1) and (2),

mg

mg~T=ma

1.96-T=0.2a '

M •*T

T=Ma

r=0.5a

l.96-0.5a = 0.2a

a = 2.8m/s^

For block ofmass m, '

Let block comes to rest in / seconds,

0 = 7-2.8/'

t=2.5s

Distance covered during this time,

s=7(2.5)-|(2.8)(2.5)'
5 = 17.5-8.75

5 = 8.75 m

0.2kg

...(1)

...(2)

ByNewton's in law, • •• * ; . ,

The block exerts a force of 1ONon the table and the reaction of

which is also ION

The block has upward acceleration.

i!'
Sol. 10 (A,B,C)

10% I >-\5N =P

TIOO.V

/imax = 0.2x 10x10

=20N

As friction force

= 15N and block'do not move

When bothP and Q acts, resultant applied force,

R= yJp^ +Q'̂ =Vl5^+20^

= V^ = 25N
R >/iinax» blockmoveswhen bothP and Q acts

a =
m

25-20 5
-^--=0.5m/s

. . - 15 3Direction of i?, ®~ "20 ~4*

r/F.

0 = tan ^—
4

A20N

•*-\5N

(east ofnorth)

N

Thus,direction offorce offriction (F'̂ ) willbeopposite toi?, i.e.
west of south.
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So!. 11 (B, C) As the system is in free fall centre ofmass of
system will fall at g and on upper block net downward force is
2mg(ownweight + spring force)hence its initial acceleraticffi is

2g-

Sol.12 (A,Q Maximum powCT is

P P

^ ^max y

As speed increases to maximum value and become constant, it

does not change as long as constant power is being supplied
by force.

Sol. 15 (A,B,Q Aswjgsin30® =m;^= r,nofrictionwillact
on Wj so T= 20 N andnet contact force on is the normal

reaction by groimd which is m^g cos 30® =20 >/3

SoL 16 (A; C) M'g-T= M'a
T=Ma

M'g = a{M+M)

Sol.13 (A,D) T COS0Q = mg
TsinOo = mgQ

a

tan0n=—
® S

T cos 9o

00=30®

r=
ntig Img

COS 30® 73

...(i)
...(ii)

a =

M'g

(AZ + A/*)

ma sin 6

mg cos 9

+rna cos 9

ma sin Q= mg cos 0

= ^ cot 0

M'g
g cot 0 =

(A/ + AZ')

cot 8 M+ cot 0 M'= Af

A/cot0

(l-cotG)

r=AZfl

= AZ.gcot0

Mg
T=

tan0

Sol. 14 (A, B, D) The particle experiences two forces in the q Mg~T~Ma
groundframe , T=ma
(f) wg (vertically down)

Mg
(ii) N(which isperpendicular tothegroove) Solving (i)and (ii) a =

Ifit falls vertically in groundframe

A^=Oandap^= g

N=

*****

(AZ + w)

F5£)ofman Mg-N—Ma

Mmg
(AZ +w)

...(i)
...(ii)

N

Mg
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ANSWER & SOLUTIONS

CONCEPTUAL MCQs Single Option Correct

1 (B) 2 (A) 3 (A)
4 (D) 5 (C) 6 (B)
7 (C) 8 (A) 9 (C)
10 (D) 11 (C) 12 (G)
13 (A) 14 (D) 15 (A)'
16 (A) 17 (A) 18 (A)
19 (C). 20 (A) 21 (B)
22- '(C) " ' 23 (D) 24 (A)
25 (A) 26 (B) 27 (C)

28 (A) 29 (C) . 30 (C) -

31 (C) 32 (D) 33 (B)

34 (B) 35 (A) 36 (A)

37 (A)

NUMERICAL MCQs Single Option Correct

1 (B) 2-' (C) 3 (A)

4 (A) 5 (A) 6 (A)
7 (C) 8 (A) 9 (C)-

10 (B) 11 (D). 12 (C),
13 (D) 14 (C) 15 (C) .
16 (D) ' • 17 (C) 18 (B)

19 (D) 20 (D) 21 (A)

22 (B) 23 (B) 24 (C)
25 (A) 26 (C) 27 (D)

28 (A) 29 (B) 30 (B)

31 (A) 32 (A) 33 (D)

34 (D) 35 (A) , 36 (D)
37 (B) 38 (D) 39 •(B)
40 (D) 41 (A) 42 (A)
43 (A) 44 (C) 45 (A)
46 (D) 47 (B) 48 (B)
49 (C) 50 (D) 51 (C)

52 (C) 53 (C) 54 (C)

55 (C) 56 (B) 57 (C)
58 (A) 59 (A) 60 (C)
61 (D) 62 (A) 63 (B)

64 (B) 65 (C) 66 (A)

67 (D) 68 (B) 69. (B)

70 (C) 71 (A), 72 (A)

73 (B) 74 (B) 75 (B)

76 (A) 77 (C) ' 78 (C)

79 (B) 80 (B) 81 (D)

82 (D) 83 (A) 84 (C)

85 (C) 86 (A) 87 (B)

88 (D) 89 (B) 90 (C)
91 (A) 92 (A) 93 (B)

94 (A) 95 (D) 96 (D)

97 (A) 98 (A) 99 (B)

100 (A) 101 (A)

ADVANCE MCQs One or More Options Correct

(B, C, D)

(B, D)

(B, C, D)

(B. C, D)

(A, B)

(A, D)

7 (B, C) 8 (B. C) .9 (B. D)

10 (A, C) 11 (A, B, D) 12 (B. C)

13 (A, B, C) 14 (C, D) IS (A, D)
16 (A, D) 17 (A, C) 18 (A, C)

19 (B.C) 20 (A. C)

Solutions ofPRACTICE EXERCISE 3.1
, ' j

(i) (a) To slide the block.

Foes 30®>)a(wg+Fsin 30®)

\mig
F>

cos30®-nsia30

0.3x25x10

--0.3x1
2 3

= 104.74N

.25kg

V7777777777777777777777-,
)i = OJ

(b) Work done = F cos 30® x 6

^ =544.277

(c) Work done by friction is
w^=- work done ty worker=-544.27J

As no displacement ofblock in vertical direction

(e) As no gain in KE because of balanced forces acting on
crate

^total=0

(ii) w = mg/;=55x 10x3 = 16507

I , 2 1 1 1(ui) w = AC/= - Ax = - (fcc) (x)= -Fx= - X20 X0.05

= 0.57

(iv) Given that

and

46=-A,(0.12)'

2x46
't,= -;rr77 = 638.89N/m

' 0.144

270.= -/t2 (0.27)2

2x270
A. = 77^^ =7407.4N/m

(0.27)'
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Here
K

X2

k does not very linearly with ;c'

(V)
U.l

w= ^Fdx= ^XOx^dc
0

= —fjc'T' =—= 3.33xlO"V
3 >- Jo 3 •,

Solutions ofPRACTICE EXERCISE 3.2

(i) We use k, + mgh- k,.

0+w(10)
y^) 2

mv„

= ^/lO^^
= 3.76iti/s

1 2
(u) Hereweuse mg^ = —wv

Wheregp gravityon planet

Sp =
(4.1)^

Ih 2 X(1.47-0.32)

= 7.3 m/s^

Planet is not earth

(ill) If initially spring is compressed by a distance x, initial

energy stored in it would be ^ .From its initial position to
I themaximum heightweuse

J.
2

K.+ ^kx^ ~mgih) =Kj.

0+-x'350xx^-1.8x10x3.6 =0
2

x2=0.37

x= 0.608 m

Using w-Etheorem for motion of block till it stops is

i mvl - mgh- iimgd =0

d =
vl~2gh

_ 36-2x10x1.1

'• 2x0.6x10
= 1.167m

Work, Energy and Power

(v) While sliding on curved parts block does not loose any
energy, it looses aiergy againt friction only on flat part. Ifblock
looses its whole energy in sliding a distance x on flat part, we
use

K. +mgh - \mgx - Kj^
0+10x1.5-0.2x10xx=0

x=7.5m

Length offlat part is 3W so

7.5 = 3 + 3 + 1.5

Thusblockwill finallycometorest at themidpoint of thatpart.

Solutions ofPRACTICEEXERCISE 3.3

(1) Iffriction onpersonat horizontalbeltis/we canusepower
expanded

P=f.v

400
/=—= 200N

If belt is inclined at an angle 0 then we use

/*= (/"cos 0 + wg sin 0).v

600= (200 cos 0 + 800 sin 0) x 2

2 cos 0 + 8 sin 0 = 3

2Vlsin^ 0 =3- 8sin0

4-4 sin^ 0 = 9 + 64 sin^ 0 - 48 sin 0

68sin^0 -48 sin 0 + 5 = 0

48±V2304-1360
sin 0 =

We use

, 136

48 + 30.72
= —— = 0-579 or 0.127

=> 0=35.45° or 7.31°.

(11) Driving force on bus at maximum speed will balance the
total opposing force on it so we use

^ = 1000W

P 50000 ,
= — = = 50 m/s

/o 1000

When speed is 25 m/s, driving force will be

P 50000
/p=-; =-t^=2000N

25

/d-1000

m
= 1 m/s^
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(iii) At constant speed driving for a is equal to all opposition

forces on automobiles and we use

- P=fD-^

P 30x746
fn=- t7-=1007.1NV 50x^

(iv) Power required to pull the tape is .

P=>=0.98x 0.025

=0.0245 W

Percentage of input power used in pulling tape is

0.0245

1.8

='1.36%

•xlOO

(v) For a circular area ofdiameter D, volume flow rate ofwind
at speed v is

r=Areax Speed

izD^
•XV

Kinetic energy ofwind flowing per second through blades is

A:=-(pry

i=^v3

If 100% transfer ofenergy take place then power delivered by
windmill is:

P = k= -pD^v^
o

(vj) Total resistance force will be

/^=10x103n

Total opposition on train is

^^/r+ '̂̂ sinO

=10x1(P+106x9.8x^
•49 •

= 10''+20x 10^ = 21x10'

Engine power P=f .VJ op

=21 X 10^ ' ^

= 2.1x10®IT

Ifengine is shut down, retardation of train is

fo. 21x10'

553

a =

m 10"

Distancing travelled before it comes to rest is

100

= 0.21 m/s^

s =
la 0.42

SoluHom ofPRACTICE EXERCISE 3.4

=238.095 m.

(i) Given that tangential acceleration
= 2m/s^

Its normal acceleration is

v' (30)' _ 9
" 500 ~ 5

= 1.8m/s2

Total acceleration ofparticle

yja,

= + = 2.69 m/s^

(ii) Tangentialaccelerationofa print at a distancer fromaxis is

= rP = rat

Angular acceleration after time t is be given as

d(S3
— =p = «r

(0 /

|i/co =^atdt

at'
co =

Normal acceleration of the point is
a^=ti?r

ah'

If after time t, a is the angle between its velocity and total
acceleration vector, we use

or

(iii) We use

.. (i aYr

a, rat

( 4tana^1/3

I « .

- ky[^

r =

i/co

"dt

= -at'
4
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f d(ii >
• -7= = - \kdt [/.-> total rotation time]

' i ^

~ ktj-

At a general time t angular speed is

•dt

1 .2,2
= co= —k t

Oo 'f ,

jt/0 =\-k^t^dt

0 12

_ 1 2 4g)o _ cDq
12 e 3

(^) Angular acceleration

cor/®
c^="55~=aocos

CD 6

Jcorfco =Ja^ cos 0r/0

CO . ^
— = anSm0
2 °

co= ^2ao sin 0

Solutions ofPRACTICE EXERCISE 3.5

(i) (a) We use mgL=—mv^

(b) At thetopofcircular track ifspeed ofball is Vj, weuse

imv^-mg[2(i-A)]

1 2
mgL-mg[0.5L] - —wvi

= ^/^

Work, Energy, and Power;

I
h

f .[ C

L^h

(ii) At the position where cloths falls offwe use A^=0
=> mgcos 60® = moy^r

co =
10x2

2r V2x0.65
= 3.92 rad/s

wjco r

N=0

(iii) After displacement by angle 0 if speed of ball is v, we use

• /Mgr(l-cos0)= — •

v= ^2g/*(l-cos0)

N •

Along radial direction

wg cos 0 = +
mv

jV= mg^cdsG-
mv

N= mg cos 0 - 2mg(\ ~ cos 0)
A^=w^3 cos 0-2)

AtangIe..0 = p, if A'^=0wehaVe

I 3cosp=2

=>•

After angle p ball leaves contact with inner wall and get in
touch with outer wall.
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(iv) As r= 0 at point 5 at 0 = 127® we use

2gR-u'
cos.l27® =

3gR

—x'igR =2gR-u^

„2=! 2+̂ J^/? =yg/;

u=Jjg^

v= -2gR(l-cos6)

=JjgJi-2gR

=Jjg^ - ni/s
Maxheightparticlecan rise furtheris

v' sin'(53®)
h =

"2g

30
ri6^

—

Usj
2g

= — = 0.96m

(v) Planespeed220kphina circleofradius180m
At the bottom effectiveweight of pilot is

N= mg+-
R

—mg+ fft

220 X —
18

180

= mg + m(20)= 3mg

2^

cos (() = j

and speedofparticle at point B is

„

(a) Onlyduetomotion increase inweightis2mgthusincrease
in g!swill be 2
(b) Total effectiveweight is 3mg.

(vQ Particlebreaks off the hemispherical surface at angle (j)
such that

Thus sin (b =J1-— =2^r M 9 3

v= y/2gR(l-cos(i>) =.^I^R
.JV=0

7777777777797777^777)^.

Distance I is such that

/ = vcos (j).?
Where ns time offlight.given by

1 2
^ cos (j) = vsin(t)r+—

r' +—sin,(j)r-^ •
g

2R cos <})

g
= 0

y/5 [2 [r I 10 R 4R
J-.1- + .1 +

3 v3Vg V9x3 g 3 g

f- ^ l^+ I-- = R
(>/46-N/i0)3^\g pig

Thus distance s is given as

s = i2sin(t)+/ = i?sin(}) + vcos([rf

2-lg

:=j[^+̂ (^-y/5)]

=A[4^+5y/5]
27

Alternative Solutions;

We have cos ({) =

and sm(()= —



Speed of particle at points is

at

/2 +
27

v=A/-g^

y = -x\.^nisf~
lu cos (j)

-B
y--^-

gx

2 ^ 16 i?
>" = - i? cos (j), a:= /

3 2 16 i?

81

4^/5_ /? I 64x5 4x32 9
——i2+—J + X-

/= -

27 2 V27x27 27x3' 9

4^5^ 4i?
+—V5 + 18

27 27

Distances will be 5 = 7? sin ({)+/

= —(5^ +4y/23)
27

Solutions ofPRACTICE EXERCISE 3.6

(i)(a) Atouter edge (S?r-\.5g

1.5x10
00= -il—TTT— =0.1768 rad/y

480

(b) Rotation Period

en

1.5g

CO

Rotationfrequancyis /= — =0.0281 sec~^
27C

1r=y =35.52 sec
(c) At a distance we use to^rj= 0.75 g "

XTj =0.75^

r 480
n = - = —=240m

' Woric, ^Energy,and

(ii) For no skipping tendency banking angle is

I= tan ^ — = tan '
fg

=5> 0=tan"^(0.247) = 13.87°

(iii) Figure shows therotating liquidatangular speed co. Apoint
P on liquid surface in Evolving in a circle of radius x. For its
equilibriumin rotating surfaceframe, weuse

'Ay >

N sin 0 = m(s?x
7/ cos 8 = mg

' dy (}?x •.
tan 0 = — =

dx g

dy= dx
g

X 2 •
CO a:\dy =J

g
dx

2g
y=

(80 X5/\2

200x10

...(1)

...(2)

...(3)

Equation-(3) is the equation ofsurface in the given coordinate
system

=> liquid height at a:= r is

^ 1671^(0.05)^
= 0.02m=2cm

^g 2x10

(iv) For equilibrium ofbead at angle 0, we use

A',

R sin 0

mg

NsinQ= wco^TS'sin 0=> 7V^= moy^R,.
Ncos 0 = mg

For steady position case / is when 0 = 0
andcase II isat 0< 90° &0 0 from equation (1)&(2)

-11 g •
= cos M

CO 7?

...(1)

...(2)



"Work, Energy andigowej:

(v) (a) For equilibrium ofparticle P in frame of bowl, we use

sin 6

: iftng

A'̂ sin 0 = m(i?R sin 0

iVcos 0 = wg

and we have • h = R(l - cos 0)

From (1) & (2) we have

g
cos b =

(o^R

From (3)

(b) For non-zero value ofh

h^R-Ar
0)

i?>4-
0)

>\/^ = =7V2 rad/secco-

Aj?
(c) From equati6n-(4) we use Ah-- —^

' CO

Ag= (0^ aA = 98 X10"^ =9.8 X10-^ m/s^

(vi) In frame ofrod for equilibrium ofsleeve

m(£? (/q +x)='kx

x =

maP'lQ
(Ar-mco^)

CD

(2)

.(3)

(4)

Total energy of system in final state is obtained by work done
on system which is given as

1.1,
co= —mV^+ —kyr

2 2

L + X

1 9 o 1

k-mai'

1

2, ^
wco /,

C0= —/MCO
wco t-wco

1 2 kL
+-/t

^ 2, ^wco /,

k-maP') 2

A: +wco

{k-maPp

k-m&i'

Solutions ofPRACTICEEXERCISE 3.7

(i) (a) For the spring S F=kx

atF= IOON,x= 1 m A:=IOON/m

Ifspring compresses byA:bymass, using work energy theorem
we have

mgsin0 (/+x)- kxP = 0

=> lOx10x0.5(/+2)-0.5x 100x2^-0

=> / + 2-4-0

l=2m

Thus total distance the mass slides before comming to

rest is/+x = 2 + 2 = 4m

(b) When mass reaches the spring its speed v is given as

v= yjlglsinQ

v=V^m/s

(ii) m-0.5kg,v = ax^^^a=5m-''^s-', fT=?

Initialvelocity atx = 0, Vq = a x 0 = 0

Final velocity atx = 2, = 5 x2 '̂̂

Workdone= Increasein kinetic energy= —m ( Vj ~ )

= - X0.5 [(5 X2^'^)^-0] = 50J

(ill) When block starts sliding spring force on it is given as

kx = mg sin 0 + mg cos 0

mg
=> x = —— (sin 0 + |J.j cos0)

K
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At this state potential energy ofspring is U= ^^

1 f 7«p(sin0 + ii. cos9^

U=
[Mg(sin0+ }ij cos 0)]'

2k'

(fy) Using equation F- - , we obtain the expression for
ar

the force

F=
6U.

/ n13 / \

At equilibriumthe force mustbezero.Therefore theequilibrium
separation is given as

(v) At angular displacement 0, speed of bob is

w

mv^

mg

v= yjlglsin 0
For equilibrium of bob in rotating frame, we use

.2
mv

r= mg sin 0 + = 3mg sin 0

at r=2mg, weuse

2mg = 3mg sin 0

= sin ^

(vi) (a) Energy stored in spring is —kx^ which istransformed

to kinetic energy ofball as

^kx^ =
2 2

k ICQ
v= J—J—— x0.05 = 1.58m/s

V m V 0.1

(b) Time taken by ball to reach ground is

r= B =̂ =
Vg V 10

:J: Work, Energy;and Powerj

Thus'horizontal distance travelled by ball before hitting the
ground is

Z= v?=1.58xVo^ =lui

(vii)As chain slips off the sphere, fell in its centre of mass
height is

2R nR
/» = —+ —

n 4

By work energy theorem, we use

mgh =

or

K
(viii) U= (3cp- -t^);0<r<a

C/= —; r> a
r

dU .•

~ dr''

7- Kr ^F~ 7-; 0<r<a
a

kF=-^;r>a

In both the regions

0<r<a and r>a

On increasing V it decreases potential energy

Hence force is repulsive

(b)
r = 0

In 0<r<co;F'>0

/ nR
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So particle reaches origin;

lfv>0

-mV/ +0 = -mr

-mV'+0 = -mV.

lfV.= J

Particle stops at r = (^q > 0) &thenstartstravelling towards
infinity. ' ;

(ix) As rate of work by the applied force is constant we use
F.v = constant = k (say)

a =
mv

vch>

mv

\v^dv —f—dx
i J W
u 0

3fcc

m

also fi:om equations-(l)

dv • k

dt mv

V t ,

Jvdv =I—dt

(2) .

o'"

2kt

m

3x

It

3_(m>v)x_
2 (i? + +4v)

(x) We use F = -Vt/ ,

F =- [2y I + (2x+ z) j +yk]

...(1)

.(2)

.(3)

559

Solutions ofCONCEPTUAL MCQs Single Option Correct

Sol. 1 (B) Atpositionxjtheforceontherightofthispointis
positive that is toward right and on the left of this point is
negative which is toward left hence the bodywill be in unstable
equilibrium at pointXj. Similarlywiththesamelogic wecansee
that at pointx^ the bodyis in stableequilibirura.

Sol. 2 (A) Centripetal force is the resultant ofall real forces
actingontheparticledirected.along the radial direction inward
which does not act sparately on the particle. In this case there
are only two forces on particle mg and string tension.

Sol. 3 (A) Normal reaction at the highest poirit of the track
willbe given by centrifugal force minus the weight of the block
so it willbe maximum whai centrifugal forceis maximum which
is the case when radius ofcurvature is minimum hence option
(A) is correct.

Soil 4 (D) Due to Earth's rotation at points on earth which are
revolvingin circular motioneffective valueof g decreases due
to outwardcentrifugal forceacting onbodies on surface so at
these points effective value of g increases but at poles which
are always at rest value of g ramain the same.

Sol. 5 (C) If power is constant then by using the relation
P = F.v we can state that a.v = constant then using dvldt - klv
wegetV= {Ikty^ thenusingdxidt= onintegrating we
get displace ment is directlyproportional to

Sol. 6 (B) Normal reactionat surfacevdll be equal to weight
of body minus the centrifugal force on body. So in this case
normal forceis higher whereradius is less hence option (B) is
correct.

Sol. 7 '(Cf When the ball is released, we know that after an
anglular^placement 0=cos~^(- 2/3) ball leaves contact with
the inner wall ofthe tubeand get in contact with the outer wall
of the tube hence option (C) is correct.

Sol. 8 (A) The normal force between the train and track will
be equal to its weightminus the centrifugalforceon the train.
The forcewill be higherin casewhere the centrifugal force is
less so the lower speed train will press the track with more
force. As relative to earth speedofboth trains are equal so the
train which is running west to east will move fast will press the
track with less force hence option (A) is correct.

Sol. 9 (C) Using work energy theorem from starting point
fi-om where the ball is released to the point where the spring
willhavemaximumelongation wecan calculatethemassof the
ball. It can be written as



0fmgh-{\l2)kh'^^0

and to lift the block

kh = Mg

...(1)

...(2)

Sol. 10 (D) Fora planetary motion ofbody being abounded
motion itstotal energy andpotential energy must benegative
withrespect tozeroenergyat infinite separation fi-om thecenter
of force. Soamongthe givenoption(D) is correct.

Sol. 11 (C) The onlyforces acting ontheaircraft are isweight
and the upthrustdueto air pressureon its wings in direction
normal tothe wingssurface henceoption(C)is correct.

Sol. 12 (C) As K.E. ofboth are same negative work done by
the force to stop both mustbesame sodisplacements arealso
equal.

Sol. 13 (A) Tensions in the rod will be providing the
centripetal force ontheouter sections oftherod at anypoint
tension in the rod is given by T= mo?r where at a distance x
fi-om pivoted end ofrod we use w= and r=(/+x)l2 so
substituting values wegetT=A/(/2-a^)/2/which implies that
at innerpointtensionis morethan the outerpoint.

Sol. 14 (D) In vertical circular motion as the motion is
accelerated, bodycannot be in equilibrium.

Sol. 15 (A) Here the force on particle is given as
-dUldx =-2x + 4 which is zero atx =2 andat thispoint

SUldx^ is positive which corresponds to minimum energy so
this is thepoint of stableequilibrium.

Sol. 16 (A) For a body driven by a constant force, power
P = F.v and we can use v = a/ so P = Fat which is a linear

function.

Sol. 17 (A) As motor cycle is ascending on theoverbridge,
the componentofweight alongradial dirctionincreasesso the
normal force also increases.

Sol. 18 (A) Thepowerofthe bodyis P = wi7v = 4v. '

Sol. 19 (C) Work done by the weight of body is 1^= mg.
(2« - 1) for second ofmotion hence option (C) is

correct.

Sol. 20 (A) For uniformly accelerated motion particles
momentum isgiven asp = mat anditskinetic energyisgiven
as {ll2)mcP-t^ and theratioofthetwo ispIK= Vat.

Sol. 21 (B) As aparticle falls its gravitational potential energy

JV^rk,^Energy Slid Power

decreases and kinetic energy increases with speed given as
v = gt so the possible option is (B). .

Sol.22 (C) The kineticenergyofwindperunit time is (1/2)
(p^v)v^ where p is the density ofwind, A is the area of cross
section oftheblades andviswindspeed. Theelectrical power
output is proportional to this valueso option(C) is correct.

Sol. 23 (D) With thegiven function wecanfindthepotential
energy function as U{x) = (l/2)hd-- (l/3)ax^ byconsidering
zeropotential energy at j; = 0 then outof given options only
option (D) is possible.

Sol. 24 (A) As throughout motion acceleration is positive,
speed continuously increases so KE also increases
continuously with positive slope. The slope of KE is
= d{KE)ldt = mva hence onlypossible option is (A).

Sol. 25 (A) We use

F - VU= - cos (jc +>>) / - cos (x+y) j

f\ 1 ? 1 •i
/—-J

75' 75

Sol. 26 (B) U=AQ{xy) + C
Asthemidpointofrodtheparticle would beat equilibrium so
fi-om conservation ofmechanical energy betweenAandthemid
point of the rod

-zmvl = 40

Where a = lm

= a.

So, VQ = 2m/sec.

Sol. 27 (C) Fromworkenergytheorem

-2Fh=^m(yj-v^)

Where h =
V

F
g + —

m

^ Vmg+F
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c. Energy and Power

Sol. 28 (A) tan 0 = —

h
— =tan0 .
a

Sol. 29 (C) F=kt
C J ' ,

V t

m^dv ^ tdt
0 0

mv= kfi

k 2
v= —t

m

1 1KE=^mv2=4m~?' =
2 2

KExr^

r u2 \

^2mj

Sol.30 (C) From work energy theorem in the frame which is
attached to point A, we have

max;:-rzkx^=0 i • .
m 2

2ma

Sol. 31 (C) W.D. from groMd frame = 6.4 X50 = 320 J

8x0.8 = 6.^ N=8K

10x0.8 = 8N

From elevator frame, displacement=0.

• v'
Sol. 32 (D) The radius of curvature p = — .As projection

•

' * 1 t

point ci^ = g cos 0 andv- u andat topmost point a^= g and
V = MCOS0.

Sol. 33 (B) We draw the F5D ofthe coin

fj. == tangential component offrictional force oncoin

= radial component offrictional force on coins

fr^^oT

fr=mGi)r :

+//

co;
2-kN^^

2a

Solving the equations, we get

n1/2

r

N=
Ana

Sol. 34 (B) fr= ,

bdr

dr\R
.dr

b f, 2nRb ^ , ,
= —(p = = 2nbJ

R

Sol. 35 (A) Average speed in x-direction is

Ax 2nR
< V. > = •:rTT 5where T=

TI2

2RcosSiy 2i?
<v > = -

2;^?

K/ ^

Sol.36 (A) W^^^~W = \F,-dP

nFJ

fo 2

By conservation ofmechanical energy

1 2.7—- = -mvf + mgl

Sol.37 (A) — —mv^+—2mv^

Workdoneby frictionon g = —2mv^

561-



^

Solutions ofNUMERICALMCQsSingle Options Correct

Sol. 1 (B) w = mg— +Mgh COM^
of rope

kl2

W-

Sol. 2 (C)

M+y Igh

x= —

3

dw = F.dx

\F.dx= \m^ .dx
J ^dt

w= ^m{2t) .t'̂ dt ^
2

w=4^t^ dt

w = 4 = 167

Sol. 3 (A) Block Mhas to be at rest

•///////////// •/////////////

Fot equilibrium lT=Mg

From (1) and (4),we canwrite

Mg _ Imm'g
2 m-¥m'

±=l.±
M m m

Sol. 4 (A) The angular velocity and angular acceleration
remains constant:

'Similarly,

20

a

r

20

V

r rH

v'=10cw/5

a

- ^ • r r 12-

(3'= 10 cm/j2 •

Sol.5 (A) Potential energy of cube at postion 1,
U^ = Mg{AR) =4MgR

At position 2,
U^ = U^ + K^

AMgR=2MgR^^^M^
4MgR= Myp-

v2 = 4gi;

M\P'
N=

R

M

-Mg

(v=(or)

N= --{4Rg)-Mg^3Mg
K

Sol. 6 (A) ^

I
—

m

mkt
51,

12m

. Elongation in spring,

Let acceleration of w' is 'a' downwards and that of w is 'a'

upwards.
nCg-T^rda ...(2)
T-mg = ma .. .(3)

Subtracting (2) from (3), we get

r=
Imm'g

m + m'
...(4)

_ 13/o _
12 " 0 12

work done by lifting force, ,

_ 5wg/o ,
W H

12 288



<> ;Ene^y)and 'Power-: ?

Sol. 7 (C) Least force required, • '

)x.mg

Sol. 8 (A)

F=

•

1 . 25kgf
F= —r^ I

F=12.5kgf

•I
cos 0 =

•EC = / cos 0

NsmQ = m(i?R

iVcos 0 = mg

<^(0

Dividing (1) by (2),

Sol. 9 (D)

iVicos 0

ma R< ^— m Nsin 6

sin0 _ 05 ^
COS0 g

R = BC = / COS9

• ?sin0

®= sec0

U=Xix-^y)

F =-

V

g^sin0

dU ? dU r
—/ + /

5:^ dy -

...(1)

...(2)

F =-Xi—Xj

w= F .X

w = (-X,/-Xy) [(2-l)/+(3-l)y]

w = (-X/-Xy).(i +2y)

• •m, = -X-2X

w=--3X

Sol. 10 (B) Let increase in lengh ofspring isx

kx-^—

At equilibrium,

2
.ma X

2,
• ma I

kx = OTCD^X + wco^/

kx-m(S?-x-m(iP-l .

x =

m© /

k~m(Si'

563i

Sol. 11 (D) The car is in a state of free fall, so tension in the
string is zero.

Sol. 12 (C) Work done to stretch a length a: of spring,

work done to stretch the spring to length 2x,

W=\k{2xf=AW^
work done to stretch further length jc,

Sol. 13 (D) Power, P = F.v'
P = F.{la)

' IF=> p=F.—

(As v=u +at)

Sol. 14 (C)

Sol. 15 (C) From,

From,

From,

2F

m

t 10

x = 2m to x=3.5m,

y = nix + c

[/j=-4x+10

. dUy
F,=--7^ =+4N

' ax

rf^= + 4x(3.5-2)
=+6 J

x = 3.5m to x=4.5m

t/2= + 2x+ 2 •
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ff,=-2x(4.5-3.5)
^ • W-^ =~2J

work done from 4.5 m to 5m = 0

I
2'-'
—mv ^

-x2xv2 = 6-2 = 4
2

v=2m/s

Sol. 16 (D) AreaunderF-xgraph,

1 1
^=.-(4)(10) + (4xlO)+ - x4xl0

W=20+40 + 20

From work-energy theorem,

W=-m^P•

(as body starts from rest)

Sol. 17 (C)

As

1
80= - xO.l xv^

2

v2 = 1600

v=40m/s

P =out ^

T1

mgh 2x10x10

1

oul

P.
I

40 _ 200

loo "

P.„=500ff
lHp = 746ir

500
5001f=—Hp = 0.67Hp

746

Sol. 18 (B) From conservation ofenergy,

. '

I-
/r

Let velocity ofblock at C is v

1 2 '1—mvg +mgr(l-co5'0)= —mv^

cosQ)

=200fF

; v= +2gr(l-cos0)

•Wor^i:/Eiie};gy;;artd Power

when block leaves the surface,

N=0

mg cos 0 =
mv

r

- ' rg cos 8= Vq +2gr(l -COS0)

3rgcos 0 = ~ + 2rg

9 .
3cos 0 = T

4

Sol. 19 (D)

Dividing (1) by (2),

cos 0 = —
A

0 = cos M —

wvf
Trmg^ —

ri =io+^
' 10

3vl

mg

r.

L]

^ =4 =
100 + 3V,

3v|-100

12v|-400=100+3vf

12 vf =500 +3vi^
From conservation ofenergy,

1 2 ' 1 '2-mv2 +mg(2L)=-mvi

v| + 4 X10x — = V,
3

10

-•f

V? - +
400

.(1)

.(2)

•O)

•(4)
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From (3) & (4), we get

I2v|-400 =100+3v|+400

9vl =900

Sol. 20 (D)

Dividing (1) by (2),

v| =100
Vj = lOm/s

Tcos Q= mg

rsin0 = mci)^(/sin 0)

'//////y/////,

rcos0

Tsm 6 -3- •

COS 0 =
g

CO^/

/J • ' g

/ (2;iP)^/

4712/^=4- '
h

P=-fi
2%\h

Sol. 21 (A) For block describing circle on the table.

r=mcOj^/,

For block describing conical pendulum,

r cos 0 = wg

r sin 0 = mcoj ('2si" 6)

=> T = w632 /2 ''

From(l)and(2), '2

CD-

CDi

.(1)

.(2)

..(1)

..(2)

Sol. 22 (B) Sincethe same force is applied onboth springs,

^^B ^A ~ ^B^B

2XA=Xg

EA =E=-k^x/

^8= 2 V/ ...(3)

565

Dividing (2) by (3), we get

E 2k,

4x

E,==2E

M
Sol. 23 (B) Let mass of man is Afand that ofboy is—

Let velocity of man is and that ofboy is

2=A-V„ =

4

when man speeds up by Im/s,

(KE)^ ={KE)^

|a/(v„+1)^=|-

v+l=-r
V2

From (1) & (2), we get

Sol. 24 (C)

- Vr

T^^"V2

r>/2-i'
= 1

2 V2 + I
''^"V^-4V2 +1

= 2(n/2+I) m/s.

Mg-F= —

F=
3Mg

...(1) '4 •
work done by cord on the block

...(2) =Mcosl80''

2Mgd

...(1)

...(2)

if
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Sol. 25 (A) As

T^ =MAT^fl

f-\F27iVm

1/2

/=
2jc Ml

Sol. 26 (C) We use,work energy theorem as

=> v^ =gl

=> v=Vi^

Sol.27 (D) 4% •lo;^

'//////////////}///////

<N

r40^

J;;=^^#=o.lx4o=4N
Net force actingon block,

F=10-4 = 6N
Acceleration of block,

F 6 3 ^
<3 - — -~T-~ m/s^

w 4 2

Distance covered by block in seconds,

5= jx|x(^)2
5 = 15m

work done byapplied force,
w^= F^xs

= 10x15.

= 150J

work done byfrictional force,
Hy=/X5

work done bynet force.

= 4x 15

= 60J

w^^^=Fxs
= 6x 15

= 90J

Sol. 28 (A) Speed will be maximum when,
F=kx

F

k

•lo/v

Work. Energy and Power

Fromconservation of energy,

0 - —Ax^ + Fx = -rmP-
2 2

- ]-k^ +kx^= \nt\^
2 2

hp- . 1

v= ^|— .X
m •

'im ' k yfi^

Sol. 29 (B) For motion ofcar we use
F'-1000N = 500x 1

F'=1500N

Power, p = /r y

= 1500 x5

_=7500W

= 7.5 kW

SoL30 (B) Centripetal acceleration,

- 4

;.V =

Momentum ofparticle,

Sol. 31 (A).

P=mv . :•

Tsin 0 = moP(/ sin9)
T= maPl

T cos 9

T sin G
mg

/sin0

ForAftobe in equilibrium in vertical direction

T=Mg
From(l)&(2),weget

maPl'-Mg

=> ml^Tiff-l^Mg

AiPp-ml —Mg

...(1)

...(2)
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.-2 —
Mg

4%^ml

1 m

2n V ml

Sol. 32 (A) For stable circular motion of centre of mass of
rope, we use

for freaking

r=wco2

40= 0.20)2(1)

, 400

0)2=200

0)= lOsIl rad/s

Sol.33 (D) Work donebytension = zeroas stringismassless
and fi"ictionless which can never do work.

Sol. 34 (D)

w =

mg

Sj 32

Sol. 35 (A) By work energy theorem, we use
Wp=mgL{l-cos 0)

1,(1 - cos 0)

Sol. 36 (D)

As

w=F.S=ma.s

w = ma. —a/2
2

a =

1 • v'
w = — m -T" r

2 tt

Sol. 37 (B) When chain has left the vertex,

10V2n
Reference

COM Final state

567

sin 45° =
. 10^/2

• P = lOm

P.E is decreased bythe samefactor bywhichK.Eis increased,

Reference

COM Initial state

^=_(10x 10x10)
i7^=-ioooy
[/.=_(10x 10x5)

U.=-500J

Ak+AU=0

-x10xv2-500=0
2

v2=iao

V = lOm/s

Sol.38 (D) Theminimum velocity thatshould beimparted to
the bob so that it completes vertical circle is

v=

At lowest position, T- mg+
mv

T=mg+
m{5gl)

r=6mg

Sol. 39 (B) Potential energyofblock at

= lx lOx 1 = 10J
A

Reference

kinetic energy ofblock at B,

Ji:^=-xlx(2)2=2J
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Loss in energy,

l=u,-k.
= 10-2

= 8J

work done by frictional force

= -8J

Sol. 40 (D) The mass ofchain isdistributed uniformly along
the length of the chain and as the surface is smooth, we can
assume that massof the hangingpart is at its centreofmass.

When pulled up, work isrequired against gravity indisplacing
thecentre ofmass ofthehanging chain byL/6.

Sol. 41 (A) B-

Smooth

M L MgL
W= •— XgX --= —^

3 ^ 6 18

-3m

(rest)

fir'"
Kinetic energy at5 = Potential energy atA

Kg= mg(l)

mv^ =mg

v2 =20

v= m/s

By conservation of energy,

~mv^~^mgx=0

-(20)-K10)(3)=0

H =

Sol. 42 (A) Maximum speed isatequilibrium, when block is
descended by x

2kx =mg /b:| ifa

Tmg

Work. Energy and Power]

Sol.43 (A) Letanglewhentension in the stringbecomes zero
is 6

We use cos<j) =

cos (() =

cos (}) =

2gl-u^
3g/

(2xl0xl.5)-57

3x10x1.5

30-57 27 • 3- '

45 ~ 45~ 5
0 = 127^

1.5m

In figure we use

by work energy theorem, we use

- 9
x = 1.5 sin 37®= —w = 0.9m

—mu^-mgh=

57Y=C10)(2.4)-h-y

v2=9

v = 3m/s

Sol. 44 (C) Letspeedofbobat5isv

/(1-cos

•//////^////z /

Tcos 9^/'"
.T

mg COS 9

Tension at 0 angle is T= mg cos 0 -i- mv

[here v= ^jlglcos 0]

2mg - mg cos 0 -i-
mv

I

= 2 mgl - mgl cos 0
3cos 0 =2

= cos ' ' —
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Sol. 45 (A) The light rod cannot slack during revolution and
particleis abletomoveto topmostpointofcircle,A\hen it reaches
the topmost point, its velocity becomes zero but due to its
inertia, it will fall in fcaward direction and completes the circle.

v=0

V II ^

* k r.. . ' \

Sol. 46 (D) Given mass and initial velocity"
m = 0.01 kg

« = 4i +16 k m/s

1B| =V(4)'+(16)(
151 = V272 m/s

V =8i*+20y

1^1= V(8)^ +(20)^
iv|= V4^m/s

W=F.S

W=m'a. s

W=m

2 2
V -u

.^-O.Olx
464-272

fF=0.01x96

1F=0.96J

Sol. 47 (B) Resulting force on ball is

F= yj(mgf +(ma?ry

F= .10000 + lb (4)X(0.5)
n

F= Vl 0000+ 6400

F= V16400

F=128N

569

Sol. 48 (B) Centripetal acceleration is

r

=> v-krt

Tangential acceleration is.

dv
a = — - kr

dt

F," ma^

= mkr

work is done by tangential forces, as radial forces are
perpendicular to v

F = F,v

= {mkr) {h't)

Sol. 49 (C) Let speed ofball at F is v
Kinetic energy aty4,

V

2
^(1) (5)^=12.5/

12.5={l)(10)(l)+-Cl)v2

.v2 = 5
Force acting on particle at 5,

F=\img) +

F=^(10)^ +

F= Vl^

F=5V5N

r 2\^
2 ! mv 1

2 I 1x5

. X

Sol. 50 (D) Let each mass is stretchedby —, workdoneby

spring on each mass is

As we consider spring constant of half spring is 2k

=> ~ T ^
4
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Sol. 51 (C)

mg sin 0
0 Mmg cos

As block does not slide over the wedge, friction on block

f=mgsmQ-

= sin 0 .. .(1)

work done by force offriction,

w =/sin 0 XV?

w = wgsin^0v/

Sol. 52 (C)

Tensions in strings are calculated by equilibrium of masses in
rotating from as shown above are - -

T^ =m^(i3^r

Sol. 53 (C)

7^2 =WiCo^r+mjCO^ —

T =^2
2m^ + Wj

T2 2wi + m2

2wi

= 0 + [mgsin 30° -\xmg cos 30°] 2h
^ I*

AT- = 0 + [mgsin 60° -\xmg cos 60°] -j=
V3

^2>^l

Sol. 54 (C) —hc^ = —imP-
2 2

6O0x(0.O5)2 = (15x1O-3)v2
v2 = lO0

v = 10m/s

Work, Energy and Power:

Maximumrange.
v'' (10)'

^.= —=-^=10m
8 10

Sol. 55 (C)
W mgh

t t

t = ls

m= Vp=02m^ x 1000 kg/m^
m=200kg

2OOx9.8x(10 + lO)
P =

1

P = 200x9.8x20.

P = 39200ir=39.2kW

Sol. 56 (B) Let x be the extension in spring when 2kg block
leaves the contact with surface

r=20N

Ax=20

1
x = —m

2

Using work energy theorem, we have

mgx= -—k}p-= —mv^

M ^ L -.^1 40x1v= W2gx J2 xlO
V w V 2 4(5)

V= 2-J2m/s

Sol. 57 (C) Work donebygravity= change in
Let velocityofparticle at point 5 is v

aJl

The horizontal component of velocityremains constant

a

M cos a = V cos T
2

v =

wcosa

cos a/2

1-1w= —mv^ - ^ m{u cos a)^

1
1 2

U cos a 2 2
; u COS a

cos a/2

= — m cos^ a sec^ —-1

^ ^= —mu^ cos'^ a tan-^ —
2 2
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Sol. 58 (A) The equation ofthe given line is
3y + kx=5

kx 5

^ 3 3
k

Slopeoflineis —

Slopeof line of action of forceis

3

'"2" 2 . , . .
work done willbe zero, when Wj and/w^ areperpendicular to
each other.

miOT2=-l

k 3
- —X— =-l

3 2

k=2

Sol. 59 (A) Since the particle is given just enough speed to
completethe vertical circle,

u'̂ = SgR = 5g
v^ = u^-2gR
v^ = 5g-2g ,

= 3g,

Centripetal acceleration,

«„=7=3g
Tangential acceleration;

^toial -^1 4-a

=

Sol. 60 (C) Power supplied is

3/^
P - watt

dt ~ ;2

. 3/2 ^
t . awF —rdt .

2

3Jrfvv ='J- f-dt

3
A=-

1,38
--TmP-= "X"
2 2 3

- x2xv2=4
2

v2=4

v=2m/s

Sol. 61 (D) Relative density ofice,
R.=Q.9

Hense, 90% ofvolume ofice is immersed in water.
When icemelts completely, the levelof water remains same.

4.5cm

(CG of melted
ice to water)

\CG ofice)

m

900 =
(o.ir

. • .=> . /n=0.9kg • .
Am = mg'(0.04)-mg(0.045)
Am = 0.9X10X(-5x10-3)
Aw =-0.045 J

Sol.62 (A) Let finalvelocityofparticle is V

1 2 3 1 2 I ,2'"V-4-2 ^"^=2

0 2

^ ^2
From first equation ofmotion,

I i . •

Y=Vo-^g/o

Vo
=

2g^o

SoL63 (B) For particle 1,

Reference



572

mgi2R)-mg = - mv?

gR^±
2 2

vl=gR

"1 =4^

For particle 2, mg(2R)=^m\i

^2"

^2 =^ |̂gR

I

, 2

.(1)

•(2)

Sol. 64 (B) The particle has travelled some distance on the
horizontal path

Thework done to returntheobject ot its initial position along
the same path willbepreater than mgh
On the way down,

Loss in P.E = work done against friction
mgh = Wj.

On the way up,
Networkisdoneto increase theP.E aswellas againstfriction.
=> w = mgh

w=2mgh

Sol.65 (C) Rate of doingwork= Power'
F = F.v

F= p mgcos 8 X[0+ {gsin 0- \igcos 0) /]
F = p t cos 0 (sin 0 - p cos 0)

Sol.66 (A) From- 6 w to 0 w, force is constant & negative.
So,work done increasesin negativeand afterx = + 3, forceis
positive so work is also positive

10
F= — x-10 (fromy = mx+c)

Work, Energy 'and; Power;

w= jdw =jf

w= f| ^x-lO Itit
10
—— -10^
"3 2

— -10;c

Thegraphwillbeparabolaupwards as shown in option (A).

Sol. 67 (D) Foe

a oc 5^^^

lvdv=kls- '̂̂ £js •
_ 3kS '̂̂

2 2

v=kj3S'''

P = F.v
Foe 5^1/3 .yl/3 ' .

Focy

Sol. 68 (B) As particlehas descended throughdistance 'hi

•u = 0
OX

H

H-h

V77777Z^777^777777777?.

= Igh

v=

ke:.=ipje. •

i m^ =2.mgiH-h)

- m(^gh) =2mg (H-h)

Y=n~h

3h

h^
2H

...(I)



p^ork, Energy ah^Povyer^

Height ofparticle from ground,

3 3

Speed ofparticle at that instant,

Sol. 69 (B)

Sol. 70 (C) Case-I.

"W¥)
v = 2.

w=F.S

w —ma.S

20
a = lOm/s^

2

S= i x2x20=20m
2

w = 2x(-10)(20),
w = -400J

12m/si

12m

77777777/777/

Let speed withwhichthe ball is thrown up is Wj
(12)^ = h2-2x 9.8x12

w2 = 379 .2

1

^1= 2^""!'= 2'"^ '̂̂ -^^
Case-IL

• v = 0

12m

7/7777777777/.

(0)2 =1/2^-2x9.8x12
u}=2352

1 •
KE^= - Tm^= - m(235.2)

KE^-KE^
% energy charge = x lOO

=-38%

Negative sign shows that energy is saved.

Sol. 71 (A) Potential energy at.(4,

^0°
A30\

cos 60°)

J/(l-cos30°)
"mgsin 30° mgcos30°

U^ = mgl{\'-cos6W)

mgl

^ 2

mgl 1
= mgl(1- cos30°)+ —wv^

5=(10x0.13)+Y

3.66 = —
2

v2=7.32

V = 2.7m/s

Power = . V

= mgsin30° xy

=1xlOx 1 x2.7
2

= 13.51f

573

Sol. 72 (A) Let the length ofspring at the situation shown in
figure is/

cos 37° =y

• / =
h

cos37° 4

Extension in spring,

5h h
x = l-h^—-h = -

4 4

— + — hp- = — /wv^
2 2 2

2x - X1000 X = - (5)v2
2 16 2

v2 = 25//2

V = 5hm/s
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Sol. 73 (B)

dS
v= — = 2/+2

dt

c/v " •
a - —r = 2m/s^

dt

F = ma= 2kgx 2m/s^ - 4N

As w=F.S

Displacement from 2^ to 45

5:f,[(4)2 + 2(4)]-[(2)2+2(2)]

5 = 24-8

5 = 16m

workdone=4x 16 = 64J

Sol. 74 (B) W= ^dw =^^F dx

. x=-2

W= J dx
x=4

-2

W=-6

JV=--(16-256)

W=360J

Sol. 75 (B) By work energy theorem we have

mgs sin 0 = —

- 2 g5 sin 0 = constant

Sol. 76 (A) Work by all forces is

w = KE= —mv^
•2

,.3>v=-| jTir -P 1.(^2
As Voc for terminal speed as F= wg

^ wozr^

Sol. 77 (C) Power to particle is

P=F.v

P = ma.v

dv
P^m.v—r V

ds

Work, Energy and Power

mv dv
P =

ds

p
^P-dv = ~ds

m

V2 •

[v^dv =—\ds

m 3" 3

m

.'I 'T '

Sol. 78 (C) Work done by the force is

w= j'<Av =||F| .dx

w=l{4-x^)dx

W =
A ^4x

3

w=4(2)--
3

8 16
w = 8-- = i-=5.33y '

3 - 3

dK
maximum kinetic energy= 5.33J \\frich wecan check by - 0

which is at 2m

Sol. 79 (B)

at

a, = a/

at"
v=

tan45°=-^ = l
a.

arx4x2

~^V
= 1

t = 2s

a(2)x4x2 ,

a^(2)^
= 1

a = 1 m/s^ ' . •



SoL80 (B) By energy conservation ifblock goes to a distance
on other side then we use

x = 0

mmmmrnm-
V777777, 777777777777^ '//////,

X - 0.3m

0+ - hp-- kx^^-[img(x+x^) = 0

I (20)(0.09)-| (20):f 2-(0.04)(l)(10)(0.3+x,)=0
0.9-10;Ci2-0.12-0.4a:j=0
•10;Ci2 +0.4xi-0.78 =0.

=> j:j=0.26 m

Again ifblockcovars a distance ^2totherightofmeanposition,

0+ ^ ^l-\^rng{x^ +x^ =Q

0+ \ (20)(0.26)2- \ (20)xf(0.04)(l)(10)(0.26+i2)=0
0.676-10x2-0.104-0.4x2=0 ^ •

10x1+0.4x2-0.572=0

=>X2=0.22 m

The distance covered by block from mean position decreases
each time by 0.04 m.

1 . ^ 3^ ^ 7^
0.3 0.26 0.22 0.18 0.14 0.1 0.06 0.02

2 4 6 •

Thus, block passes the mean position seven times before
coming to rest when foe < fimg.

Sol. 81 (D) Using work energytheorem

mgh +—mP = mg(2K)

gh+ — =2gR

— =2gR-gh

v^ = 2g(2R-h)

v=^2g(2R-h)

Sol. 82 (D) Power supplied to block is
P=F.v

P = [L mg.v

V =
\img

2kg ikg

Sol. 83 (A)
11^777777777777777777^77777777777777777/

f\

/lma. = (0-4)(l)(10)=4N

/2m^ = (0.4)(2)(10) = 8N

Letw, is shiftedto right byxg

kx^ = \^m^g

Fx^ =\mi^gk^+\kxl

77 a. 5,,F=pwjg+

Sol. 84 (C) Work done by the force on particle is

w= ^dw =^Fdx

•K
w

w

f ^^]-dx
¥ 1»

f ^
dx

w=\Kdt
w = Kt

Sol. 85 (C) Net acceleration ofblock is

Fs-W

m
a =

575

Zmg-mg ^
a= =2g

m •

a = 20 m/s^ (upwards)
Ifvelocity acquired'by block as it reaches surface is v,

v'^ = 2ah

v2=2x20xft.

v2=40;) - ...(1)



Now, after block has left the surface & is in air, it is under action
of acceleration due to gravity,

0 = v^-2gx

whCTe Xis maximum height the ball will reach

0 = 4Qh-20x

x = 2h

Sol. 86 (A) Let spring is elongated by distance X.

/Kg sin m^cosG
/Kg COS 0

/:x= )i wg cos 6 + mg sin 0 ...(1)
As M is descended by x.

Mgx = -kx^

Work, Eriergy arid

2^2.

Vo_ ^

4 V2

sin45® = —
X

/2=xsin45'' =
12g

Sol. 88 (D) In the refrence frame ofthe sphere, there are two
forces:

(j) (downward gravity)

(i^' wfl (horizontal inertial force)
By work energy theorem

O+ma!^sin0 +m^i?(l-cos0)= -

; kx:Mg=~

From(1)& (2),weget Mg =
\img cos 0 + mg sm (

...(2) =>',>Mg7?sin0 + mg/2-mgifc6s0= —
* ^

. v^=2gi;(I+ sin0-cos0)

v= yj2Rg(l +sin 0- cos 0)

(10)A/=

3 4 3
—xwxlOx—+wxl0x-
4 5 5

3m 3m

• . 2 5

Sol. 87 (B) Byconservation of momentum.

v/z////////////////////////////////.

mv^ Vq

^ 2m 2
So, the direction of velocityof cannon will be oppositeto the
shell

By energy conservation work energy theorem, we use

1 ,
—wv^^pwgcos0x-wgsin0x = O , •

1 ^0 rwg , 1wg'
2^" 4 [^ 2^

Sol. 89 (B) •////////////,

^(1-cos 60®)

By work energy therem we use

1 7—mvQ =mgl(I-cos60°)

-|-=(9.8)(5)|1-^

vj =9.8x5

Vo' =49
VQ = 7m/s

Sol. 90 (C) "z/////^////

160®



/ Energy and Power

r cos 0 = mg

Tsin 0 =
mv

. r

From (1) & (2), we get

(loy
tan 0 = — -

rg (lOXlO)

=45°

= 1

Sol. 91 (A) 10
kv(m/s)

-20

♦-/(s)

}v=F.S
w = m.a^

a=- '̂=-3m/s'

^=ljxH,io]-(lx|x20
50 200 150

=-50m

w = 2x(-3)>;(-50) = 30OJ

Sol. 92 (A)

m(— x^) +2m (Xg) —0

Xg 1

using energy conservation

-fa2=-mv/+-(2m)vj

kx^ = m(4vg^+(2m)vj

6mvJ —kxP-

2 —
kx

6m

Vr, =

.(1) Relative velocity ofblocks, ,,
v= v^-(-Vs)

.(2) • v = v^ + v5

k 9k

Sol. 93 (B)

Forx>0,

U= - kx\x<0

U=0,x>0

K+ U=E

-mv'^^E-U
2

C/=0

-m\P-=E
2

V =

Sol. 94 (A)

[As a:=

577

\1E

Particle P reaches point C quickly compared to Q as always
horizontal componentofP ismore and so the time takenby Qis
more compared toPtp< tg.

Sol. 95 (D) (i) Using work energy theorem we have

0 + mg(4R)=

4gR =j

mv^ mZgR
N=^ =—^^Smg

R R

Fq- +(mg)^

Eg =^]64m^g^ +m^g^ = mg
(li) For block to exert force on track equal to weight, We use at
topmost point

.2
mv

~R
= 2mg => ^P•=2Rg
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Using work-energy theorem we have

1

h=3R

Sol. 96 (D) y///////////y

—mw^ = mgl+ —mv^

„2_2g/ = v2

V= ^u^-2g!

AV = Vy - Mf

|Av|=

=7«'-2g/+w'

=^J2u^-gI

Sol. 97 (A) Normal reaction on bead is

iV - ma —mLa

/=^A^=otco^L

limLct = w(a/)^L

^ Va

Sol. 98 (A)

nig cos a

. /ng sm a

For equilibrium ofinsect we use

wgsina=/

mg sin a = ^ A^=p,mg cos a

1
tan a = fi = —

cot a =3

VVork, Energy and

Sol. 99 (B) By work energy theorem we have

1 ,
Mgx= - Icc^

2Mg = kx

2Mg

Sol. 100 (A)

Initial P.E.,

{s + 2) sin 30®

777777777777777777777777//77?77^.

Applied force on the spring,

F=kx

)t = 100N/m

Let mass 1Qkg block slides a distance s metres along the incline
before hitting the spring.

The spring is compressed by 2m. Hence block travels a distance
of(5+ 2)m along the incline.

10x10x(5 + 2)
U= Mgh =

= 50(^+2)
When spring is compressed,

1 ?
50(5+2)=

50(5+2)= ixl00x(2)^
5 + 2=4

s=2m

v2 =02 +2(gsin30°)2

v^=2xl0x—x2=20
2

v= V^m/s

Sol. 101 (A) AreaunderF"—xgraph = workdone

IV

1 2 3
•x(m)

III

-20



jV/OTki^nergy and Power

Area of I ^ 10

Area of 11=20

Area of III =20

Area of IV = 10

work done = 10 + 20-20+ 10 = 201

Solutions ofADVANCEMCQs One or More Option Correct

Sol. 1 (B, C, D) When ball is released it accelerates due to
gravityand its acceleration becomes zero when spring force
balances its weight and then it retards and comes to rest after
covering equal distance where spring force will be twice the
weight ofball in upward direction hence options,(B), (C) and
(D) are correct.

Sol.2 (B, C, D) Theminimumspeedrequierdto complete the
circular motion is = 5.42m/s which is more than the

imparted speed so particle will not beable to attain the maximum
height due tothe initial speed which isv?/2g =90m. The string
willslackbefore it reachesthe 90heightabovethe initialpoint.

Sol. 3 (A, B) Inside a system of particles the conservative
forces causes decrease in potential energy ofthe systemwhen
work done by these forces is positive which imparts kinetic
energy in particles-of the system.

Sol. 4 (B, D) When the direction offriction (static or kinetic)
on a body is in the direction of motion of the point where
fi:iction is acting thenworkdonebythe fi-iction will bepositive
in a given fi"ame of reference. In a conservative force field

internal forces of system can increase the kinetic energy,of
system by doing work and by accounting of work done by
pseudo forceon a particles of a systemwe can use work energy
theorem for analysis of dynamics of body in non-inertial
reference fi^ames.

Sol. 5 (B, C, D) The work done by a force on an object in any
reference firame is zero only if the displacement of point of
application offorce in the direction offorce is zero.

Sol. 6 (A, D) Power developed by a force acting on a body is
P = mav. If a = constant wecanusev= at sowegetP = ma^t
andwecanusedisplacement ofbody asx = {\l2)aP'.

Sol. 7 (B, C) As/Cfi" is proportional to time we can use speed

ofbodyisproportional to -Jt thenas acceleration a = i/v/i/t.we

getacceleration is inversely proportional to V/ hence options

(B) and (C) are correct.

Sol. 8 (B, C) As the projectile goes up power ofgravitational
force is negative as displacement is opposite to the force and
when it comes down it becomes positive and at the topmost

579

point as velocity is normal to weightit is zero. Magnitude of
power can be given as 1
(B) and (C) are correct.

power can be given asP =wg. v^ =wg hence options

Sol.9 (B,D) Theresultantofallforcesmayprovideaconstant
magnitude ofacceleration mv^lr towards the centre.

Sol. 10 (A, C) As work is done by the spring that means
spring energyis being releasedso initially spring wouldbe in
either compressedor elongatedstate and finally it comesto its
natural length.

Sol.11 (A,B,D) Tension in a stringonwhicha forceis directly
applied is equal to the applied force. Here weight of block is
= 20N and for displacement ofblock by x the kinetic enregy
gain is = 40x - 20x - 20x = 40J which gives x - 2m. If we
calculate the power developed bythis force onblockthen it is
P = F.v where v = atas motion is uniformly accelerated and
displacement ofblock is proportional to t^. Thus here power
developed willbevarying linearlywitht andpar^bolicallywith
displacement.

Sol. 12 (B, C) Work done by spring on block,

-mwmm-

x = 0 x-b

By work energy theorem,
K.+ W=Kj:

0+—ka^-ixmg(a +b)- ^kb'̂ =0
\img{a + b') = ~ k{a^-b'^)

Sol. 13 (A, B, C)

k{a''b)

2mg

C/=3x + 4y

'=-f
- du , duF = 1 j

dx dy

F =(-3/-4j).N,

a - — = (- 3 / -47) m/s^
m

\S\= +(-4f =5m/s2
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when particle crosses>'-axis (x = 0)

X X X

0-6 = 0+-(-3)^2

Atr = 2s

_^_^=0-i(4)^
_y_4S=_2(2)2 =-8

y=~4m

the particle crosses>^-3x15 a.ty = -4
v„ = + aj

Sol. 14 (C,D)

V, =0-(3)(2)i=-6/

'v^=0-(4)(2);=-8f

|v|= ^(-6)2+ (-8)2 =10ni/s
•////////////z

2E

work done by applied force, 1
w= FXq

Sol. 15 (A, D) On the banked and friction is zero when

. ^ mv^ fl
mg sin 0 = cos 05 ^

v= -yjRgtanQ
And foi; |̂ hicle at rest on incline it does not slide if9<angle
of repose. ''

i
Sol. 16 (A,D) C/=15 + (x-3)^

t/(5) = 19 & KE(5) = 50

Total mechanical energy = 50 + 19 = 69 J

^„^-t/(x-3) = 15J
^n^ = 69-t/^„=69-15 = 54J

Sol. 17 (A, C) Force on the particle will be given as

F=-VU ^

dU dU" , ^

° ° ^6)i-(6x y)J

_ Work, Energy and^ Poorer '

Now, for acceleration at (?= 0) andx=\,y=\

1^1 = bVs m/s^

Particle is at rest at a:= 1,y = 1. Then

P.E. + K.E.=M.E.

C/(1,1)+K.E.(1,1) = M.E.

=> M.E=9J

At/+A/!:=Aff

Afr=At/=U(0,0)~a(l,l)

AfF=-9J

Sol. 18 (A, C) Apply T=/a about O

mL
mgx'^

12
•+mx a

mg

For a to be maximum daJdx = 0 which gives x =

L

2n/3
and

Sol. 19 (B,C) IntheregionABthespeedofparticleisuniform
hence no work is being done on the particle. In region BC

particle is retarding so work done by external forces on the
particle is negative.

Sol. 20 (A, C) As soon as the block hits the wall, the

suspension point B comes to a stop, while the particle C keeps

moving witha velocity Vq towards left. In orderthat it complete
a full circle, it must have enough kinetic energy so as to make it
to the top ofthe circle.

-mvl = mg. 21

i-e-,Vo= ^4^,
Since velocity at the highest point being zero.

* * * * *



FUn^r Momentum and Its Conservation 581

ANSWER & SOLUtiONS

CONCEPTUAL MCQs Single Option Correct

1 (C) 2 (C) 3 (B)

4 (B) 5 (A) 6 (C)

7 (C) 8 (B) 9 (C)
10 (D) 11 (A) 12 (A)

13 (D) 14 (B) 15 (B)

16 (C) 17 (B) 18 (C)

19 (D) 20 (B) 21 (B)

22 (A) 23 (D) 24 (D)

25 (D) 26 (B) 27 (B)

28 (B) 29 (C) 30 (C)

31 (A) 32 (A) 33 (D)

34 (B) 35 (C)

NUMERICAL MCQs Single Option Correct

1 CB) 2 (A) 3 (C)

4 (D) 5 (A) 6 (B)

7 (A) 8 (B) 9 (B)

10 (C) 11 (B) 12 (D)

13 (C) 14 (C) 15 (B)

16 (A) 17 (C) 18 (B)

19 (D) 20 (D) 21 (A)

22 (A) 23 (D) 24 (C)

25 (D) 26 (D) 27 (D)

28 (B) 29 (B) 30 (A)

31 (C) 32 (B) 33 (C)

34 (C) 35 (C) 36 (A)

37 (B) 38 (A) 39 (A)

40 (A) 41 (C) 42 (D)

43 (B) 44 (B) 45 (D)

46 (B) • 47 (C) 48 (C)

49 (B) 50 (C) 51 (B)

52 (A) 53 (A) 54 (D)

55 (A) 56 (A) 57 (B)

58 (C) 59 (D) 60 (C)

61 (B) 62 (B) 63 (B)

64 (B) 65 (A) 66 (A)

67 (A) 68 (B) 69 (B)

70 (D) 71 (C) 72 (D)

73 (A) 74 (D) 75 (B)

76 (0) 77 (C)

ADVANCE MCQs One or More Options Correct

1 (A. B) 2 (C, D) 3 (C, D)

4 (B, C) 5 (B, C, D) 6 (B, D)

7 (All) 8 (All) 9 (A, B, D)

10 (A, C) 11 (A, C) 12 (B. D)
13 (A, C) 14 (A, D) 15 (A, D)

16 (B, C, D) 17 (All) 18 (A, C)

19 (A, D) 20 (A)

Solutions ofPRACTICEEXERCISE 4.1

(1) For the uniform disc its mass is proportional to area thus
mass ofgiven object is

m^~k '.„2 271-1
nBr kR'

The mass ofsquare when it is cut from disc is

kR'

As commoncentreofmass of and /«2 "^"st be at disccentre
and if centre ofmass ofgiven object is at a distance x from C,
we use

R

' ^ 2

2 2 2

R
x =

2(271-1)

(11) In the given situationx and y components of velocityof
centre ofmass are

v_ =

2x3+5x5x1 i

4+5+2' 22

and v^=
4x2+5x5x^^ 16 +25>/3

4 + 5 + 2

Thus angle 0 is given as

= tan ^ =tan"^

22

fl6+25V3'
37

(iii) Coordinates of linear bodiescentreof mass are
Square Triangle Disc

I_ I
2'2J

^ 7 ^
2' 2V3j

3/ I
2'2

Thus coordinates ofcentre of mass of system is

,2 // ^/3/^ // 3/r X1/.+-—X y.+—X—
/2 4 /2 4 2

x^ —

4 4

/(37t +>/3 +4)
2(4 +7i +n/3)
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l(7Z+2yl3+5)
2i4+n+yl3)

1+
, 71/^ /

r- |/ + X-
2n/3 J 4 2

(iv) In the givensituation W2 ^ so centreofmass cannotbe
, located at C no matter whatever be the value of

(v) In figurefor the plate centreofmass is directlyproportional
tothe area. Here centre ofmass ofsquare cutout isat C2 (2,0)
and that of remaining plate is at Cj 0). Mass of these
sections are

mj(plate) = ^ (36- 4) = A: (32)
W2 (cutout) =A(4)

-6m-

-6m -

-I O

K2m*

T
2m

i

Common centre of mass must be at origin so, we use
Wj XQ = m2 (2)

k{32)xc = k(4)i2)

i
Xr= ~ =0.25 mc 4

Solutions ofPRACTICEEXERCISE 4.2

(i) Considering element ofangular width c/0 asshown in figure,
its X coordinate is R cos0 and its mass is

m

dm= — .dQ

Thus centre of mass of arc is given as

1 , I f m
x=--]dmx=— I — i/0.i?cos0

Linear Momentum and Its Conservation

R 2i?sin^
—.(2sinf2)= 7
4" 9

(ii) Consider an elemental arc AB ofradius r and width dr as

shown in figure

If weconsiderctas the surfaceniassdensityofthe disc thenthe
mass dm of the arc AB is given as

dm = a (2r Qdr)= 2ar0Jr

Due to symmetry ofmass center ofmass ofthis arc must be on

f* sm 0theanglebisector i.e.onx-axis at distance x = . (This is
0

result of previous problem we are using here)
Now center of mass of the sector is given as

^xdm
M

fRf rsinO^
Jo I 0 )

X. =

(2cr0^/r)
x_ =

•a(Area ofthe sector)

Rf rsini
\{2arQdr)

0 )

Q{r^2^)

R sin 0

38

4^3! 4^7")
(iii) Centre ofmassofquarterdisc cutisatpointCi —,—

• . 1.37c 371
&let that ofremaining part is at C2 (rj r) such that common

centre of mass must be locatedat centre of square

Thus we use

4
/«-. = k

a a

2'2



Linear Momentum and Its Conservation

, jra 4a , 2
k. X—+to

4

a a 4-7C
— = — + r
2 3 4

2a
r =

3(4-71)

ka'

(iv) Mass of they cone cut is
'' '•i

/ n\2

( A-%

m^~k
1

— 71

3

R
R = k

kR^

12

xr

[its centre ofmass is aheight ^ ]
Mass ofremaining hemisphere is

[letits centre ofmass'isat a heighty]

3i?
Ascommon centreofmassofm, + is at a height —, weuse

' 8

>3^

2R

%R-

12

k\

2 -2z
3^ 8 ~ 48 12

1y R R UR

12 " 4 48 48

y

UR

28

(v) Considering anelemental disc ofradius>' and width dxata
distancex fromorigin, its mass dmis taken as

^ ^ npx dx
dm= p.vydx- —-

Location of centre ofmass is

t-X-

x=h

i""*' *x»
= — dmx - = ^—7 —-r"
• wJ ^ hV 3

1Tipxdx / 2

583

Solutions ofPRACTICE EXERCISE 4.3

(i)- If boattravels a distance x toward right, the displacement
of centre of mass of system must be zero, Thus we use

2M

0 =
M(X +x)- 2M(y^ - x) +4Mc

IM

Ml 3A/7
— +5Mx= 2Mx

4 2

5/

2-7.

x =
^ '
28

(ii) If shall is firedat muzzle at speedVp weuse

t

m

7777777777777777777777777//

-kmv-,— v-

=

^1

Thus ratio ofkinetic energies is

K shell

K gun

1
— m

2

^+1
V2

-Vn

1 ; 2
—kmvj
2 ^

2 2(y^ + l)^

V?
2ik +lf)

2k^ + 2k + l

(ill) Afterfirst shotif speedofcar is Vp weuse
75 wv=5w(100-v)
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500 100

If after second shotspeed of car is Vj, weuse

100
75 w

16
= 70wv2-5w(100—V2)

75x100
75v2-—-—+500

100 100
Vo =

16 15
+ ^^m/s = 100 I TT+— |m/s

16 15

When blockreaches ground and if 5 is displaced toward
right by x, the displacement of centre of mass of system in
horizontal direction must be zero hence we use

4M(/-a:) = 20Mc

/
x= —

6

(v) If final velocity of shuttle is v, we use by momentum
conservation

A/(4000) =
I 5

M

5
—Jv+ —(3880)

4v .... 3880
— =4000-
5' 5

v=4030kph

= 3224

(vO Asat slowspeed position ofcentre ofmass willnotchange
suddenly, we use

m 3m
J>'15 =— (-y)

=> >'=-5cm

(vii) Astotal momentum atexplosion inx andy direction remain
zero and we consider m kg mass moves at an angle 0 to x
direction, we use

Alongxdir.l x 12 =/«x4Ocos0 ...(1)
Alongydir.2x8 =wx4Osin0 ' ...(2)
Squaring andadding equations (1)&(2)weget

V144 + 256 =40m

^ w = 0.5kg
Thus total mass ofshell is= 1+ 2+ 0.5= 3.5 kg

(vlii) When m starts fi-om rest it breaks off at an angular

displacement cos"^ -jj. At this point centre ofmass ofblock
and hemisphere is located at a point P (x, y) with origin at C,
then we use

Linear Momentum and Its Conservation

\f5R^
m + 4w(0)

x =

5m

+ 4w

Distance CP is

(2R^
m\ —

I 3
5m

R

R

3V5

= —R
15

n 2 D M 64 69 23 „4x + y = R* 1 = J = J—R
^ V45 225 V225 V75

Solutions ofPRACTICEEXERCISE 4.4

(i) Equations ofmotion we use for mass and container as-

Formass /Kig-r= W| a ...(1)

Forcontainer T+bvQ-{mf^-bt)g^{mQ-bt)a • ...(2)

Adding abovetwo equations, we get

btg= (wq + Wj -bt) a

^ (wi-mo+60g +H
Wq + mj - bt

(11) Rocketwill lift up when upthrust on rocketwill balance its
height

kvQ = {M-kt)g

Mg-kvQ M vq

^ ^ kg k g

(111) (a)If rocket has constant exhaust velocity

during its motion we use

mv= m(v + dv)-dm(u-v-dv)
mdv =udm

VJ y.

Vdt

idv =-u\~
i • A-
[Inintegration we use -ve sign asmass isdecreasing]

Vj = Mln

Ob) After a mass misdisengaged rocket mass changes to(^-m)
at the start of second stage. Now we use

Mf
dm

m

V2 Mf

r ^
J J

Vl y-m

/

V2 - Vj = wIn
M

f
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V-, = M

V2 = wIn

Inl-^l +ln
P-

\}Mf

f \
\i-m

Mf
\ j j

(c) If there is only one stage of mass Mj the final mass after
exhaust offiiel will be {M^+ m). Thus we use

vy Mj-+m

^dv =-u J

Vy=wln

dm

m

M^

M f +m
J J

Here we can clearly see that V2 > Vy.

(iv) Usingimpulse momentum equation fortheparticle wehave
mv+ Fdt-pdt Vq = (w+ dm) (v+ dv)
(F-pVQ)dt= pvdt + {M+pt)dv
{F-pVQ-pv)dt = (M+ pt)dv

f——=r
i^-pvo-pv ^M +pt

F - pvo - pv _ M

F - pvQ M + pt

(F-pvo)M
F-pvo-pv=

dt

F-pvpl^^ M
p \ m

_ dx dxp _F-pV(i(^ M
dt dm p \ m

i i "

5=

L P

F-pv
m-M l-Hlnf^

KM,

M

(v) -As gases are ejected out during motion we use

mail

Imdv = j udm

V= MIn 2 = 2 In (2) m/s
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(vi) (a) At an instant equation of conservation of momentum
for car is

WflVo
v =

m^^qt

L t

using \dx=\ ^ ° dt
J [niQ+qt

L =

0

^qVo
In

u

mQ+qt

Wo

Wq ,OTOVo

Thus mass after time t is

wm=mQ +qt =mQ J
(b) Speed ofcar after time t is

Vo 1
v =

mo+qt
= Voe

Solutions ofPRACTICE EXERCISE 4,5

100 , ,
(i) Time of collision is t = — = 1 sec & it occurs at a depth

—gp- = 5m below the top ofbuilding

Speed of masses at the time of collision are
For 0.03kg. V|=g/=10m/s.
For 0.02kg. V2 = M-g^=100-gf = 90m/s
If commonvelocityafter collisionis v^, weiise

0.02 X 90-0.03 X 10 = 0.05

y =

1.5

0.05
= 30 m/s upward

Thus max height attained by common mass is

V? 900

=> height above the building combination rises
=45-5 = 40m

(ii) By conservation of momentuminx &y directionwe use
along Xdirection

w^v =w^v^ cos 0 •••(!)
IfAmoves at anangle0 to initialdirection ofF whichistakenas
xaxis
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Along j direction

^5 2

(2) 1
^ => tane=~
(1) 2

0=tan-' i

As collision is elastic we use

1 ,1 1 . - 2
-m5V^=-W5—

V 2
rrijVA cos0. V= cos0.~ +

V COS0 = — V COS0 +
4

=> = —VCOS 0 [As tan 0 = — cos

3 2 3v

^ ^-^"4^75 ""2^5

...(2)

V5

(iii) Let V= velocityof the ball after collisionalong the normal
and v'= velocityof the ball after collisionalong incline

/= impulse on ball

=v-(-2cos30°) = v+ y/s

Impulse on wedge
ysin30° = Mvj = 2vj

=> v=4vJ-^/3'
Coefficient ofrestitution

e =

1

V2-V,

«-> -Wi\J

v+ —

2.

2 2 cos 30®

V3

Normal

J- 30"

777777?777777777777777^V7?9/77.

Solving (1) &(2), we get ^ m/s&v=̂ m/s

(1)

(2)

Linear.Momentum and^s Conservation |

For the ball velocity along incline remains constant.
=> v'=2sin30®= 1 m/s

Final velocity ofball V, = Jl +
1T 2 .
•}= = -j= m/s.

vV3j V3

(iv) When m leaves M, both would be moving at same speed
horizontally so we use

mM = (w"+iW)v

mu

v =

m +Af

The mass m will also have a vertical speed due to which it
risesto a maximumheightH
Using work energy theorem we have

1 2 1 ( mu ^^
—mu -mgH= —(m + M)\

u^-2gH=

Mu

mu

m + M

2

H=
2g{M-\-m)

(v) Initial state at f = 0

/ = 0

Final state at time t

m + M

At any instant t by momentum conservation we use
wVq =wv'+2wVj,

Vo-v' + 2v^
At the time ofcollision 0 = 0

V - V = —

3

Using conservation ofenergy we have

—wvq =—mv'̂ +—m(v^ +v^)x2
2 2 2 ^

^ 9

...(1)
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vo

^6

i_i_2
9 9

9

^0
v =

V3

= 2v^

Net velocityof^ at the time of collision Is= + v

1^0 Vq [4

^ =-x9 =6ms-'
3 3

(vQ We solve theproblem for a general casewhen direction ifw
is at an angle 0 to time^5 as Shown in figure

Ifat position A' string gets tight we use

u cosa

just before Jerk

In weuse

sine sin a

21 I

sina=

just after jerk

...(1)

Velocityof^ normal tostringremains constant duringjerk.
Using impulsemomentum theoremwehave

\Tdt =mv'-Q{foiB) ...(2)
I-Tdt =mvmu cos a (for A) ... (3)

adding equation-(2) & (3) we get
0 = mv'+mv'—mu cos a

2v'+v= weos a

wcosa
v' =

Impulse =ITc/r =wv' =mu cosa

...(4)

...(5)

:..(6)

Nowwe can analysecases mentioned in parts (a), (b) and (c) as
given in table below.

0 a |v1 ^Tdt
(a) u along BA JT 0 m/2 mu

2

(b) u at 120° with

AB

271/3

O
o

u

8

wm-\/i3
8

(c) u normal to AB 7r/2 t\J6 m-\/3
4

mu-js
4

(vu)
at rest ^'r

initially

Usingihomentum conservation:
miVQ=(m^+m2)vj.

1 o 2/^1 2Given that —(w, +Wj) ="jl

I )

finally

r
m,v,ro 1 2

-W,Vo
U+ W2 ^

m. 2'"1 _

3mf +3m^m2 =2(m, +

3mf +3/«jW2 =2mf +2ot| +4wjW2
mf-'2m2—m^m2= 0

m, 2ml

W1W2

'V -?

/ ' \

U2J UiJ
m.

Let — =x
m.

X- - -1 = 0
X

x^-a:-2 = 0

l +>/f+8
x =

1 + 3
x==

-1=0

a:= 2,-1 (rejected)

...(1)

...(2)
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x=2

w,
—^ =2
m-,

Solutions ofCONCEPTUAL MCQSSingle Option Correct

Sol. 1 (C) As gases are ejected and to conserve momentum
rocket is propelled forward, it gains energy.

Sol. 2 (C) When'a body is moving in circle tied to a string,
sayin presence ofgravity ina conical pendulum andif stringis
cut then due to gravity or any other external force its angular
momaitum will change.

Sol. 3 (B) When 1 will hit 2, under elastic collision 1 will come
to rest and 2 will gain speed v as balls are identical then same
collision occur between 2 and three and finally 1 and 2 will
come to rest and 3 will move at speed v.

Sol. 4 (B) According to lawof conservation of energytotal
energy always remain conserved but due to dissipation of
energy kinetic energy will not be conserved in inelastic
collision. As no external force is there momentum will remain

conserved.

Sol.5 (A) Asthe collision is inelastic, kineticenergywillnot
beconserved but forball and earthas a system totalmomentum
will remain conserved.

Sol. 6 (C) As always we consider the mass of bullet to be
less than mass of rifle and in the process of firing total
momentum will be conserved so the higher mass body will
have lower kinetic energy.

Sol.7 (C) As thecollision is inelastic, kinetic energywillnot
be conserved but for bullet and target as a system total
momentum will remain conserved.

Sol. 8 (B) After first collision ball 1 come to rest and ball 2

moves forward andasM< maftersecond collision thevelocity
ofsecond ball will remain in same direction so no more collision
will occur.

Sol. 9 (C) If M > m then after second collision ball 2 will

return and collide again with ball 1 after which it will come to
rest and ball 1will movewith this velocitysoone more collision
take place between ball 2 and 1.

Sol. 10 (D) Bysymmetry centerof mass is at the geometric
center of the system.

Sol. 11 (A) During elastic collision between two bodies at
thepointofmaximum deformation inbodies potential energy

Linear Momentum and Its Conserv^ior^

stored in bodiesdeformationis maximumsokinetic energyof
system is minimum. Thus during collision kinetic energy of
system is not conserved.

Sol. 12 (A) Onlywhen masses ofbodies are equal in elastic
head on collision then the velocities are swapped.

Sol. 13 (D) In uniform circular motion as speed is constant
there is no change in kinetic energy so work done is always
zero and vectoriallydirectionof velocityis reversedsochange
in momentum is 2wv.

Sol. 14 (B) Due to constant speed, kinetic energy remain
constantand due to changein directionofvelocitymomentum
changes.

Sol. 15 (B) Due to the work done by internal forces kinetic
energy of systemof particles can change but both action and
reaction of internal forces are there within the systemso no
change in momentum take place.

Sol. 16 (C) Totalmomentumof systemremain conserved.

Sol. 17 (B) Ascollisions with ^^^lls ofboxarecausing internal
contact forcebetweenball and the box so velocityofcenter of
mass ofsystem will remain constant.

Sol. 18 (Q Ifstrip ismoving atspeed vwhile insect ismoving
overthe strip then after it fliesoffvertically, strip continue to
move at same speed. Before insect flies off strip wouldhave
moved a distance less than / so later time taken in covering
distance / will be more.

Sol. 19 (D) If center of mass of a system of particles is at
origin thensumofmass moments ofallparticles about origin
mustbezeroandin that case wecannot becertain about any
option out of (A), (B) or (C).

Sol. 20 (B) When the two marbles strikes the system of
marbles, by head on elastic collisions of identical spherical
bodies we can say that these two marbles will come to rest and
nexttwo willbesetin motion andsame phenomenon happens
fornext set ofmarbleshence (B) is correct.

Sol. 21 (B) The force on surface will be the total momentum
imparted to surface per unit time. In this case the momentum
change in oneball is Imu and per unit timetotal change in
momentum is Imun.

Sol. 22 (A) For elastic head on collision of two identical

bodies velocities are interchanged henceoption (A)is correct.

Sol. 23 (D) As the initial momentum of the system is zero,
always total momentum must be zero as no external force is
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actmg on the systemso both blocks having same mass must
movein opposite direction always withequalvelocities sothis
case is not possible.

Sol.24 (D) Fmalvector momentum ofthe system mustbe in
the direction of initial momentum which is in the direction of Solving,we find =
initial velocityvectorofthe movingparticle.

Sol. 25 (D) As net external force on sphere is F, no matter
wherever it isapplied, theacceleration incenter ofmass will be
F/m.

change in momentum at support
SoL 26 (B) Average force between two collisions at support

<F> =
2mv mv

L-lOr
x2

L-\Or

Sol. 27 (B) Ascollision iselastic angle ofreflection is same as
thatofincidence angle in frame ofbigsphere small sphere will
rebound at an angle2a withvertical as shovra in figure.

I9 y"

Sol. 28 (B) In frame of larger sphere, thesmaller sphere is
travelling with 2vo before second collision. Since larger sphere
is massive in comparison. Since larger sphere is massive iii
comparison tosmaller sphere, the smaller sphere will rebound
with same velocity 2vq as collision is elastic and surface
frictionless, thesmall sphere will reflect back at same angle.

Sol. 29 (C) Force israteofchangeofmomentum inchain plus
the weight of chain at x

F=pxg + Pu^

Sol. 30 (Q When total impulse ofextemal force iszero we can
use conservation ofmomentum.

Sol.31 (A) Using impulse momentum theorem

J
J=mV_ => V = ;

an CTD

Using angular momentum theorem about centre ofmass
72^

COjL.
2

ml
co=

ml'

12

Speed of point .4 is
2J

m

589

Sol.32 (A) When thecarCaccelerates toa velocity Vq relative
to the double-boat system, the twoboats accelerate to the left

Kc(to right) + v_^(to left) = Vj,
mv^=2Mv^

m + 2M' ^ m + 2M

After the car brakes to a stop, the tension in the string

WVq
,Vc =

2Mv,

connecting A, B becomes zero. Applying conservation of
momentum to A and C

mVfj - Mv^ = (m + iW) v '̂
We find the velocityofy4(to right)

mMvQ
v;=

(tw + Af)(w + 2M)

Sol. 33 (D) Let u, and Uj be the speed ofthe bodies before
and after striking.

Uj sin a = Uj cos a (as there isno friction)

e cos a = OjCos |

Uosina 2^ e~ — = tan. a
Uj cos a

Sol. 34 (B) Choosing the positive X-Y axisas shown in the
figure, themomentum of thebead 2X A is' Pi~ + mv . The
momentum ofthe beadat5 is= Pf = -wv .
Therefore, themagnitude ofthechange inmomentum between
A and 5 is

Ap = Py - Pi = -2wv
Thetimeintervaltakenbythe beadto reachfrom .4to5 is

K-d 12 Tid
At= =

V 2v

Therefore, the average force

+mv - Pi

F
£7V

Imvl—
-2v

-mv = Pf

4mv

Tui

1 2 2
Sol. 35 (C) Energy lost inthe collisions =-wC/^^^(l-e )
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Sol. 1 (B) Letmass of eachparticle is m

Similarly,

+^2^:2 + ^3X3

Wj + W2 + W3

m(l) +m(2) +m(3) _ 6m
m + m + m 3m

^CM

x^,^="•CM = 2

_ f"iyi+m2y2+m^y^ _6m ^
mj + m2 + m3 3m

=> The coordinates ofcentre ofmassare(2,2)

Sol. 2 (A) Distance ofCMfrom mp

m-^
x=

mj +m2

As the centre of mass of HCl molecule is at a distance ofx
fiom^f

m. m.

CM

We use

-*i

-1.27A

35.5in

35.5mxl.27^
X ~ —

(?M +35.5m)

35.5xl.27i
x =

36.5

Sol. 3 (C) Here frictional force acting on block is passing
through A andwill notproduce anytorque about A
Thusto topple the block ' i

mgl ' „ - 2
FL>

F>
mg

ZV77777777.VTTTTfTZ/T?

mg

Sol. 4 (D) Let Cj isthe position ofcentre ofmass initially.
Distance ofC, from O,

M

i/2

mxo +
ML

0C^ =
ML

m + M 2(m + M)

Linear Momentum andjts Conservation

Now, when boymoves to other end of plank,

M

m

ML
+ mL

ML + lmL
0C,= ——rr

2 m + M 2(m + M)

Since noexternal force ispresent onthe system, the centre of
mass remains fixed and the plank is displaced by OC^- OC^

Sx= OC^-OC^

ML-\-2mL ML

2(m+ M) 2(m+ M)

ImL

" 2(m+M)
mL

~ (m +M)

Sol. 5 (A) Mass of neutron, = 1 unit

Mass ofnucleus, A units

Here, Wj = vand U2=0

Therefore, velocity ofneutronaftercollision.

V, =
mj - m2

mj +m2

l-A

l +A ^

Wi +
2m-,

mi +m2

Kineticenergyofneutron aftercollision.

^2=^0)
\-A

1 + A
v2

Kineticenergy ofneutronbefore collision,

2 ay

\+Aj U +lJ

•••(1)

...(2)

Sol.6 (B) Massofbullet,m= 0.1 kg

Mass of blocl^ M= 0.9 kg

Initial velocity of bullet, V= 1OOm/s

Letvelocity ofsystem (block +bullet) after bullet gets embedded
in block is v'.
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Applying conservation oflinearmomentum,
inv-{m-^M)v'

mv 0.1x100
' lOm/sV =

m + M 0.1 + 0.9 •/////////////

—{M+m)v'^=(M+m)gH

100
= 10xif

i7=5m

Sol. 7 (A) Initiali:. ofsystem, iCj =-mv2

=i (0.1) (100)2
= 500J

Final K.E. of system, = - (m+

= -(l)(10)^

= 50J

Loss inK. E., AK=K-^ -
= (500-50)J
= 450J

M

Sol. 8 (B) At highest point oftrajectory, the shell has only
horizontal component ofvelocity, u cos0

u

Let m' is the horizontalvelocityofotherfragnient.
Byconservation ofmomentum,

(2 m) u cos0 = 7« X0+ mw

u'= 2 u cos 0

Timetaken bythisfragment toreach ground.

Msmi
t =

2u cos 6

tttTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTZ
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Horizontal distance travelled by this fragment,

Msmi
X = 2 Mcos 0 X

2w sin 0 cos 0

g

sin 20

x =

x =

8

R
Distance from gun, D= ^

sin 20 ^ sin 20
~ g

3h^ sin 20

2g

Sol. 9 (B) Letacceleration due togravity ofplanet is'a'

vf =0+2^7(5)

0 = v2-2a(1.8)

...(1)

...(2)

From(l)&(2),

2a{5) _25

^"2a(L8) 9

V2 3

^2 5

Ball loses its velocityby a factor of

V1-V2

3v,

/=
5 _2vi

- - t H= 0

5m

V////Z//////)

TV,

Sol. 10 (C)
lyllR 2V2

cos 0 =
{IR + R)

Let initial velocity of^4 is w
Finalvelocityofsmallballs= v

1.8m
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Applying conservation of linear momentum,
mw = 2 wv cos 0

separation velocity along line of impact

approach velocity along line of impact
e =

e =

e =

WCOS0

1

2cos^ 0

1 9-

2x^ 16
9

Sol.11 (B) Since the collision is perfectly inelastic, both
bodies will sticktogether and move as a singlesystem.
Applying conservationof linear momentum,

(1.6X 10-27X 1.2X l07)+0-(L67+3.34)x 10-27xv

1.92x10-2®

Sol. 12 (D)

Here,

v =

5.01x10-27

«4 X lO^m/s

= 0.38x10+7

7^2
V, = M- + ' U,
^ /«2 + 7Wi ^ '

Hj = 1.2x107m/s,tt2=0

= 1.67x10-27kg,

m2 = 3.34xl0-27kg

3.34x10"^2

2m,

v., =

2 5.01x10-27
X 1.2x107

V2 =0.8x107 =8x10Ws

Sol. 13 (C) Since the system is at rest initially and no
horizontalexternalforceis present,the COA/remains at rest in
horizontal direction butinvertical direction velocity ofCOMis

wvsinO

M^CM

Sol.14 (C) Letmassesoffragmentsare , — and —.
5 5 5

Let speed of third fragment is wf if first two fragments fly
along positive A:-axis andy-axis respectivelyat speed v.
Usingconservation of linearmomentum,

^ 2w . 2w . mwxQ - -^vi + vy + —Mr

ur =-(2v) I -{2v)j •

Linear Momentum and Its Conserya^n \

•2

«| = V(-2v)'+(-2v)'

= V4v2 +4v2

=2j2v

Sol.15 (B) LetmassofgiswandinitiallyPwasmovingwith
speed Vand as direction of P is not changing this collision
must be head on

e

] (rest)

After collisions; we use

m, -m-y
v, = — u,+

' 7«1 + Wj

V 2-m

4 2 + m

2+m=8-4m

5m =6

m = 1.2kg

Sol. 16 (A) To lift offthe rocket

v + 0

dm

dt

500 X 10 = 2000 X —
dt

dm
— =2.5kg/s

2m-,

Wj + ^2

Sol. 17 (C) Ifinitial acceleration ofrocket is o, weuse

dm
mg^ma=u^^ —

500 X 10 + 500 X 20 = 2000 —
dt

dm 15000 15

dt ~ 2000 ~ 2

dm
=7.5kg/s

Sol. 18 (B) Byconservation of momentum, weuse

M

y- -(50x10-^X200)
5

K=-2m/s

Negativesignshows thatrecoil speed ofgun will beinopposite
direction to bullet.
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Sol.19 (T)) At highestpoint, the particle has onlyhorizontal
component of velocity,

=200 cos 60° = 100 m/s

Ifmass ofparticle is taken as 'w', then after explosion, massof

each fragment is —

Applyingconservation oflinear, momentum,

^ m iTi «. /«_m(I00i)=y (100i)+Y(100)(-y)+yV

V =300/

• • , • '|v| = 300m/s

Sol.20 (D) Initial velocity ofball is

H =15cos60°i +15sin60y

after hit

15 sin 60®

rl5m/s

it^H!».I5cos 60®
✓ I

I

_ 15 - 15a^ -
" = T' + J

2 2

V =-30i--

r151O.'l -30
2

* t

P^r=10(37.5)

f =375N

0.01

Sol. 21 (A) At highest pointof trajectory, the shell has only
horizontal component of velocity '
^ ' w^ = 100cos60° =50m/s
Applying conservation oflinearmomentum,

m . " mm(50O= Y (-50i) +-V

=> • • • - =150/m/s

Sol. 22 (A)
m,x, + W2X2 + W3X3 + W4X4

Wi + TWj + rw3 + W4

(0, 2)

1kg

.Y

4kg ,(2.2)
t3kg

1
1
1

1
1
1

I

i2kg
, (2,0) . .

(lx0)4-(2 x-2)+ (3x2) + (4x0)
^CM

= 15 =1
^CM 10

1+2+3+4

ycM' Wj + W2+ m3 +

593

(Ix0) + (2x0) + (3x2) + (4x2) 14 7
ycM- 1+2+3+4 10 5

'•IThus coordinates of CMare

Sol.23 (D) Sincethe system is isolated andno external force
is present, the motion ofcentre ofmass will notbe affected.
The centre ofmass will continue to move with same speed.

Sol. 24 (C) Let length ofhammer is /

Sol. 25 (D)

/-.T

F 4* Shoulder (Supoort) • fJ''

Fx=fV(i-x)

The force and hence pressure on his hand is proportional to
1/x.

V0,

V,"

WjMj = Wj Vj cos 0, + W2V2COS 02

WjVj sin0j = W2V2sin ©2



1,594

If

1

2-1 "I ' 2 "'2 "2

mj- Wj and OT2 is at rest,

0,+ 02=90°

•, 1
m. ut= —m,vf+ — m^v

1 .
24. _

Sol.26 (D) Applying"energy conservation,
Potential energy in 'A' isconverted tokinetic energy inB

Wnr

(Initial Situation)
(A)

,i(Final Situation)
(B)

2r Tir^ 1f Wnr

ĵr 2J n g >

'////////////.

V2

^^2,r\y-

v=J2H|+f

Sol. 27 (D) Applying conservation oflinear momentum,
•///////////// . ////////////y

mv=2mu

V

2
using work-energy theorem

-{2m)t?~{2m)gh=Q

2g 8g

m y'

Linear Momentum and Its Conservations

Sol.28 (B), Initial Wnetic energyof system, •

ik = —mv^^ ~ ^

Final kinetic energy of system,

1
2

j,
2

K^^-{2m)tP-

K

mv

f 2> 2
V mv

"Ti 4 •
\ y

2 _'l .
mv^

K)|

Sol. 29 (B) Ifthe collision isperfectly elastic, the ball stops
and bobmoves with speed v

=> —rmP- = mgh
\ ^ '

V

h — T"
2g

Sol.30 (A) Since centre ofmass ismoved byadistance jc, we
use

Fx = Mgh

Mgh

X

Sol. 31 (C) Mass number = Mass of protons + Mass of
neutrons.

•An a-particle, which is a Helium nucleus has 2 protpns &2
neutrons. -

Thus, massnumber ofa-particle=4
Applying conservation oflinearmomentum,

^x0 = (.4-4)v'-4v
wherev' = velocity ofdaughter nucleus,

, 4v -
v'=

A-4

Sol.32 (B) Since the cart and man are ofsaraemass, thecentre
ofmass ofsystem lies at:«; = 5m. So, they will meet at COMof
system.

Sol. 33 (C) Let speed ofthird fragment is(v / +vy' )m/s.

0=m(9/ )+m(12y)+m(vi +vy)

v„=-9m/s

Vy =- 12m/s

v = 15m/s



fUniear Momentum and Its Conservation

(/w X0)+ (w Xfl) + (2mXa) + (2mx 0)
Sol. 34 (C)

m + m + 2m + 2m

ma + Ima 2>ma a

^CM 6m 6m

_ (m X0).+ (m X0) +(2m xa)+(2m xa)
' m + m + 2m + 2m

4ma 2a

a 2a
Thus, coordinates of CMis 1

Sol.35 (C) For coil tojust fly-off,

\xmg - map-r •

0^=^- •

• (0 =

Sol. 36 (A) mj = m,m2 = m

Mj= M, =0
after collision velocity of first sphere

V, =
mi - em2. m.

u, +
1^ mi + m2 j mi+ m2

m-em

v, = w+ 0
' m + m

m I-6:

(1 + e) U2

2m ^ ' 2

velocity of second sphere after collision is

v^ =
m2 - emi

I. wi+m2 J
"2 +

V2 =0+^ (l +e)u
(1+ e)u

2

m,

mi +m2

Vd 2 1 + e 1 + e

(l + e)M,
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DistanceSol.38 (A) Time=-^^ ,. ,

Ifball takes twice the time in returning, it implies its speed is
halved.

v/2 1
e =

Sol. 39 (A) Velocity of mass m just before string becomes
tight.

•////////////Z •////////////y

|v v.j
2mi •2ml

7777^^77777777777777? 7777^7777777777777777?

V= =7^=27^
Impulse = change in momentum

For mass 2m,

For mass m.

/=2m. Vj

J=mv- mv,

mv-J=mv

mv-2mv, = mvj

3mvj =mv

V 2

Sol. 37 (B) The component ofvelocityparallel towall remains

Sol. 40 (A) Letspeed ofother piece is mafter explosion, At
highest point, the shell has only horizontal component of
velocity, i.e. Fcos 0.

Since one piece retraces its path, itimplies ithas same velocity
Vcos 6 but in opposite direction. Applying conservation of
linear momentum,

mFcosG mu
mFcos0= + —

3mF'cos0 _ mw

. 2 2
M= 3 Fcos 0

Sol. 41 (C) Let speed ofplank after bullet leaves plank isv.
Applying conservation oflinearmomentum,.

mu = mfu+mv

n
unchanged, while i component will become

Thus, velocity ofsphere afterhitting wall,
V =-/+y

(30 = -i



Velocity ofbulletrelativetoplank,-v

v^=ju-u-\-uf=u{2f-l) •

Sol. 42 (D) Let initial velocity ofw, is uand after collision;
velocities ofWj & are Vj &V2 respectively.

Linear Momentut^arui Its Conservation!

5mi.7wo
Kl 2 ,3

V, =
_ "'1w, -m-.

mi +m2

2m,

m, +m2

Kineticenergyofmy aftercollision,

1

^2 2^^'
2m,

^mi+m2

^j_m2X4m^
' 2(mi+m2)^

Kinetic energy ofmj before collision,

\_
2

k.= - m,w2

^2 _
I. ~

/=

4mtmyU^ 2
—^ X-
A/ 2(mi+m2)^ miM^

4mim2
\2(mi+m2)

Sol.43(B) B_ =i
m2 2 1

m. - my
Vj = —^y ; 2_

mi + m2 m, + m2

_ mi- 2mi

mi + 2mi
V, =

m2 = 2mj,'Wj=-3w2
(since velocities are opposite indirection)

2m.,

(-3«,) +
2(2mi)

— U-,mi+2mi ^

+3m,Uy +4m,Uy
V = i-L + Ul

3mi Smj

I 4^2 7i/2V, = + w, + ^ ^

m, -m,
V. = U2 +

2mi
2 "7 w,m2+mi m2'+mi '

_ 2mi - mi .... 2mi - .
v., = O i "2 (~ 3 Uy)2mi + mi ^ 2mi +mi- . -

^ _ mi»2 bmiMj _ ~5m2
^ 3mi 3mi 3

Sol.44 (B) For5tojustreacfahighestpoinfofinclinedplane

-mv2 = mg-(5)

V

v2 = 100

v = 10m/s

Wherev is velocity of5 aftercollision,

(l + e)m

10= (l+e)8 '

1 + . = -

5 .1

^=4-^=4

Sol. 45 (D) Theacceleration ofblocks, '

mj -m2
a =

mj +m2

m^a-m2a

g

'CM mi +m2

(Since acceleration ofboth are opposite in direction)

_ mi -m2
^CM

mi +m2

mi -m2

mj +m2

2 •

j

Sol. 46 (B) Initial X-component ofvelocity,

V

Initialy- component ofvelocity.

72
Timebeforeimpactis

fi =
•c/ 72(f..

^or V

y %'



fUnear Mbrnentum and Its Conservation

V -Jld v^-2gd
V2 V V2v

Height ofball immediatelybefore impact,

1

''rVi-

, V -Jld

d^

'42d^
g —

V
v /

2 .=

The y r componentof velocitydoesnot change after impact,

V -2gd

-Jlv

The X- component of velocityafter impact,

ev

Time after which ball returns to girl's hand,

d ^/2^/
. '2 ~ ~~ • •

• "x ^

Now, displacement ofball when it returns.

' d^^
d-g-T +

-2gd ^d ^g
y-spi ev. 2

Thequadratic equation on 'e' canberewritten as,

2
=0

V V

\j2d'
= 0

V ^ y

e, =
gd

1 -.2V -gd
, (As .-0<e<l)..

I! V

Sol.47 (C) Let common velocity of system whenA reaches
the topmost point is v

From conservation oflinear momentum,

mu-(m + r[mjv

v =
1+ ri

Applying conservation of energy,

, \-mu^= —{ni-^r\m)^+mgh
u^= {l•^•x\)^P• + 2gh

1
1 —

(1+ ^)

w2(1+ti-1) = 2^;i(1+ti)

1+ Tl

= 2gh

m2=
11

u^= 2gh

{2gh)

l.i
- ilJ

u=j2gh l.i
. .•nj

Sol. 48 (C) External force on system.

F =
(m + m)v

2mv
F =

Sol. 49 (B) After collision we use

2m-)m^-m^

1 w,+W2 "i"*" W1+W2 ^2V, =

597

Since particle islight,' itsmass isnegligible and mass ofblock,
^2=wi (let)'

12m/s
Wj,-, w

«2
■♦■12tn/s

m 2m
v^=--(12)-H—(10)

1 W YYIm

V, =-12 + 20 = 8m/s



Sol. 50 (C) Change inmomentum=F(2/^

= K + '«2)^(2'o)
Since the external force present hereisgravity only.

Sol. 51 (B) We consider an element ofwidth dQ as shown in

figure

Total tangential force on chain is

j dmg sin0

'A
=Jy7;g^sin0£/0

0

mRg

I
1-cos

tangential acceleraticm is

tangential

M

1-cos
Rg

I

I
^R

dmg sin0

Sol. 52 (A) Initially, potential energyofball =mgh

Hq is the highestpoint before releaseand

A, is the highestpoint afterone'bounce

Sincegraphis a straightline,the ratioof

h
~ = 0.8 (gradient)

So, afteronebounce, thepotential energy becomes 0.8ofinitial
P.E. The kinetic energyofthe ball immediatelyafter impactwith
the surface isthe same astheP.E. atmaximum height.

After first bounce, K^-= 0.8 mgh

After second bounce, K2 = (0.8)^ mgh

Afterthirdbounce, - (0.8)^ mgh

Linear Momentum arid Its Conservation s

Sol. 53 (A) Let V= velocityof ball w.r.t. wedge

V- velocity of wedge

O ^vcos 45"

vcos 45"

vsin 45"
vsin 45°'

Usingconservation of linearmomentum,

mV—m (v cos 45° - V)

2V2

By conservation of energy,,

v=2'42V

-m[(vcos45°-I0^]+ i m(vsin45°)^+ ~mP- =mgh
z 2 2

,V2 , +l;^l +v^=2gh

g

{ri 'J I J

V^ +4V^+V^ =gR~j2 .

6r^=gR^

v=
gR

3^/2

Sol. 54 (D) Let common velocity ofboth blocks after spring
is completely extended is v then using conservation of linear
momentum,

'«2^0 = K+'«2)v

'"2^0
V =

m^ + W2

From conservation of energy,
i

9'"2V- 7^= 9 (mj +/n2)v2



iLinear Momentum and Its Conservation

mj +^2

^2 ^ ^mjVo +ffjj Vq -

X ~
. k{m^ + m2)

x = v.

miW\'"2

(mj -f/«2)^

Sol. 55 (A) ConsidCT an element ofmassrfm andlength iicat
a distance x from end ofrod. Here mass dm is

dm = —x^dx "
Li

x = 0

Mass of rod,

dx -

M= Idm

M= Tt
x=0

. k 1} Id}

^=rT^T....
Centre ofmass ofrod is located at

1

3 W
'com I

k V
Xt^nit

kl} ' L ' A

_3L
/i .

Sol. 56 (A) Letinitial distance between^and5 isX

H = 0

Distance covered by5 when its velocity'becomes 2F,'

(2Fi)2 =o+ 2a5 •

AV^ '2V^
5 =

2a

for^,

for 5,

V,=
x + s

t

2V?
x + —-

x + 5 a
r =

'1

2V} 1 .
S= —L = - afi

a 2

2V,
t =

From (1) and (2), we get

t2
2Fi

x+-
a 2^1

ax +2Ki^ 2^
^ aV^ a
=> ax=0

=> x = 0

Sol. 57 (B) Acceleration of boy,

50 1 2

I
v,=0 + - x5 = lm/s

^ 5

Acceleration ofbox,

/2

500 10 ^

Vu =0+^ X5 =o.5m/s
10

v.>x=l-(-0-5)
= 1.5m/s.

5991

...(1)

...(2)

Sol. 58 (C) Kinetic energyofwind intercepting theblades per'
second is sectional

[Here A->area ofblades through which wind flows]
Afraction ofthiskinetic energy persecond will beconverted to
electrical output hence P oc v^.

Sol. 59 (D) Letthe speed ofparticlebefore andafterimpact
be u and v respectively. Then,

V

e= —
u

v—-eu

Changein momentum for thefirstimpact

= emu- (- mu)='ep+p=p(l + e)



For second impact, change in momentum

= e^p~{-ep) =ep{\^e)
The total change in momentum is

=p (1 + e)+ e/7 (1 + e)+ (1 + e)+. „

=p (1+e)(l+e + e2+...)

=p(l+e).[—
_ P(l +g)

(l-e)

Sol. 60 (C) Change inmomentum vector between i'&g is

AP = (mv cos 45® + mv. cos 45®) i

—, mv mv 2mv

1P| = -Jlmv

Sol. 61 (B) IfVisvelocity ofeach'ball after impact we use

v-(-v) _ 1
6-(-6) 3

e =

^ -i
12 ~ 3

v=2m/s

(As initial speeds areequal final speed ofthetwo balls will also
be equal)

Sol.62 (B) As 0+ (i) = 9O°
This ispossible only when two bodies have equal mass
Thus, mass ofnucleus-mass ofa-particle
=> Mass no. ofnucleus = 4

Sol. 63 (B) Mass of cone,

w- = p - tzR^H

Mass of hemisphere,

m: = p. tiR^
. 3

Linear Momentum and tts Conservation

Centre ofmass of system is

, Vl+'"2.>'2
ycoM' OTj + W2

• 1 _2„ /f
3R .3 \S 4

p[ ~nR^H +-KR^
•3 .3

3R

nR^H + 2nR^

3R
.nH

3R + 2H

8 nH + 27tR

• •'Hi3R +2H) •
' H + 2R -

3RH+6R^ = 3HR+2IP "

ff = 3R^ => H=Sr..

Alternatively: usemil¥]='"2fT

Sol. 64 (B) Work done = 7^. 5"

m[v-(-»)]

t

w-2mu (v+w)

.{u + u)t

Sol. 65 (A) At highest point oftrajectory, the projectile has
onlyhorizontal component ofvelocity, sr. - ^
i.e., (400 cos45°)m/s
Athighestpoint,afterexplosion.

,45° \
'̂ y7>7777??77777777777777P777777777777Z'

m
("400') m
~^\ ^y V(conservation ofmomentum)

v=40b-s/2m/s ' '

Firstpart moves horizontally with speed 400 V2 m/s and second
part falls (do\ra.
For first part, itsvertical component ofvelocity iszero
Maximumheight reached, .

H=
w^sin^O , (400)"^ sin"^ 45

2^

/f=4000m

2 2

20



J^otnentum and Its^Conservation

1 ,
2

4000=ixi0x/2
2

, t=20^s

400>/2m/s

,45"
y///////////////////////////////////y/y

m 5 ^

Distance covered horizontally during this time,

5=400V2x20V2

•• " 5 = 8000 x 2= 16000m

R
Distance between Aand ^ ~^

= ^+S.

(400)^
= \ A +16000

2x10

= 8000 + 16000

=24000m

Sol. 66 (A) The ball strikes the inclined plane with velocity,

v = g/= 10(2) = 20m/s

After impact, componentofvelocityparallel toplane remains
unaffected.

Vn= vsin0 '' i-

V,.." ev cos

V sin
V cos 0

and the componentperpendicularto plane becomes

Vj^ = evcos 0 '
for next impact after time T we use "

0= (evcosO) T- —(goes0) 7^

^ 7 (20)

Sol.67 (A) Initially, centreofmass of system,

(60X1) + (40X3)+ (80X5) x (170x3)
X: =

X: =

60 + 40 + 80 + 170

1090 109 , , „ .

"350" " ^ ^
After persons exchange their positions,

(8Qxl) + (60x3) + (40x5) + (170x3)

80 + 60 + 40 + 170

601

970 97

350 " 35 ™
Since no external force is present, the position of centre of
mass remains fixed and platform is moved by,

109-97
X:-x.= —TT— « 0.35mv.

35

Sol. 68 (B)

5m/s

1 o

100-^ = 5/

From (1) & (2), we get

m-\gt^=5t
100-5/2 = 5/

/2 + /-20=0

(,_4)(r+5)=0 .

/=45

velocityofball after 45,

v = 0+10x4=40 m/s

Velocityofball just after collision,

v' = (40-(-5)) + 5

v' = 50m/s

Sol.69 (B) Changeinmomentum=/=w(3t/)

lOOra

1003

...(l)(forball)

.(2) (forplatform)



r602

->-U

2U-

w=hE=^m{2lP)-\mlfi

^ r1iw= —mU^- —
,2 2

Sol. 70 (D) To obtain maximum overhang ofonebrick onthe
table, thecentre ofgravity should beover thetable's edge

^///////////A
in

For two bricks,

'̂ ^7X7777777/,

jc = 0

mj/2+ml 3/
CM m + m 4

The centre ofgravityoftwo bricks ismidpoint ofbrick's overlap,

i.e.,

/ H -5/
2

2 4

Theoverhang isrelatedtoharmonic numbers,

H =1 +- + - +...i
2 3 „

and maximum overhang possible =̂
Thus, for three bricks,

Lmear M9JP®n^n;'„^dJts Cofis^vationt

pa
K'=

2m

4K=
2m

Dividing(1)by(2),weget

K 2m

aAK 2m P

1

P' = 2P

Percentage change in momentum

2P-P
-X 100 =100%

...(2)

Sol. 72 (D) Workdone bybne astronaut on another astronaut
is

1 o" - ' •
300x0.5=

2

v = 2m/s

Relative velocityis 2v = 4 m/s ^

Sol. 73 (A) No. of particle striking the plats per second
lOm/s«= Q =1000 per second

force exerted bythe waterdroplets,
F= mnv

= 1000 x 0.001x10

= 10N •.

SoL74 (D) I44Km/h=144x-^ =40m/s
' ' 10' »

\y2-ri\ 40

sin74" sin(90-37")

^3 =

. 1 1
1 + - + -

2 3
/ =

N

6+3+2"! _
12 j ~ 12

[

40m/s/''''̂ V

11/

12 /<74'' 37A

Sol. 71 (C)
p2

K= —
2m

New kinetic energy, K'=K+20^%oiK

K'=K-^-iK

K'=AK

...(1)
1^2-^ll =

40m/s

40x2 sin 37" cos 37"

cos37".

=48 m/s

Change in momentum = - x 48= 16Iqjm/s

•4)g~ 0.02 1
From figure we can see that direction is 53" west ofnorth.



"eoF!lijoear Momentum :and, Its Conservation

Sol. 75 (B) The horizontal velocityoftheball during the motion
remains constant Now, ' KEj--. ^ '.

1 7^12

B C
D \

E F

r, .

Thus, thejourneyfrom CtoFtakestwice thetime as taken from
^toC

Time offlight from ^ to C,

andvelocitywithwhichball strikesat C,
= 0^ + 2g/i

The velocitywith whichball rebounds,
Vj=ev

-h =ev{2t)-^g{ltf
-.h=^.2e0.h)-Ah
3h = 4eh

3

Sol.76 (C) Thex-componentofvelocityremainssamewhile
the '̂-component ofvelocity is halved

cH-
\.5-x

p y

7K
/

l.5m

D .

^•y

jB

So, the ball will cover twice the distance in x-direction compared
to before collision • '

As we use x = 2(1.5 —x)
x = 3-2x

--3x=3 - • - •

• . •x = lm •••

Sol. 77 (C) Let speed of Wj before collision is and their
combinedvelocityafter collisionis V2
Applying conservation oflinearmomentum,

WiVi + 0= (/Mj + m2)v

' •• • ' m^Vi
V —

mi + W2

1, X wfvf-(mi+mj)
+ 3 2

2wj+ 2w2 = 3wj
/«j=2W2

m.

m-i

2 1 2
= —X —W|Vi

Solutions ofADVANCE MCQs OneorMore Option Correct

Sol. 1 (A, B) If density of rod is continuously increase or
decrease from one end to another penter of mass of rod will
shift to either end from center.

Sol. 2 (C,D) Spring always exert equal force on the two ends
ofspring andin absence ofexternal force thetotal momentum
of system must be conserved.

Sol. 3 (C, D) Ifcenter ofmass islocated atorigin then either
massesare distributed onbothnegativeand positivedirections
or all are at origin only.

Sol. 4 (B, C) Option (C)canbetruein cases ofelastic head
on collision betweensamemass bodies and option (D) can be
true whena movingbodystrikesa fixedbody.

Sol. 5 (B, C,D) Even for smooth balls as collision iselastic
total kinetic energywill not remain constant but initial and final

• kinetic energywillbesame asduring collision it transforms to
potential energy and recover again and as no external force is
there momentum will remain conserved.

Sol. 6 (B, D) If an external force is present on a system of
particles then acceleration ofits center ofmass must be non
zeroandnootherinference canbeobtained hence(B)and(D)
both can be correct.

Sol. 7 (All) For elastic collisions all thegiven options can be
correct depending upon the impact parameter and masses of
the spheres.

Sol. 8 (All) When the two particles will bemoving at equal
speeds during collision, thekinetic energy ofthe system will
beminimumwhichcanbeobtained bymomentum conservation

- andtotal energy conservation asnoenergy dissipation isthere.
On solving we get options (A), (B) and (C) are correct. As



during collision first kinetic energy ofsystem transforms to
potential energy and then itrecovers back, option (D) is also
correct.

Lineal^Momentuffi and its Conservatioh

Sol. 10 (A, C) Since thestrip isnotfixed, it isfree tomove on'
a horizontal surface

Sol. 9 (A,B,D) Using conservation oflinear momentum,
, • IA/

'̂ 777?77777777777777777777777777777ZVZ
t* / H

x = 0

Also, no external forces are present. So, the position ofcentre
ofmass remains fixed

Initially, centre ofmass ofsystem isgiven by,'

m _( m ,

1" I'"'*' 2.

V =•

Initial kinetic energyof

'4(f)-

B 4

1mu^ _ 1 (
2 2 ~^/~212JT

I 2 ^ 2
4 12

I

mil

B A

m

x.=

n Ml/wxO +
2

m + M

wheninsectreaches otherend,'

Ml

2(il/ + w)

, Ml
_ +Y i2m +M)l

^ m+M 2{M+m)
Thus, the strip moves to theleft by,

2ml + Ml-Ml 2ml ml

2{M-¥m) 2{M-\-rn) M +m
Asspeed ofstrip as seen from ground,

ml I^/=
-mu^ __ mu^

12 V
{M+m)t t

m

2 1 2
- - X -

"'/= f
Force offriction between blocks,

Acceleration ofAtoright,

a .=
_ mg \^g

2{m)

Acceleration of5 to left,

)xmg

Acceleration of^ relative to5,

^AB-^ ^g

3pg
Cl JD —AB 2

-'j-

\ (M + m),

and speed ofinsect seen from ground,
I • • • .

V. < -,
'8 t • '

Sol. 11 (A, C) Linear momentum remains conserved as no
external forceispresent

PRelative velocity ofapproach = —
m

Relative velocity ofseparation

_ J jP-J)
m m

2J~P

m

_ 2J-P 2J ,

^ p r p

Sol. 12 (B,D) SincethecoIIisionbetween^andCisperfectly
elastic, velocity of.^ after collision isvand Ccomes torest
Applying conservation oflinear momentum,

wv = 2mv' ' '

'•
where v' is common velocity of system after maximum
compression in spring



in^r ^Mome6tuln'a^d Us Conservation

Kinetic energy ofsystem at maximum compression,.

1 1 yp- mP

Applying energyconservation,

mv
= kx^

Sol. 17 (All) Net force on system and net torque about peg is
not zerooverthe giventime interval.

Sol.18 (A,C) Impulse=change in momentum

= 2(v2-Vi)

=2(3/-))
Asimpulse isin thenormal direction ofcolliding surface

1

mv

Sol. 13 (A,C) VelocityofCOM which will be common inboth
bodiesat minimumseparationis

As time t we use

3x2v„=Y^ =1.5m/s

6t=2~2t

t-0.25 sec

A£=^(3)(2)^-|(l +3)(1.3)2=1.5J
1.5

Aj=~7'=0.25m
6

Minimum distance = 1- 0.25 = 0.75 m

' Sol. 14 (A,D) Asnoexternal force ispresent onsystem total
momentumwill remainconserved &as no extemalworkis done,
total mechanicalenergyof systemcoil remain constant.

Sol. 15 (A,D) Asno extemal force ispresent onsystem, total
momentum remain conserved (zero) hence final momentum of
allparticles must be inaplane so that their vector sum remain
ZCTO. . ,

Sol. 16 (B,C,D)F^=mJV^

'max* _

^CMIr^4 R

At the time ofslipping

^ 3M

tan 0 =
3

0 = tan'^

a=90"+tan |̂-j

Sol. 19 (A,D) As the string becomes ti^t speed ofMs is

mvp ^ ^
2m 2

If COMis raised up by height h we use

h='^

„ wVft ^ , mvl mvl mvlK=^-2mgh=- —

Sol. 20 (A,D)

For elastic collision 0 + (j) = 90° and from figure we use

/3
sin0 = — => 0 = 6O°hence(l)=3O°

2 I

* * * * *
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ANSWER & SOLUTIONS

CONCEPTUALMCQs SingleOption Correct ,

1 (B) 2 (A) 3 (B)
4 (B) 5 (B) 6 (B)
7 (A) 8 (D) 9 (C)
10 (C) ' ' 11 (D)-^ • 12 (C)
13 (B) 14 (C) 15 (C)
16 (D) 17 (A) 18 (C)
19 (C) 20 (B) 21 (B)
22 (B) 23 (C) 24 (C)
25 (B) 26 (D) 27 (B)
28 (A) 29 (C) 30 (B)
31 (B) 32 (D) 33 (B)
34 (C) 35 (B) 36 (B)
37 (D) 38 •(D) • ' 39 (C)

NUMERICAL MCQsSingleOptionCorrect .

1 (A) 2 (A) 3 (D)
4 (C) 5 (C) 6 (C)
7 (C) .8' (A) > ' , 9 (C)
10 (C) '11 (A) 12 (C)
13 (C) - 14 (C) 15 (A)
16 (C) 17 (D) 18 (A)
19 (A) 20 (D) 21 (B)
22 (C) 23 (A) 24 ••(D)
25 (C) 26 (D) 27 (D)
28 (C) 29 (B) 30 (A)
31 (B) 32 (B) 33 (D)
34 (A) 35 (B) • 36 • (C)
37 (B) 38 (A), 39 (A)
40 (B) 41 (B) 42 (C)
43 (A) 44 (D) 45 (A)

.46 (B) 47 (D) 48 (D)
49 (B) 50 (B) 51 (C)
52 (C) 53 (C) 54 (B)
55 (C) 56 (A) 57 (C)
58 (D) 59 (D) - 60 (A)
61 (A) . 62 (B) • ' 63 (A)
64 (D) 65 (A) 66 (C)
67 (A) 68 (C) 69 (C)
70 (C) 71 (A) 72 (A)
73 (A) . •74 (B) 75 (C)
76 (D) 77 (A)

ADVANCEMCQs OneorMoreOptions Correct

1

4

7

10

13

16

(C, D)

(B, C)

(B)

(All)

(A, C, D)

(A, C)

2

5

8

11

14

(B, D)

(A, C, D)

(C, D)

(B, C)

(A, C)

3 (A,B, C)
6 (A)

9 (B, C, D)

12 (A, B C)
15 (A, B, D)

Solutions ofPRACTICEEXERCISE 5.1

(i) Mass ofelemental disc asshown in figure is

dm = ~-dx
Lj

Moment ofinertia oftheelemental disc about thegiven axis of
rotation is-

dl =dl^ +dm>^

= —dmR^+ dmx^
4

I M . 'M ^

I=\dl =J{~R^ck+—x'̂ dx
J J„{4 L ^ L

MR ' M

4L ^ 3L 4

1 • 1 ,

'' I • ' •

(ii) Consider an element at a distance x from thinner end of
width dx, we use its mass dm as

dm = •x+p dx

Total mass ofrod is

•p(ri-l)rz,^^
L

'p(ti-1)L
2

1

v2.
+ pL

+ pL

= -p(Tl + l)i

Moment ofinertia ofelement is

dl=-dmyp-

...(1)
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Moment of inertia ofrod is

L

•i=\di =\

pL' p̂(ti-l) Zf
3 14

7=^PL^(3ti+1) .
From (1) and (2) we get

I^-M?
0

3^ + \

71 + 1

(ui) Massof elementalstrip is as shownin figure is

2M
^dm - X(/-x) dx

Moment ofinertia of strip about given axis is-

dl=dmx^

...(2)

1= Idl =\^(l-x)dx-?^
0 '

i2
I

Ix' x'

3 4

IMl^ Mi" _\_^2
3 2 6

\m.. / H
X

l-x X

/
4i\

/=

NOTE:. Youcan also try solving this problemwithout using
integration by'mass disfribution property.

Ov) Forfigure shownusingparallel axestheorem

/l
j

1

R

Figure 5.28

/=/ + Kf)"
2 , 9MR'

83 ,

AsI = -MR^
5

607

(v) Moment ofinertia ofthehalfcylinder about theaxis through
its centre ofmass is given as

= - ^me}
2 971^

Now moment ofinertia about axis .<4^'is

= J -U S/ff
^AA'

( 4i?"

3jr

r = ^M?^+ ^
^ ' 2 37C -

r3__8_"
2 371.

971-16

671

MR'

MR'

(vO Mass of section cut is

M ,2 Mb'
= —

na^ a

Moment of inertiaofremaining discaboutO2 is

/=/disc

(\ \{Mb^Ma^+Mc^ I--

= -M
2 a

2^

21
xb'

(vii) As the section is cut from a uniform circular disc, such
uniform sections have mass distribution like a disc only so

usingtheproperty ofmass distribution for moment of inertia
the expression formomentofinertia ofsucha section is same
as that ofa uniform disc.

(viii) Length of each spokeis T. Sothe radiusof wheelis T
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mass 2AMand also having 24 spokes of mass 'A/ of each',
moment ofinertia ofa wheel about axis is

24MI^ +
Ml'

x24 = 32M2

Solutions ofPRACTICEEXERCISE 5.2

(!) Equation ofmotion ofcylinder + mounts>^tem is

F
F=(wj + w,)a => a=

for relation ofcylinder

Wj +/W2

2F
FR = ^ a=

m,R

Acceleration ofpoint P is
Qp =a + Ra

F 2F
- + •

/«! + W2 Wj

F(3m|+2m2)

Wi(Wi +/«2)

In t seconds,displacement ofpoint P is

1 2s - ^Opt

Thekinetic energy ofsystem = work done byexternal force
=F.s

1_( F(3oti +2^2)
{m^ +^2)

Wj-+2w2

2wi(mj + W2)

= F-~
2

F^r^(3wj-+2w2)

(ii) When the blockhits the ridge at point O, it starts rotating
about O with angular speed co which can be obtained by
conservation ofangular momentum about pointOasnoexternal
torque will be present about point Oon block at the pointof
collision. Thus we use

(a^ . 2Ma^

Aa
0=

Rigid Bodjes and Rotational Motion

(iii) (a) Given mass of disc OT = 2kg and radius J?~0.1 m.'' '
Frictional force on the disc should be in forward direction. Let

Cq bethelinear acceleration ofCOM ofdisc anda theangular
acceleration about its COM. Then,

/ • /
^0 m -.2

T f R 2f 2f
a=—= -; — = —-— =10/"

—mR} 2x0.1

...(i)

...Cii)

Since, there is no slipping between disc and truck, therefore

Acceleration ofpointF=Acceleration ofpoint Q
=?• aQ + Ra = a

Y]+(o.i)(io/)=fl • '
3 2a 2x9.0

^ '2^'" , ,
Since, this force is acting in positive x-direction, we use in
vector form

• : f =(6i)N--
\

20 cm = 0.2 m H

4^

/=6N

T

(b)
ly,-:

z-fxf here, ,/ = (6i)A^ (forboth.the discs) ,,

fp = f =and Tg =r2 =0.iy-0.1^
Therefore, frictional torque ondisk' 1about pointO(centre of
mass).

\ = (-0.l}-0.1A)x(60N-m

= (0.6fr-0.6y) => =0.6(A-y)N-m

and |ti|=^(0.6)^+(0.6)^ =0.85 N-m

Similarly, 12= /^x/= 0.6(-}-A)

and Pi = F2 =0.85N-m •

(iv) As center of cylinder is at rest we use

yW^W^TT^TPTTTTTTT/.
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mg= kN2 + N-^
N2 = kN^

...(1)

...(2)

Solving equation (1) & (2) we get

limg
N,=

^ k^+l

Torque dueto friction on cylinder is
z={f,+f2)R=KN,+N2)R ^

angular retardation of cylinder is

^ T^ k{\ +k)MgR 1__ ^ 2kil-hk)g

^
2

Total angle rotatedby cylinderbefore it stops is given as-

<^,_4ik^+l)R
2a 4k(l + k)g

turns completed by cylinder

^ (ol(k^+l)R •
^ 2k 87cA:(1 +k)g

(v) Given that Ta '

Thus angular acceleration, of wheel a is also proportional to

>/w

a = -k [-ve sign indicates deceleration]

• W: , I
f aco =I-w/
4 ^ i •

2(V^->/®) =kr

here co = 0 at /q =
K

CO ==

Mean angular velocity of fly wheel is given as

1,23
(iiotQ+ —k'^tn-

12

2.3 V-0^2

12
COq + —^

COr

2^

COr

k
\ j

609

(vi) Considering anelemental ringofradius x, and width dx in
thedisc,tangental friction actingonthis element is-

df^P-
M

kR^
xlizxdx S

Torque on the discdueto this friction is

, l^iMx^gdx
dz = df.X=
• R^ .

Total retarding torque on disc is

•' K 0

2
=> =-P^8R

angular retardation of disc due to this torque is

2

time ofmotion

t _ 3
a= — =

[iMgR

I 1
MR

CO 3coi?

a 4p.g

iM
2 3 R

(vii) Whendiscrotates by180° byworkenergytheorem weuse

2.2

15 , .
3gYi=—iiV

16 g

1 ,,2 ffiR 25R'
—mR + + m
4 16 16

CO'

Velocityofparticle v^= —<o =~R ~4P.8R

i '\

(viii) As mass falls one meter in 5secwe use

1 2 ' =-
•^."2 • ^

1 = — X a X S-"
2



=> a = — = 0.08 m/s^

angular acceleration ofwheel is

a 0.08 4 ,

equation of motion ofbodies are
for block 0.2g -T=0.2a
=> ' r= 0.2x40-0.2x0.08

= 2- 0.016= 1.984N

for wheel we use

TR=la

TR 1.984x0.06

(4/3)

=0.0893 kg-m^,

Solutions ofPRACTICEEXERCISE 5.3

(0

T^-f=Ma

f{2R)
M{2Ry

2

f=MRa^

iT^-T,)R=~a^

a.

for no slipping, we use

MR

2

±
M

T
Mg.

Mg—T^^Ma
a = 2i?aj and a = Ro.^

Adding equation-(l), (2), (3) & (4); we have

" MR
Mg= Ma + MRa^ + ql^ + Ma

(1)

(2)

Rigid Bodies and: Rotatipnai MptjonJ

a a

g = 3a

g
a= —

(ii) Ifdisc moves up in pure rolling at acceleration a then block
will go down at acceleration 2a. Equation ofmotion ofbodies are

mg- Tj=m(2a)

1 9
T.R~TR = -MR^

^ ^ 2

^2a^

R

T,-f-f-r.a . ..

T^R+M=^mR'
Adding equations (3) and (4) we get

mg 3
27',-^ = -wa

1 2 2

mg 3ma

from equations (1) & (2) weuse-

f mg 3ma\

3mg 15
—— = —ma

4 4

a=y =2m/s^

(iii) By conservation ofangular momentum we use-

Mv^R= I +Mv^

V-, =

MR'

Thus ^ R
R 1 +

/ ^

MR^)

...(1)

...(2)

...(3)

...(4)

(3) 0v) If spool acceleration is a andangular acceleration is

(4) a = —, we use
r

wg sin 0 - 7'=ma

7r=/|y

...(1)

...(2)
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from (1) and (2) we get

gsin6
a =

1 + -
mr

(v) Ifcylinder rolls down at acceleration a, mass m goes up at
acceleration 2a so we use -

T-nig^rnQxi) ' ' ...(1)
Mg sin 6 - 7-/= Ma .

Adding equations (2) & (3) we get

sin 0-27'=

2 . . 4 r
a=T^sm0

I.^ •• ZM
from equtaion (1) we use

T-mg= 2m
3 ZM)

1 +
8m

ZM)

T ^ • Q Tr-OTg=-wgsinO- —7'
3

= mg
f4

—sin0 + l
U

Mng(4sin0 + 3)

• 3M + 8m

(vi) By conservation ofenergy we use

+ r) (1 - COS0)

77777777777^^77^77777777777?

=mg(/; + r)(l-cos0)
Z Z j

y

= mg(R + r) (1 - COS0)

^ =̂ mg(l-cos9)
R + r 7

...(3)

(1)

611

IfN is the normal reaction acting on the ball then for circular
motion ofits centre of mass, we use

10
^ mgcos9-A^= ~mg(l-cos0)

At the moment ball breaks offfrom the surface ofsphere N-0,
so we use

10 •
^ mg COS0 - — mg (1 - cos 0)

— cos 0 + cos 0 = 1

10

17. .
cos 0 =

From Equation (1) we use

10

. 0 = COS""' I—,
17

10g(i2 + r)

17

10g(i? + /-)

llr'

(vlO (a) Just after insect falls on rod ifits angular velocity is O),
by conservation ofangular momentum we use

L
MV- =

4 .

(Ml} M̂l}
12 16

12F

IL
co=

(0

(b) When insect is at a distance x from O angular momentum
ofrod (with insect) is .

J=I(Si=

0 = (or

2>
,^2 ml
Mx~ +

12

torque on rod at this instant is

CO

-,, • • Aci/ «,, dx
X= Mg. a:cos CO? = — =2A&0)—

dt dt
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Z,/2 /=n/2u

[ dx =f cosintdt '
L 2 CD i

S - . -w/T S
— [smcoOo

j ' ' 4" 2cd

L
4

g

12

Solutions ofPRACTICEEXERCISE 5.4

(1) For the two bodies, equation of motion of bodies for
accelerations and 02 are

/i*

777777777777777777777777777777777.

F-f^=m^ay

2 —fl,

from(l)&(2) F=7Wjfl, +^202.
frcttn(2)&(3) 5/«2a2 = 2/^2^1-2w2<22
=> 7a2=2aj '•

^' .A 7)

7F'
a, =

7Wi + 2^2^ . ^

2F
O',-

Irriy +2w2

...(1)

...(2)

...(3)

(ii) Maximum torque will act on cylinderat its extreme positions
of oscillatory motion. The cylinder will move in influence of
pseudo force with respect to platform as shown in figure. Thus
equation ofmotion ofcylinder is

mAca^cos (O?

mA(3?-f=ma

and ' M=\mR\^
...(1)

...0

Rigid Bodies and RotaUonat

-adding(1)and(2) -a^

Maximum angular acceleration is

R

Maximumtorque on cylinderis

^max

= ~m^
2

2 Aar ' •

3 /?

2>
2 Ad)

3 'R-

--mARar

(iii) (a) If after time t cylinder will start pure rolling we use
impulse equations as

V77?77 '̂:'̂ ^7^77Z^7777777777777^^7y^^V77777/
/ = 0

pW^l=7Wy-

(1)

1 0 <: -1 ' ,—mR^diQ-yimgRt^ - ~mR
J, ^

\i-gti

(2) Fcoo - 2pg/i

=> 3pgt, =7?cOo

= 1

/, =

fromequation (1)

^ - -
3pg

/ \

l = U

...(1)

...(2)

Vf=

1

= 3V

(b) Total magnitude ofwork done by sliding friction is equal to
the change in kinetic energy, given as

1 "
2I2

_0

3 )

COX

1 f 1 „
+ —W —(Dfti?

2. l3 °
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= —mR^ayl -
4 °

= —mR^diQ

^36"^ 18,
2_2

mR (n

As the friction reduces kinetic energy Wy= - - mR^(OQ

ifcueimpartsan impulse7 toballand initialangularspeed
ofball iscOfl, weuse

and

from (1) and (2)

J=mv,

2 ,
Jh- —irtR^diQ

. . Svq/j

...(1)

-(2)

Conserving angularmomentumabouta point O on ground,we
use

%7^^^9^^7^i^77777777777777777^P7^Zv77777?
r = 0 t^u

fS h

r] l7 35.

h = 35 J

pure rolling

^9 ^

17"°

r=\r

(v) (a) For pure rollingofshell, weuse

wg sin 0-/= w

77777777?

gsin0

•3

2
• [forhollow sphere— = —]

R 3

=> /=yngsin0

to prevent sliding/< (i mg cos 9

j 7«g sin 6<[img cos 0

p> —tan0'

(b) If^ J tan 0then friction on shell will be

/= pmg cos 0 = -mgsin 0

acceleration ofshell is a=gsin 0- pg cos 0= j gsin 0 .

angular acceleration of shell is

fR _^gsine

" / 2 „2 10 A
—mR
3

time ofsliding — =

5/

a V2^sin0

speedattainedby shell as it travellsa distance \ of inclined is
\ = at

=Jjg/sin0

angularspeedattainedbyshallas it travels a distance /
03 = a?

3 gsm0 I ^
10 R ••V2gsin

6g/ sin 0

407?'

Final kinetic energy ofball is •

1,1,
-OTV^+ -/03^
2 2

= —m\ —g/sinO
2 Is®

= I —+—ig/sin0
' 5 40.

= —mgl sin 0

1 (2+ -\-mR'
2 13

9 g/sin0

40 R^

.. rr



Solutions ofPRACTICE EXERCISE 5.5

(i) By conservation ofangular momentum use

mimud).u.{ll2) =

0.5x12x0.5 =

3 =

Ml
' 3

+ m{mud) •

2 .(5P)(1)

'50 l^l
r—H

v3 8/

•+ 0.5x(0.5r

0

<0= —rad/s

(ii) By angular momentum conservation, we use

mv\ — I =mv'
.2.

Ml"-
H —©

WV= 7WV'H—M©
3

as collision is elastic, we use

©/
v= y-v

From exerted (1) & (2) M

wv = mv'+ —M(v + v')x2

mv~ —Mv~
4

mri—M Iv'. .
'3

' f 3m~4M^

3m + 4M
V-

CO

CO

and
2 2v

©=y(v+v')=y 1+
3w-4M

3m + 4M

12wv

l(2m+ 4M)

Force by axis on plate is

, / 72Mn\^
F=M(a^- =

2 l{3m+ 4My

...(1)

•••(2)'

(iii) Velocity ofdisc at the bottom ofhill is

v=V^
When both disc and plank movetogether at speed.v,we use

•mv= {m + A^Vj

Rigid Bodi^ and Rotatlon^'Motion'

m

V, =
^ m + M

Total magnitude of work done by friction is

W=AK= —mv^- —im +M)v^

1 m^ilgh)
= mgh (ot + A/) r

® 2 ^ {m +Mf

_ mMgh
m + M

As friction is kinetic its work is negative here

jf.- ' •
^ m+M

Ov) Using angular momentum conservation we have

1

'disc
m.

At )

1

At

2mi0 -

mj+lm^

(v) Ifatthetime ofcollision inpulsive reaction at isJ andJj
is the impulse between particle and rod, we use

• A///////

and

for rod we use

m j,
^ .

2m

y, =mv

JJ =
2ot(2/)^

©

©=

3^1 3v

Sml ~ 8/

Jy - y=2w(/©)

"t ^ ,|3vl mv
•• 4

If rod gets displacedbyan angleand beforecomingto rest, we
use
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1 r2m(2/)^2

2 I 3 ,

00

= 2mg/(l-cos([))

cos (j) = 1-
'i2gl

<t>= cos 1-
3v

12 ^

32g/j

(vi) When meter stickhits the floor, ifits angular speed isco, we
use

/
mg-

mV
CO

co =

615

Sol. 7 (A) Asbody is not in purerolling and given that the
distance covered is less than circumference of the wheel so
this is the case of v < and in this case friction will act in
forward direction.

Sol. 8 (D) For this rod as linear density varies from one end
to another its moment of inertia also changes if its pivoted end
ischanges soallphysical quantities thatdepend upon moment
ofinertiawillchange. Hence onlyoption (D) is correct.

Sol.9 (C) Asmasses arejust dropped, thesewillhavesame
speed when these are inhands after dropping so no effect will
be there on the angular speed of the table.

Sol. 10 (C) Themoment ofinertiaofa disc about itscentral
axis is{\I2)MR^ and ifmass oftwo discs are same then moment
ofinertiawillbemoreifradius is largewhichwillbeofsmaller
density disc.

Sol. 11 (D) Asthe bodies are inpure rolling (without sliding)
sono energy dissipation take place and all will reach the bottom
withsame kineticenergy (Rotational + Translational).

Sol. 12 (C) For auniformly rotating body theacceleration of
any particle will be only normal acceleration which will pass
through theaxis ofrotation hence option (C) iscorrect.

Sol. 13 (B) Asice melts, due tocentrifugal force inframe of
pan, water moves outward and total moment ofinertia incerases
and to conserve angularmomentum angular speeddecreases.

Sol. 14 (C) Asnoexternal horizontal force isthere onrod, its
center of mass falls vertically so the lower end will be at a
distance//2 from 0 after it falls on ground,

Sol. 15 (C) Manfolds hisarms onlybytheinternal forces so
no change inangularmomentum willbethere.

Sol.16 (D) Momentofinertialofasolidsphereis(2/5)Affi^
and that ofahollow sphere is(2/3)iVfR^.

Sol. 17 (A) Compare the standard moment ofinertias ofthe
bodies.

Sol. 18 (C) Moment of inertia of a disc is
(1/2)M?^ = (l/2)p7cwR'̂ where pisthe iron density and wisthe
thickness ofplate so bysubstituting thevalues ofwandRwe
can see that option (C) is correct.

Sol. 19 (C) If cylinder moves at speed Vthen theplank will
move at speed 2v as there isno slipping anywhere. The kinetic
energy ofthe plank is (l/2)M(2v)2 ofcylinder in pure
rolling is(3/4)Afv^ thus option (C) isconect.

speed of tip ofrod is v=co/ =7^
= VSxlOxl = m/s

Solutions ofCONCEPTUAL MCQSSingleOption Correct

Sol. 1 (B) As the external force on cyclinder is the weight
component ofcyclinder acting along the dirction of incline
which isacrting indownward direction allthetime due towhich
itsacceleration isalways indownward direction sofriction will
act in diretion upward along the incline all the time while
ascending aswell asdescending so astomaintain the direction
of angular acceleration.

Sol. 2 (A) For identical geometrical shape the mass ofiron
body will bemore than that ofaluminimum body hence moment
ofinertia ofironbodywillbemore asexpression for moment of
inertia for both bodies will be same for same axis of rotation.

Sol. 3 (B) When thecylinder moves a distance I,thetopmost
point on the cylinder will travel a distance 21 for the case of
purerollinghenceoption (B)is correct.

Sol.4 (B) In absence ofextemalforce onlylinearmomentum
will remain conserved. As the body is non rigid, it can store
potential energy and its moment ofinertia isalso variable.

Sol.5 (B) Forpurerollingon inclined planetheacceleration
ofbody is given as a=g sin 0/(1 +K^IR^) hence solid sphere
willhavehigher acceleration andwillreach the bottom with
greater speed.

Sol. 6 (B) For a rigid body, 'an external torque produces
angular acceleration.
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Sol. 20 (B) About the z-axis moment ofinertiaofthe rod is
MR^ ifi? is the distance ofrod from origin then about all points
located at a distance i? from the rod, itsmomentof inertiawill
be same which will lie on a circle.

Sol. 21 (B) Angular momentum ofa particle moveing in a
straight line is given bymvdand itremain constant about any
fixed point.

Sol. 22 (B) For abody rotating with some angular acceleration,
everypoint onthe bodywill havea tangentialacceleration as
wellas normalacceleration andthe vector sumofthe twowill
be horizontal and doesnot intersect with the axis ofrotation.

Sol. 23 (C) For pure rolling oninclined plane theacceleration
of body is givenas a = g sin 0/(1 + hence both solid
spheres willreach thebottom together.

Sol. 24 (C) Iffiiction isless then thesphere will roll down the
incline with sliding sooption (C) iscorrect.

Sol. 25 (B) When we rotate the raw sphere itsshell will rotate
andtheinner fluid will rotate slightly due tothefiiction at inner
wallofthe shellwhereas theboiled oneissolidandwillrotate

fullyhence will havegreater,momentofinertia.

Sol. 26 (D) As the scooter is moving on a smooth road, no
external force is acting on itso internal-forces cannot change
the speed of center of mass of scooter.

Sol. 27 (B) Asphere cannot roll on asurface where no torque
ispresent to provide therotational motion in accordance with
the linear motion pfsphere due to gravity hence only option
(B) isthecase among other given cases where sphere cannot
rollwithoutsliding.

Sol. 28 (A) As the tube rotates, due to centrifiigal force the
water moves outward and its distance from the axis ofrotation
increases hencemomentofinertiaalsoincreases.

Sol. 29 (C) According to parallel axes theorem option (C) is
correct.

Sol. 30 (B) When the tortoise moves along the chord then
itsdistance from center decreases andmoment of inertiaalso
decreases so angular velocity ofthe platform increases upto
the point when tortoise reaches the mid point ofthe chord
then it decreases toinitial value when tortoise reaches theend
of chord and stops.

Sol. 31 (B) When the axis ofrotation is passing through A
the moment ofinertia will be higher compared to the case when
axis ofrotation is passing through'5 so for same torque angular
acceleration will be less.

Rigid-Bodies apd Rotation '̂potion |

Sol. 32 (D) Due to change in G, the graviatinal force and
energy changes but asthe gravitational force isa central force,
net torque on satellite aboutcenter ofplanet still remain zero
hence angularmomentum ofthesatellite willremainconstant.

Sol. 33 (B) For a body in pure rolling its rotational energy
is {\I2)MK^(^ and total energy is (l/2)M(^:^ +/j2)(o2
thatK^ =OAiK^+R^) which gives ^ =(2/3)'̂ /? which is the
case of hollow sphere.

Sol. 34 (C) As the person walks toward the center of the
rotating platform, its moment ofinertia decreases so angular
velocity increases as angularmomentum is constant.

Sol.35 (B) torque onpencilis t = mgl sin 0 ml'

3gsin9

2/
a =

a tip =/ct= -gsin

LThis we can see it exceeds gwhen sin 0>j

•a

Sol. 36 (B) Solve theproblem using p as the coefficient of
kinetic friction. Linear velocity radius to zero before angular
velocity becomes zero.

Sol. 37 (D) All points mentioned in (A) (B) and (C) have
acceleration so with respect tothese points centre ofmass of
system willexeriehce apseudo force so conservation lawcannot
be applied about thesepoints.

Sol. 38 (D) The different forces on the block are shown in
figure.

•R

t

mg

Forequilibrium,/=wg
and normal reaction, A=F
torque due to F = 0 (F passes through centre)
As the body isinequilibrium and hence, torque due tofriction
about centre ofmass isequal totorque due tonormal reaction
about centre of mass.
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Sol. 39 (C) Torque oflntemal force is alwayszero. All other Sol. 5 (C)
quantities may vary in different situations.

Solutions ofNUMERlCALMCQSSingle Option Correct

"Sol. l .(A) Using parallel axes theorem,

L = MvR+Ig)

MR^
L = M(o3R)R+ CO

L = Mo3R^+
M(SiR'

-cJ3

A-

Ma'
+ Mb^

=K(^+2b'̂ )

Sol. 2 (A) About an axis passing through point 0 and
peipendicular.to both rods moment of inertia is

/=2x
Ml: MV-

12 6

If we consider a line JfT'perpendicular to'A7then moment of
inertia ofthe two rods about both XYand XY' will be same and

we use

-i -^XY~^}CY~ 2"^"
Mt

12

Sol. 3 (D) For rotational motion, only friction is there which
will exert a clockwise torque on it as torque oiMg and N will be
zero.

JR-^Ia

mr a

2 r

ma

/=

Sol. 4 (C) There will be two friction forces acting on sphere,

one along (-i) direction due to translation motion and along

(fA) direction due to rotational motion.

L =
3M/?^co

Sol. 6 (C) B has double torque compared to^. Thus, B has
double linear acceleration and thus double displacement
compared to yl.

Sol.7 (C) VvJ+v„^ =v„V2

'W

777777777777777^777777777/.

Sol. 8 (A) It will continue rolling because the inclined plane
and sphere are initiallyat rest with respect to the car as pseudo
force on sphere ma cos 0 is balanced by mg sinB.

Sol.9 (C) Thecurvetracedbyapointontherimofthewheel
rolls along a straight line without skidding is called cycloid.
Path length ofcycloid'betwe'en two points on ground is

InR/ 2uR/

hB= 1 1 2vsin^i/r =%R

1= 0

A B

Sol. 10 (C) Using angular momentum conservation

2x
12

12

CO|j=/'co' •

12

21
I
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2 ^ 14 ^
•jOTrcoQ= —wrco'

COo
CO -

Sol. 11 (A) From figure shown

Yr.

5 ON

50-r,=5(2a)
r2-40=4(a)

7',(2)-7^2(1) =4a
From (0,(2) and(3),

2(50-I0a)-(40 + 4a)=4a
=> 100-20a-40-4a=4a

=> 28a = 60

60
a= — =2.1m/s^

...(1)

-(2)
...(3)

Sol. 12 (C) Forequilibrium ofrodconsidering limiting fi-iction
we use

(iA^i=A^2

-1F+A^,+/2=0

N^ + ]xN^ = W

N^ + V?N^ =W

W777^P7Z7^77P7P7777777^:^

Balancingall torquesaboutpoint A, we use

-W
2.

-3W

+/2(3)+A^2(4)=0

+ 3/2 + 4^^2=0

...(1)

...(2)

Rigid Bodiesand Rotational Motidri :

=> l^i(3|i+4)=-//j(l+n2)

=> 2(3|i2+4^) = 3+3n2

=> + 8(1 = 3+ 3|i2

=> 3(i2+8n-3=0

3(i2 +9|i-(i-3=0

=> 3p(^+3)-l(K+3)=0

1
=> |i=- (As \i^-3)

Sol. 13 (C) Momentofinertiaofring aboutcentralaxis is
= mr^

moment ofinertia ofa ring about its diametrical axis is

/=/, +L = ~zmr^
1 2 2

Sol.14 (C) A and B are always perpendicularto eachother

=> =0

Sol. 15 (A) Let ustake elemental partifc/Oofmass c/m, given
as

M
dm = —r X^<^0

nR

dm = —dQ
n

dl=6na^

~M 2f fJWl=\dl=\~r
•' in

=Vn0]o"=M^
Alternatively: Using mass distribution property, moment of
inertia of a part ofbodyhaving same'massdistributionwill be
given by sameexpression as that of body.

dQ
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Sol. 16 (C) Weconsideran elementin rodas shownin figure
ofmass given as

m

dm= — dx-

moment ofinertia ofthis element is

/= =}y (ic-:t^sin^0

/=y sin^e
i 13,\ /

f ^ sm2e(/3) ,

1= - mP- sin^ 0

Sol. 17 (D) Given that 7'.= 10Pr'

Atpoint^ F+T=W+
R

mv.
QE+ I0mg = mg +

QE=> ^+9g=-f. .
m /

Using work energy theorem,

•im)2-+mtrO.h— C}F.(1T\ =

R

^iml+mg(2/)- QEQX) =- tm}

—mv^-\-2mgl-2QEl = T'w QEl

m

+9gl

...(1)

^mv}+2mgl-2QEl= "rmgl
2 2 m 2

m 2 5mgl mQEl
—vi = —~ ^ ^2QEl
2^2 2m ^

^ .'.2 5mg/ _ 5QE/
— Vji — • +
2 2 2

V2= 5g/+
5QEI

m

= .5/
m

619

Sol.18 (A) The particleis movingin a conicalpendulum,

0

A
\3<j

>
(

t

1

1

1

o

mg

=2yl2a

2^a 2^,.
'COS 6 =

Za

Whentheparticleis suddenlystopped andletgo, thenparticle
moves in a vertical circle as shown in figure

o
•/////////,

"h= dD-OA =3a-2^a
Velocity ofparticleat pointD is

v=yl2^

=> ' v= V2ag(3-2>/2)

=> v=[2g«(3-2V2)]^'2

Sol. 19 (A) Ifafter time t disc comes to rest, we use

a a

^0=(f jwfl
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As

\W2gfl

COnr

2 ,

coor 2

mr

~2

Sol. 20 (D) Theblock ismoving with uniform velocity
•=> f=mg sin Q

Mg cos 0
Mg sin 9

W=Mg

Torque offriction force about centreofblock,

1
, Ty= 2 ^fl^AfgsinO

Ty= i(M3gsin0)
As blockis not rotating torqueofnormal reactionwillbalance
torque of friction

,,

Xj^=x^=-{Mgas\n%)- -

Sol. 21 (B) Total kineticenergyofhoop is

K= —/co^+ — m^P•
2 , 2

1 ' 1
=> K= — mF. m\P-

=> = T + —tmP-
2 . 2 •

=> K = m\^

Thus, a work ofm^^ has to bedone to stop it. <

Sol.22 (C) Applyingconservatidhofangularmomentum,"

' / -ml , •
m+mv~ = CO

2 3

mP- rco/^l
CO + W —

12 I 6
I mP

•CO

Rigid Bodies and RotatlbhaiM^^

CO CD CO

l2"^I2 "T
^ _ 2od •
3 "77

® 2

Sol. 23 (A) For pure rolling we use the cylinder will rotate
about O as instantaneousaxis of rotation, we use

using

V777777777^P^V7777777->

Fr=/oa

3Mr^
Fr= a.

- ,2 ,

IF
a-

ZMr

Sol.24 (D) Massofcotton pad aftertime/is
W = )i/ .

Byconservation ofangularmomentum,

m^r
CO =

• 2
—— + atr

. 2 .

OJ. ,

2

m^r
= —2— + ^tP-

nir.

i-
2li'

Sol. 25 (C) Angular momentum athighest pointis
L=jmH

Velocityat highest point is

v = M.COS 0

Maximum height reached, - '

sin^ 0

2g •

L = m{ucos 0)
sin^ 0

• 2g' ,

i mu^ sin^ 0cos0

2g
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Sol.26 (D),Angularvelocityis.independentpfr.-,r . .

Sol. 27 (D) Centripetal force required-to maintain rod in
rotational motion is

112

1
Thisforce isprovided by.the clamp on rod.

Sol. 28 (C) Let speed ofCOMofcylifldricaldriim is V, then
/ •

timetakenbyit to cover a distance of.—

' 2v
Speedofplank = 2v
Distancetravelledby plank is

s = 2vxt

-n.- - -s ....(1)

[dueto pure rollingof drum]

, /
/5-2vx —

- 2v

s = l • -

Sol.29 (B) Byconservation of^gular momentum,

Ml} fA^ 2mZ?l„,

McOq M + 6w_,

(0

12 12

M®,

r® . -

©' =
M + 6w,

Sol. 30 (A) Acceleration ofarolling body on inclinedplane is

gsinG
a —

1+^
r}

For twobodiestime ofrolling same length is

1.+' >2 •

1+7 2
yR •

For a solid sphere

and for disc

1,%-

p"'
15

621

Sol. 31 (B) Inprocess^, tension instring =5N while itisless
than 5N in5.

Sol. 32 (B) Letspeed ofdiscwhich rolls is and thatwhich
slides isv^. For equal kinetic energies, we use • - .

/̂aj2 +̂ Mv/=i Mv/ y .

x-4-+ —Mv. = —Mvfl
1 1 R^ 1 ^

•+
''a _

3v/ =2v/

Sol. 33 (D) Velocity with which mud is detached at topmost
point is . . ,

v' = v + r® = 2v

d=2vxt [vv1iere/-> timeofflight]

d=2vx

d =
16rv^

S

Sol. 34 (A) Let friction isacting inbackward direction ^,

Mg sin 60

Mg cos 60

a=Ra ...(1)



wgsin60°-/ =Ma

JR=Io.

MR'

^ 2

Mg&m 60° = -Mj

a

VR)

For sliding,

2 go= jg-sin60°= ^

/~2^
/=l4il/gcos60°

Mg
2^/3 V3'^2
2-3x = l

3a: = 1

2-3;c 1
X —

1
x=-m

Sol. 35 (B) Uptopoint B,

TranslationalAC^ Kj=-mgh '

...a)

...0)

Rotational^ , ,Kj^=^mgh • r. „
Afterpoints, rotational K.E. isconstant, buttranslationallCE.
increases.

At point C, translational AE

2 5
^T~ '̂ ^gh +mgh= ^mgh

and rotational KE ^fngh

El
K,

= 5

Rigid Bodiesjan^

Sol. 36 (C) Friction on ball acts in backward direction which
will decrease its linear speed and increase its angular velocity
until it startspurerollingaftertime t soweuse • •".' ' Z .

mvQ~ft=mv

0+JRi=!j. . .

Forsliding, f=ixmg
Dividing(1)by(2),weget

mvQ-ft

JRt

mv

2 d2 V
~mR X —
5- ^-R

^ • • .wvQ-pOTg/ -5 ^
. , 2

From(1)and (3),weget'

2vo
•- /nvQ-pmg. —=OTV

5Vn

-(1)

...(2)

Sol. 37 (B) Letfriction isacting inbackward direction.

Mg sin 0

Mg cos 0

Mgsin0-/=A/o ,
^=la '

-Afflux-
5 R

/= ~Ma
2

2 7
Ai^sin Q~Ma+' —Ma = —Ma

3 3

' .5.
= —gsm 0

For pure rolling.

2 • 5
/= -Mx -gsinO

2 '
f=- MgsinO

/<pAl^c6s0

;..C2)
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—Mg sin 0 < Mgcos0

Sol. 38 (A) According toprinciple ofconservation ofangular
momentum,

/©=(/+/>'

2tz

3 )T+^Tr

T + AT

±MR2y —=f-MR^+,-AjVffl^

, SAM
= 1 H

T 3 M

\T 1^5 AM
1+ — s= IH—

T 3 M

5 AM

=> Ar»8 XlO'̂ ^/jr/day

Sol. 39 (A) The speed acquired bybob after bullet comes out
IS

V=y[^
Byconservation oflinear momentum, we have

Vl

IniiVi _

mgH= -m
(5
-Vr

32

When sphere isrolled down without slipping,

i - ^
2'

V?. 1mgff= -wA? -^+-7wv;
2

2R' 2 °

From(1)and(2),wecanwrite

25 2
32 ^0

vo —+ 1
R?- •

9 , 3R
k'^^—R^ ^ k= —

16 4

Sol. 41 (B) By conservation of energywe use

-I<^ =mg '̂

I
//2

[

'623-

.(1)

-(2)

Sol.40 (B) Letthesphereisreleasedfromheight/fandradius
of gyration is k.

ml f ,—^ or =mgl

Whenthe inclined planeis madesmooth.

co=

Sol. 42 (C) Total kinetic energy =Rotational KE ofsphere+
Translational KE ofsphere +Translation KE ofwater inside it.

Ar= —/co^+—
2 2 2



' 1 1 2 ^1 2 2 V
—x—mRx,—
2 3

+ —m\P-+ —m\^
2 2

'K= -mv^+'mv^

K=-m^P•
3

Angular momentum ofsphere about afixed point onground,
L —(/co+mvR)+ mvR

2 V
. L=—mR^x-~ + 2mvR

3 R

L= —mvR + 2mvR

L =
ZmvR

Sol. 43 (A) T isperpendicular toplane containing F and?

=> ' r-x =Oand F-t =0

Sol.44 (D) Themomentofinertia cannotbedetermined from

this information as data is insufficient.

Sol. 45 (A) If cue hits theball h height above centre line, it
shoots with an initial speed (say v) and itgains an initial angular
speed (say cOq)

VTTTTTTTTTTZTTTTTTTTTTTTTT?.

Let impulse given by cue to ball = Fdt

Fdt~rm

Fot rotational motion,
Fhdt=Idi

2 . V
=> Fhdt=-mR?-.~

5 R

Dividing(1)by (2),weget

J_ _ 1

• '5 '

=> h='̂ R •

-(1)

...P)

Rigid Bodies and Rotational Motion

Sol. 46 (B) Applying conservation ofangular momentum^
/a)=/'coV

MPo) = (Mf^ + +mr^)(£/

CD'=

co' =

Mr^d)

r^(M +2w)

Md) ,

M + 2m

Sol. 47 (PX Acceleration ofsphere =pg(towardright)
Accelerationbfplank= pg(tdvrards laft)' • •

Acceleration ofsphere relative toplank = 2p^.

Sol.4$ (D) AngularmomentumofparticlemovinginlineAs
is

InAO^C,

L = mvR

10x2 • 4

R
sin53° = j

5 -4
/(=-x-^2

^ L=10x6x2

=> L=120kgmVs

Sol. 49 (B) Given that a = -

- . . ^v: ddi . , • u
00— =-to

On integrating we get

ddi dQ dQ

dQ dt dt

Initially,

After n revolution,

co = -ite + C

0= 0,co=C0q
©0 = 0

©,'0.
=~^2«n:) + ©„-•
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For final stop,

^ =2kmz
2

COq

Ann
k = :

(0=0

0 =
-<0n'

(6)+ ®nAnn

0 ^Ami

i.e. 2n revolution,

Number of revolutions that will further occur before flywheel
stops

= 2n-^n

= n

Sol. 50 (B) Revolution period ofmoon is •

27rr_
T_ =

r_ =
2^
GM

ri=
2^3

r,,.

GM

An^r'

tIg
M=

...(1)

CM
[As orbital speed is v = I ]

Sol. 51 (C) When ring slides down the incline from height

mgh——m\P-

=> v^ = 2gh .. .(1) •
Let velocityofring at bottomis v'when it rolls downthe same
incline.

./2

mgh= + -mv'-
2 2

=> v'^= gh
Dividing (1) by (2), we get

^/5

...C2)

Sol. 52 (C) K=~IG3^
2

=> 360 = -7(30)2

=> /=0.8kgm2

Sol. 53 (C) Angle ofrotation in 1 sec is

0, =̂ a(l)2

a = 20j

0, +02=ia(2)2

e, + 02=-(2ej)(4)

01 + 02 = 401
301 = 02

^=3

626

...(1)

Sol. 54 (B) Using conservation ofangular momentum

MR' MR^ MR^^
•(£> =

2 .

— (0 =

2

(1 1
- + - Ico'
2 8

, 4
CO = —CO

Sol. 55 (C) Kinetic energy,

K=^I(o^
2

1

2 3
xco^

= -MficiP-
b

(0'

Sol. 56 (A) Force by liquid on other end is

F = Map-
V2



626

I

M

m COM ^^2

Sol. 57 (C) Let radius ofhollow sphere is/?,and that ofsolid
sphere is/?2

A
/?•>

Sol.58 (D) By conservation of energy,

1 . 1 mv

M

1
+ —

2

By conservation ofmomentum,

L M}
mv-r = -TT-oo

2 12

6wv

'W
co =

From (1)and (2),we get

{(nf

+ —ML^.
24

^mv^ =
2

1

2 M

1 =
m 3m

M M

=> 1 =
4m

M

m =

M

4

•(1)

•(2)

IFF

Sol. 59 (D) If is initial accelerationof COAfofdisc aiid a is
its initial angular acceleration, weuse

T—2 ma.

(J
m -

\rn,

2R

'c

RT=^^a

-T=m(a^+R^)

T J

Rigid Bodies and Rotational Motion

^—•a

T

FBD ofdisc ' FBD of particle

5T

2 " 2mR

T=
5mR

T J' r

c 2m 5mR{2m)

Putting all the values a =4m/s^

Sol. 60 (A)
\ ! /' ! I /

1 ^

\\A' '
We divide hexgon in sixequilateral triangles bydotted linesas
shown in figure and addedtwomore triangles to it to form a
diamond. Ifmoment ofinertia oftriangle aboutJLTis /, then we
use

2^1 ^ 2 [/,

/+2/,=32/j

Now as density of triangular plate is 3 times and thickness is
double its moment ofinertia will be

/,=/,x3x2=(

Sol. 61 (A) IfW, and ^2are normal reaction onrear &front
tyres, we have

N-i + N2 = Mg

^(N^ + N2)~Ma

As net torque about C—0

/Ar Ar x; ^2^

N2>N,

iX' mass = m

N
Solvingequationwe get A^, = —s g-

fV J

W
For maintaning contact //j>0.=>p= —

...(1)

...(2)

...(3)

.:.(4)
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Sol. 62 (B) Tomaintain contact A^j>0
and maximum acceleration is

a = |ig

fTg
a =

Ih

Sol. 63 (A) As hinges are smooththe disc continue to rotate
at CO so by work energy theorem we use

1 ^ 1- m{2R) 0)2+ —m(2i?(o)^
^3 ) 2

= img(2R) + mgR)-

2RW +
2RW _ 3gj?

3 ~ 2

8j?a)^ _ 3g
3 2

co=
9g

16i?

Sol. 64 (D) Relative velocity is

IKj, - Kg I- 2cQffcos 30® =yjs cuR

Sol.65 (A) All maximum height whensystem is moving at
speed Vj byconservation of energy

P = 5mVj = mv

~nn^=^(5m)v^+mgh
p2 p2

zz> — = + mgn.
2m ' 10m ^

h =
4P' 2P'

lOm^g Srn^g

Sol. 66 (C) By inpulse equation we have

P(0.4r)= —mf^.co
mr

Final kinetic energy K= —(5m)v,^+

P 1(2 2
K= +- -tnr'^

lOw 2l5

p2 p2 3p2

627

mr

a:=——+—=
10m 5m 10m

Sol. 67 (A) When sphere reaches flat portion againat speed
V3 and wedge is moving torightat weuse

P = mV= AmV^-mV.^
V^ = iAV,-V)

by energy conservation

IP

IV 3P

^3" 5 ~5m

Sol. 68 (C) Thespeed isduetoradial motion aswell asdueto
angular motion so we use

v = '̂ 1 HR'of
at

- =

Sol. 69 (C) Byconserving angular momentum about vertical
axis OP

M=m\4a'^-h^mvn

0

nT"'

P

By conservingmechanical energy

1
—rm^= —mv^ + mgh

Fromequation(1)and (2)we get h•
a(^/5-l)

...(1)

-(2)

Sol. 70 (C) Theacceleration ofthepointP is due totheaxis
and due to rotation about the axis



and

Qq cos 0 = (sy^r
sin 0 = a r

from (2) and (3) sin 0 = —

-sin M —

•••(1)
-(2)

•••(3)

Sol. 71 (A) Considering anelemental rnass i/wonringasshown
in figure. •. '

2tiR)

IVnCos (b

^777777777^^^7^7777777777/?

V=2Vq cos (j) = 2K, sin—

kinetic energy of element is

dK= —{dm) XAV} x sin^ —

dK=
mVp
2n

(1 - cos 0) dQ

Total kinetic energy of segment ACBis

Velocity ofelemental mass is K=2/2 cos (b I—
R

mVn mVn
K•acb-^ i (l-ooseV0 =

-71/2

Sol. 72 (A) According totheperpendicular axes theorem

Since the plate is quite symmetricalaboutAS and CDwe can
use again perpendicular axes theorem

^AB ^CD ^

Sol. 73 (A) The torque due to the normal reaction {N) and
friction (/) about the C.M.'toppIe the body about front.edge in
the forward direction if

N

limg

•///////////y V/////A

mg

Na\imgh> ~Y

• Rigid Bodies _arid Rd^^

Sol. 74 (B) Vector forcecomponents are shownin fi^e

1
1

i
i

2

^ J

,

1
1
1

2
• '

•i /. = •

Torqueaboutdue to all forces excludingnormal forceis found
to bezero. ThusNmust bepassing throughpointA.

Sol. 75 (C) Tension is rotating rope is

sealer sum of radial force
r=

wcoqZ?

27C

271

Sol. 76 (D) Let velocity of blockB at friemoment of hit be V. So
component of velocityof^ along string at that instant is also V
and component perpendicular to- string is V, then using
conservation ofangularmomentum about pulleywehave

mr2l = mVJ ..

=> r=vj2

77777777777777/7//7,

Using conservation of energywe have
Initial KE - Final.AS

—mJ^+ — —mV^= —mV^ +̂ m(J^+
2

Solving
Oa o

Sol. 77 (A) After5 strikes pulleycomponent velocities along
string becomes zero and component perpendicular to string
remains unchanged

2



jRlgld Bodies and Rotational Motion

Solutions ofADVANCEMCQs One or More Option Correct

501.1 (C,D) Forpurerollingoninclinedplanetheacceleration

ofbody is given as a = ^ sin 0 / hence solid sphere

will have higher acceleration and will reach the bottomfirst and
ring will have least acceleration so will reach with least speed

orliner momentum.

501.2 (B,D) Forrotationofabodyaxisofrotationmayexist

anywhere about which all particles of body will be in circular
motion with all centers lying on the axis ofrotation.

Sol. 3 (A, B, C) Due to engine friction on rear wheels act in

forward direction due to which car accelerates forward and on

front wheel in backward direction as axle at center pushes the

front wheels in forward direction and as car is accelerating,

forward friction must be more than backward friction.

Sol. 4 (B, C) Torque is given by cross product of position
vector and the force.

Sol. 5 (A, C, D) For pure rolling the bottom most point will
remain at rest hence option (A) is correct. In every point of
wheel there will be two speeds Vq, one due to translational
motion in forward direction and other due to rotational motion

along tangential direction so speed of any point is the vector
sum of these two hence option (C) and (D) is correct.

Sol. 6 (A) On a rough horizontal surface if a rolling body
stops, it is due to rolling friction or air friction which tends to
decrease the linear velocity.

Sol. 7 (B) As the sphere is rotating uniformly the tangential
acceleratin ofanyparticle onsphere willbezeroandallparticles
will onlyhave normal acceleration.

Sol. 8 (C,D) As all surfacesare smoothat the time of collision
the impulse between the spheres due to the contact force will
pass through their centers so it will not impart any angular
impulse so angular speeds of the spheres will not change.

Sol.9 (B,C,D) Angular momentumofa particlemoveingin a
straight line is givenby mvdand it remain constant aboutany
fixed point.

Sol. 10 (All) Due to impulse the rod attains an angular
momentum Jl and the angular velocity Attained will be JlU
vsfrere moment ofinertia7=(1/3)M^ and the final kinetic enregy
oftherod is(l/2)7co^ and the linear velocity ofthemid pointwill
be(//2)co.

Sol. 11 (B,Q

From figure we have

1
Iy= --mR^ & Iy-Iy= —

Y 2 -X z 4

629 5

Sol.12 (A,B,C) Vo=2m/s -
^1=0.4

mvQ-ft =mv "...(1)
where v is velocity acquired by ring when slipping stops.

0+fRt=Ij

Dividing (1) by (2), we get,

WVq -ft mv

fRt
mR'

...(2)

JRt= mv^-JRt
^gRt = mVf^-\xmg+R (v f=\mg)

= Vo

t =
2[ig 2x0.4x10

= 0.255

Thus, ring will start pure rolling after 0.25s
From(l),

mvQ-ft=mv
mvQ-iimgt=mv

v= v,-pg^ =2-(0.4)(10)(0.25)
V = 1 m/s

Whenring will startpure rolling, its velocityis Im/s.
From 0.25s to 0.5s, i.e.,

/ = 0.5-0.25 = 0.25s,

v' = 2-l = lm/s

Sol.13 (A, C,D) Fordifferent pivoted ends,momentofinertia
is different torque is same and work by torque is same.

Sol.l4 (A,C) Ifvisspeedimportedto5,totalkineticenergy
ofrod is

1 - 1
K= -mv^+ -m ^1
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to reach the highest point and complete the round we use

" m^P• = mgl+mg{21) —3mgl

At the highest point rod will be at rest and if and are
tension in rod reactions AB and BC, we have

Tsr=mg and T,c=2gm
'AC

"^BC 1

Sol. 15 (A,B,D) In the frame ofrod the small vertical rods will

experiencecentrifugalforces\\frichformsa couplein clockwise

Rigid Bodies and Rotational

direction in the state given in problem. Tobalance this couple
force by hinge at on the rod must be downword and the force
by hinge at B must be upward.
The angular momentaofthe vertical rod particles aboutpoint 0
will be inclined to rod hence option (D) is also correct.

Sol. 16 (A, C) When cylinder comes down, at the point where
string leavescontact with the cylinder is point of instantaneous
rest, thus string does zero work.

El
K. 1

T ± mv

mR

1 2
— mv

2

V



ANSWER & SOLUTIONS

CONCEPTUAL MCQs Single Option Correct

1 (A) 2 (B) 3 (B)

4 (C) 5 (P) 6 (B)

7 (D) 8 (D) 9 (A)

10 (C) 11 (B) 12 (D)

13 (A) 14 (B) 15 (A)

16 (A) 17 ' (D) • 18 (C)

19 (B) 20 (B) 21 (C)

22 (A) 23 (B) 24 (B)-

25 (A) 26 (B)" 27 (C) ' •

28 (C) 29 (A) 30 (B)

31 (D) 32 (C) 33 (B)

34 (D) 35 (C) • 36 (D)

37 (A) 38 (D) 39 "(C)

NUMERICAL MCQs Single Option Correct

1 (B) 2 (B)' 3 (A)

4 (C) 5 (D) 6 (B)

7 (B) 8 (A) 9 (C)

10 (B) 11 (A) 12 (C)

13 (D) 14 (A) ' 15 (D)

1.6 (D) 17 (C) 18 (C)

19 (A) 20 (B) 21 (B)

22 (D) 23 (A) 24 (B)

25 (B) 26 (D) 27 (B)

28 (D) 29 (D) 30 (C)

31 (B) 32 (C) 33 (A)

34 (A) 35 (A) 36 (A)

37 (B) 38 (A) 39 (C)

40 (A) 41 (C) 42 (C)

43 (A) 44 (D) 45 (B)

46 (G)^ 47 (B) • 48 •(D)

49 (B) 50 (B) 51 (D)

52 (C) 53 (A) 54 (D)

55 (A) 56 (B) 57 (C)

58 (B) 59 (A)

ADVANCE MCQs One or More OptionsCorrect

1 (All) 2 (D) 3 (A, C)

4 (B, C) 5 (A. D) 6 (A, B, C)

7 (A, C) 8 (All) 9 (A, B, D)

10 (A) 11 (A, C, d") 12 (A, D)

13 (C, D) 14 (B, D) IS (A, C, D)

16 (A,BD) 17 (A, D)

Solutions ofPRACTICE EXERCISE 6.1

(i) Forcebetweenballs is

Gm"- 6.674x10"'̂ x(10)

r' (0.1)'

= 6.674xlO'^N

(ii) Weuse for circular motion

Gm^

(2Ry

mv

~R

v =

GM

AR

(iii) Force on one mass due to other is

" (42Rf
GM"-

V '

Net radial force is

M

F =
GM'

R'

GM
v =

R

I J_
4*^

2V2 + I
4 •

mv

T

(iv) Force between mand(M- m) at separation r is

Gm(M-m)
F=

F is maximum \^iien

dF

dm

M-2m-0

m

M'

(v) Gravitational force onmasses is

COM
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for m we use

2Gm'
F =

2Gm mv

2dl3

\Gm
2.

time period ofrevolution is

2n
v3.

r=

_ 4^ /W
3 VGm

Ratio ofangular momenta ofmasses

mv\

I 3
V

zm\ —
2

Ratioofkinetic energiesofmasses

= 471

= 2

1 2
— mv

2
= 2

2m

3Gm

Solutions ofPRACTICEEXERCISE 6.2

(1) Force on particle isonly due toinner shell so itisgiven as

GK,
F = m

,[(ii,+i?2)/2]=

4GA/jm

(R,+R2y

(ii) At a point P at a distance x fi-om Moon, we have net
gravitational field given by:

GM GSlAf
g = = 0

D-x = 9x\ 10a;=Z)

_ -D 9D
^~ 10 Moon and ]from the earth.

(Hi) At interior points gravitational force is only due to the
sphere so we use

(a) F =

(b) F =

GmmXx~r)

Gmm'

(x-rf

GravilatioW:

(c) Atexterior points it isdue to both sphere and shell given
as

GMm' Gmm'
F= :r +

(x-Rf (x-rf

Ov) Work doneby,external agent is

Pext = -mg-^ [for showshifting Fext =

=-10 (2f+ 2y)-(5/+4_/)

=-10x18

=-180J

(v) At a point P inside the cavity gravitational field due to
whole sphere is

G[ p-—|jc
V 3 / 4

^sphere = ~~Gp7CV

Similarly gravitational field at P duetomassin the volume of
cavity is

- 4
^cavity ~

8net ~ 8sphere —8cavity

= - -GpK(x-y)

= Gpnl
3

8„etatP\ =~GpTZl

^ . (60^^
in —

(vO Force on massisF=wg = w
2G(3w)sin

V 2

-R'
3



IGravHation

2GMsin

[As g due to arc is

9Gm'

2.
liR

(IGX^ mv^
(vii) We use my

\ X J X

here linear mass density
X=pnR^

=> 2Gp7zR^=v^

=> v= Ryj2Gpn

(viii) Gravitational field at m due to each rod is

GM

g =
I

GM

1 1

112 3//2.

4GAf
g =

f L 3.

Net gravitational field atmdue to both rods is V2g

4V2GMm

2-1
3 f

F= m{j2g) =
3r

Solutions ofPRACTICE EXERCISE 6.3

(i) g due to earth and moon on surface are

GM. GM„
andg„dearth

Ri

_ gearth ' ^n.
MX

980 X(6400)^
80x{160af

= 196 cm/s^

r:

(li) Acceleration due to gravity on the planet is

G

^planet

p-^K{ARf
{ARY

4G| p-Tc^^

R^
= 4g,earth

633

Time period ofa seconds pendulum is

^eaith
/

Searth
= 2 sec

Yo planet

(iii) g on surfece ofa planet ofmass Mand radius R is given as

_GM
R^ R^

g=— GpiiR

g R
^ g^R => — = => g'=^g

g iR

(iv) At a height h above the Earth surface, acceleration due to

gravity is

g' = g l_l^l. _ 2/?
- RT g R

h h 1

^ ^~^R ^ R~2'
At a depth h below the Earth surfece, acceleration due to gravity
is

g'Tg 1 —
R

Ag' h .
= — => g decreases by 0.5%

g R

GM.Ax^+^

(v) Force on particle is

F=mg=m
R:

^y2Le,
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Normal force on particle is

A^=Fcos 0

GmM. RJ2

R.

GMgm

2RI

(vi) At a height h above the earth surface

. gRl 1

=> 2R]- =R^+}?+2RJi
,2 1 D I. d2_i

(vii)

h^^2RJi-R^^=(i

-2R^ ±.j4R^ +4Rl

h=-R^+^R^ = {yl2-\)R^

^equator " ^pole ~®•^e

4k'

^pole ^equator (86400)^
•x6400xl0

=0.0338 m/s^

geq.ator =9.830-0.0338
=9.7962 m/s^

.-^^=0.99661^8equator 'pole
^pole

(viii) When ship is at rest
% = mg^-m(o R^

W=mg-
m(v± iJgCo)''

When ship is sailing at speed valong equator in either direction

W^mg-

W=K-

WV 2
+ WCO R.±2mvG)

R.

mv

~rI
±2wvco

fVn
— + 2v(io
R.

asm =

Rs-Oi Re)

Wr.

g,-(0 R,

2vco
1±

Ss

2 2
V V

Gravitationi

[Herewe neglectthe term ";r IT considering
i?g

Solutions ofPRACTICEEXERCISE 6.4

(i) For a body to escape its total energy > 0

=> ^m\^+mV^>0
KE>-mV„

KE>-m -
GM \ GMm

R R

(ii) As the given circle is equipotential, work done is zero.

(iii) If null point between stars is at pointPatadistanceA; from
16 Mweuse

G(16A/) , GM

(lOa-xy

— = lOa-x
4

5x
— =10a
4

=> x = 8a

Potential at surface oflarge star is

y G(16M) GM _ 65GM
^ 2a 8a 8a

Potential at null pointPis '

^ _ G(16M) GM _ 20GM
^ 8a 2a "Sa

Ifmass is thrown at speed v, it should be sufficient to cross the
null point so we use

1 . 65GMOT 20GMm
—mw - — >- :
2 8a 8a

1 -2 45 GMm
-mv >
2 8 a

v>
45 GM 3 5GM

4 a 2 \ a

As all mass ofcup is at same distance R from centre we use

GM
V.—

R
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(v) Potential at origin

2GM
v,= -

Potential atpoint (0,0,2 4^a) is

Vp —
2GM

Va^+12a^
By energy conservation we use

\ M 2 M
— V.= —Vp

2 2 2 ® 2

> v-p{Vp-V,)

2 GM

y/n a

= J2
2GM 2 GM'

a y/is a

= 2.
\GM

(vi) Wecan seethat the direction of g is normaltogivenline

sono workis doneby gravitationalforceas forcesperpendicular
to displacement.

(vii) Considering an element ofwidthdc asshown in figure we
use its mass is :

M,
dm —

Potential energy of and m is

M • _J dx-\*
X

1 ^ 1

dU^-
Gmdm GMm 1 ,

dx

Total energy in r, Ia.U=- —---dx
•' / X

/

GM

I
In

r + /

Solutions ofPRACTICE EXERCISE 6,5

GM.m GM„m
KE. - — and^D =

635

(i)
2R

GM„m

^ 6R

GM^m

(ii) (a)

PE^=~- j, ^ndP£^=

KE^+KEp _}_
PE^^PEb~2 -

v =

GM 6.67x10-^^x6x10^'*

;c V 8200x10^
= 6.986 xlO^m/s
=6.986 km/s

(b) Kinetic energy

(c) For a satellite

K=̂ mv^=i X1000 x(6.986 x10^)2
10i= 2.44xOT

P£=-2K£:=-4.88xlO^°J

(d) Time period 7'=
I4tz^
GM.

4x| y I x(8xl0*')6\3

6.67x10'*^ x6xlO^'*

=7109.7 sec

=1.975 hr

(iii) Orbital speed v =
GM. SK

TimepCTiod

9.8x(6.4xl0^)^
8x10''

= 7.08xl0^m/s
= 7.08 km/s

27tr 2x3.14x8x10^
T=

V 7.08x10-

= 7.096 X10^ sec = 118.26 min

Radius of orbit r=6400 +1400=7800 km.

Revolution period ofsatellite is

2Tir . 2-Kr
T=

r
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2x3.14x7.8x10^

10x(6.4xl0^)^
7.8x10^

48.98x10^

7.24x10^

= 6.765x103

= 1.88hrs

time after which satellite reappears above a point on earth is

27C' .271
A/ =

CO. - CO.

TT's-^e

271 271

T T

1.88x24

Te-Ts 24-1.188
= 2.038 hr

(v) Initial energy ofsatellite

GM.m
F =— —

4R

Final energy of satellite

GMm

6R

Required energy AE =E2-Ey =
GMgtn

R 4 6

_ GM^m
12R

6.67x10'" x6xl0^'*x2xl0^

. 12x6.4x10^
= 1.042 xlQiOj

(vi) Masses Wj and ^2 move about their centre of mass in
doublestar system and if their separation is / we use

Cl2)

V, COM

cp
•I

Gm^nti WlV?

n

Gm2 Vi^(mi+m2)
m-^ [As ri =

m2l

Wj +W2 ]

Gravitation

Gmi,

V/(7W,+W2)

Revolution period is

T=
27iri 27CW2/

Vj ('W1+W2) V Gml

l=l\GM [as/n, + m2 = Ml

(vii) Using conceptof degeneratedellipsewith zero minor axis,
here major axis is equal to the separation between planetand
Sun so by Kepler's law we use

t\ =
Alt

GM,

R

2)

and we have revolutionperiod of planet Tas

r = R'

from(l)&(2)

GM,

T
/, =
'^"2^/2

time to fall into Sun is

T V2
= —T

2 A-Jl %

(viii)At a distances from centreofearthacceleration ofparticle
is

GM,x g
a=— — — — X

R.R:

...(1)

•a)

as oc Xtheparticleis executing SHM withangularfrequency
CO such that

£7=-C0^X

co =

Time taken for one quarter oscillation (from surface to earth
centre) is

71 71

2(0 2 V g

ifg is a constant, time taken is

g

...(1)

...(2)
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1 _from (1) and (2) — = 2^^

Solutions ofPRACTICEEXERCISE.6.6

(i) Semi major axisofelliptical orbit is

r-¥R
a — —r—

from Kepler's third law we use

.f- =
3

a

GM.

kr +Rf
' 2GM„

(ii) FromKepler'sthirdlawwehave

, 471^ 3
72 = a

GM^

[wherea -> semimajoraxisoforbit]
if p is the densityofSun andR^ is its radiusweuse

Gp ^kR^
L3 ^

ifboth a and R^ arescaled down in same ratio, noeffect on T.

(iii),Time period oftwo satellites are Tj & ^2 given as

and

T,=
47C^ 3

1 VGM.

r- —^2 Vgm,
(r-Ar)-

time duration between their minimum distances is

271
At =

T1T2

CO2-COJ Pi-Pi

27C,

At =

x27l.
\GM^ ]

(r-Ary

GM^

r[r^'^-(r-Ary'^]

3/2(2-Ar)
^3/2 3/2

(iv) Usingangularmomentumconservation

Using energy conservation

...(1)

GM.m I 2
s— = — mVf —^

R. 2 ^ r.
1 GM„m

2

3 „ n ^ Ss^i
-sA-sA =^^f--
4

frran equation (1)

Ri

3/2JgA

1 3
f 9 ^

Rl

V max J

' +i=0

R.
1+ 1 +1

1
= lor-

•\2

-sA

gsK

^ R. ^

3 \-9 3 3 3 ^1+i
3 3

Thus maximum distance ofsatellite from earth surfece is •

2R-R-A

(v) Using angular momentum conservation

by energy conservation

—TMVq—0 —_—
2 • 2 n

fromequation-(l)

1 GMm

^ I Vnd I 2GM
v« = '

rlvJ = VoV-2GKr,

2 ^2GM
^min 2

2GM ^ 4G'M' ^̂ ^2

-d)
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Gravitation

,4j2

Here semi major axis is

GM vtd
+ 1 -1

(vi) When Sj is closest to 5"! &they are moving at speeds V2
and Vj
(a) Relative speedofS2 wrt is :

%Sl=Vi-V2'-

(b) Angular speed of5'2 w.r.t. 5, is

we have

^•^251
^2-^1

f2-n

•••(^) from equation (1)

...(2)

1+^2
a =

, =cP'il - e^) aa6a- =ae
b^ =cp--(a-ryf=2ar^ - rj^

6^ = 2^, 'i+'*2 1 .2_
-'•1

b ^^1^2
rr =

a q + r*2

From kepler's third law Solutions ofPRACTICE EXERCISE 6.7

Also we use

V ^2 ;

r2 =4x10'̂ km

^Ttr, 2jiA
r, =^andr2= —

"1

fromequation (1)

271^1 27rr2
^^2^1 =^--^=271

•'1 h

= 7tx lO^km/hr •

from equaticHi-(2)

lO" 4x10'̂ ']
1 8~

(i) Period ofsatellite is

T=

•f'
4k^

GM.

We use ^P = P-

12
4*71

7=
G\

as r rp we get

3k

CO
TTX.IO^ 7C (ii) Area left to be covered for satellite of orbit radius r as

shown in figure is

(vii) In the figure shown

= —(latus rectum)

0: 2
2b'

a
...(1)

a —> semi major axis
^ semi major axis

. Given that

=> 1

'

/•

^=2x271 1- •R'

A=0.25x4Klf

R'
=0.25
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r^-R^ 9
16

\^^-l6R^ = 9p-

r=-}=R=\.5\5R
•ji

(iii) Satellite period is

gp- .2 1 j,2

Sp-

T=J^.Rl
GM ^

acceleration due to gravity on planet is

GM

Sp=

1 (Atz^RI

An^Rl
2rr2RiT

v=
r-^^— =V^i?=7.92km/s

(\i) Using conservation ofangular momentum:

>n(v, cos60°)4i? = => — =2

by conservation of energy system

GMm 1 , GMm 1
- —-r— + —mvr--— h —mvi

AR 2 ^ R 2 ^

.1 , 1 , 3GM

2 ^2 - 2 " 4 R

r V=-^V64xl0^ =
' V2

8000
m/s

(vii)Escape velocity is

V =

2GM

R

2GM

639'

(iv) Letseparation between stars isr andlights oneisrevolving We use
r

in a circle ofradius — then for heavier star, we use

R =
Ixb.bTxlQ-^^xexlO^'^

8\2(3x10®)

=8.893 xior^m
=8.893 mm

G

y2 =

T=

M./V2M,

GK
9r

27ir/3

4gm,

2M.
'A V

GM.
V=

9r

27tr/3 27cr

GM.

9r V r

Time period of earth when moving around sim is

2nR'>^
T= , So r=R

GM.

(v) (a) Orbital velocityof satellite is

^0 =
GM 1 \2GM

r 2\ R

=t- ,r=2R=R + /7 => /i = R=6400km

(b) Using conservation ofenergy we have

GMm ^ GMm 1 2
^— + 0 = + -mv

' 2R R 2

Solutions ofCONCEPTUAL MCQSSingle Option Correct

Sol. 1 (A) If the gravitational force is inversely proportional
to r then this force will provide the necessary centripetal force
for circular motion ofdie particle and the radius r in denominator
ofboth terms will cancel and the speed will be independent ofr.

Sol. 2 (B) For small altitudes value of g decreases linearly
with height above the earth surface and at a depth it is always
varying linearly with depth h belowthe surface of earth.

Sol. 3 (B) Gravitational potential at the center ofa uniform
spherical shell is given as - GM/Rwhere is the radius of shell.
If we use mass = surface mass densityx area of shell (4tiR^)
thus the potential comesout to be directlyproportional to the
radius ofthe shell hence option (B) is correct.

Sol.4 (C) Acceleration dueto gravityis given asg = GM/R^
and on changing the mass to 0.99M and R to 0.99i?the result
will be changedas g'= I.OIGM/R^ henceoption(C) is correct.

Sol. 5 (D) Escape velocity is given as (2gi?) '̂'̂ here g is
increasing by 1% and R is decreasing by 1% so no change in
escape velocity.
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Sol. 6 (B) Fora body revolving underforce following inverse
square law we know that \TE\ = \KE\=^ (1/2)|P£'| hence option (B)

^ _Gra'vitati^i

Sol. 17 (D) If the density of planet is equal to the average
density of earth and mass is double then its radius must be

so that its volume is double that of earth. The value of
acceleration dueto gravity at the surface of the planetcanbe
compared with that at earth as gp = G(2M)/(2^^^i;)^ = g^

IS correct.

Sol. 7 (D) Gravitational potential at a distance r outside a
uniformlycharged solid sphere varies inversely with r andinside hence option (D) is correct.
it isgiven by the expression {KQI2R\3R^ - r^) hence option
(D) is correct.

Sol. 8 (D) For wparticles number ofinteraction each particle
canhavewithall otherparticles are(«-1) sototalinteractions
by all particles with all remaining particles are n with one
interaction for each particle accounted twice hence option (D)
is correct.

Sol. 9 (A) As it looses someenergy, itwillbeattracted toward
the earth and distance decreases and due to work done by
gravity its interaction energy decreases and kinetic energy
increaseshence option (A) is correct.

Sol. 10 (C) If a body has to escape from earth's surface its
total mechanical energy in frame of earth with reference at
infinite separation must be zero.

Sol. 11 (B) As U = -GMmIr and weight is W= GMmlr^ so
option (B) is correct.

Sol. 12 (D) Asinside ofshell there iszero gravity sonoforce
will act ontheparticle after release and itwill stayjustinside the
surface after release.

Sol. 13 (A) AsTrainPis moving opposite to thedirection of
rotation of earth, its speed relative to earth's rotation axis is less
andit.experiences less centripetal force for its revolution along
equator hence thenormal reaction onthis train bythetrack will
bemore compared toTrain Qwhich ismoving inthedirection
ofrotation ofearth:

Sol. 14 (B) Kinetic Energy of a satellite in circular orbit is
inverselyproportional to the orbit radius and in this case orbit
radii of the. two satellites are 4P and 2R respectively hence
option (B) is correct.

Sol. 15 (A) Above the surface of earth for small altitudes
gravitational potential varies linearlywith height hence option
(A) is correct.

Sol. 16 (A) A geostationary satellite must have an angular
speedin circular orbitwhich is equal to that of earth's rotation
insamedirection andforit to appearat restfrom earthsurface
it must bein equatorial plane hence option (A) iscorrect.

Sol.18 (C) Thepotential, kinetic andtotalaiergyofasatellite
varies inversely with the orbit radius, of the satellite and the
relation we,know is TE = (1/2) PE =-KE hence option (C) is
correct.

Sol. 19 (B) The values ofacceleration due togravity'afaheight
and at a depth for small values of h and d are given as

^ 2/?/P) and =g(l - dIR) hence equating thetwo we
get option (B) is correct.

Sol. 20 (B) For_a conservative field we can check by the
gradient relation £'g=-grad Fandverifythat thework done in
displacement of a particle from one point to another is
independent ofpath thisgives option (B) is correct.

Sol. 21 (C) A shipwhich moves alongthedirection ofrotation
of earth willhave morenet speedrelativeto axis ofrotation of
earthsoit willneedmorecentripetal force forits circular motion
so the normal reaction onitwill be less orits effective weight
will be less hence options (A) imd (B) are true and option (D) is
also truewhich hastimeperiod 2'K{Rlgy'̂ inboth cases. Earth
hasretained itsatmosphere because thevalue ofmost probable
speed of molecules in atmosphere is less than the escape
velocity.

Sol.22 (A) ForarevolvingsateilitebyKepler'sThirdLawwe
use 7^ = {4t^IGM}R} and M={4nR?iy)p we get option (A) is
correct.

Sol. 23 (B) Total energy and angular momentum of a
planet+sun system remain conservedhence option (B) iscorrect.

Sol. 24 (B) In gravity free space the water particles in
surrounding of the two bubbles attracts due to gravity so
.bubbles will startmoving awayfrom eachother.

Sol. 25 (A) Inside the shell there is zero gravity hence no
force will actandoutside theshell acceleration due togravity
varies inversely proportional to hence option (A) iscorrect.

Sol.26 (B) Inside thecavity theacceleration due togravity is
zeroandoutside the shell it varies inverselyproportional to
and in the annular region it increase in some non liner manner
hence option (B) is correct.
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Sol. 27 (C) Fora shell at all interior points the gravitational
potential is constant and outside it varies inversely with the
distance from center hence option (C) is correct.

Sol. 28 (C) As the separated part has same speed as that of
satellite, itwill continuetomovein thesameorbit.

Sol. 29 (A) As gravitational force passes through centre of
earth option (A) is correct.

Sol. 30 (B) Total mechanical energy of a planet in elliptical
GMm , . .

orbit is given as wh^e a is a semi major axis.
2a

Sol. 31 (D) ,
• mj + W2

Usingthe conceptof centripetal force

Gwiffiz ^ 7n,a) W2r
9—=m.<srx-

r ^ wj + m2

m-yr

00 =

G(Wi+7«2)

r= 271.
G(w, +W2)

27t 271 IOtu
Sol.32 (C) to7"+

or,

27C 271 _ 671

Thus possiblevalues of T are

27:
T'= — =4.8 hour

co'

271
T"= — =8 hour

CO

conservation ^\fren particle isata distance x from tunnel center
as

0
dx

,5.
—VHi6

u

£
2 \ R

dx

3R^ 2
X

4

on solving the above expressions of integration we can see
that =

Sol. 36 (D) In all the options given, theterm force is used.
But gravitational potential atapoint isdefined interms ofthe
work done indisplacing aunit mass from infinity tothat point
without change in kinetic energy.

Sol. 37 (A) Tidal waves in the sae are produced due to
periodic approaches ofmoon atdifferent locations above the
see onearth dueto thepullofgravitational attraction ofmoon.

Sol. 38 (D) As the mass ofearth remain same, nothing would
happen because allgravitational forces remain same.

Sol. 39 (C) Inside the shell due to the block gravitational
potential andfield both exist.

Solutions ofNUMERICAL MCQSSingleOption Correct

Sol. 1 (B) Time period ofasimple pendulum oflength/g is

f, = 2k
\g

and time period ofasimple pendulum ofinfinite length is

r =27r I— [Refer topic ofSHM]
^ \g

h = IK
^ 72 VR

Sol. 2 (B) At latitude 60°,
0= g-i?co^cos^60°

rW
= g

Sol. 33 (B) Angular momentum ofthecomet is conserved.

Sol. 34 (D) Kinetic energy ismaximum atcentre and potential
energy is minimum.

S0I.35 (C) Timetakenby^andRcanbeobtainedbyenergy

-7 ^

271 . R
T-— = 471:J—

CO Vg
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sRSol. 3 (A) gataheight habove earth surface is j

J

=> h=R

Sol. 4 (C) We know that

g= ~

(R + hy

dr

dr

^ >• j

Vo

V=K\n

Sol. 5 (D) g on planet surface is given as

g'

g'

a
47zR3^

GM

R^ R'

4itRGp

Sol. 6 (B) Force on a mass placed at a distance from centre of
shell is

GMm

F=
r>R

(outside and atsurface)
r<R
(inside)

Sol. 7 (B) We use

=> d=2h

R

Sol. 8 (A) From Kepler's third law

I^ = kP

.AT
2— -3 —

T /•

AT 3 Ar

T ~2V

Gravitation

Sol. 9 (C) Use Gauss Theorem for Gravitation.

Sol. 10 (B)

Similarly,

^A =
Potential at^

^A due to AJ

Potential at

A due to B

y - tjm, Gm2
R yflR

and

^B =
^Potential at^

B due to A

Potential at

B due to B

Work done in moving mass m from ^4 to B is

Gw(mi - m2 )(>/2 -1)
W =

y/2R

Sol. 11 (A) By energy conservation we use

GMm

GMm 1

2R 2

V =

1 GMm
= —mv —

2 GMm
= —mv —

R

GM

R

R

Sol. 12 (C) Kinetic and potential energies ofa satellite are

GMm
KE.= =-B,

and P£. = -

2r

GMm
= 2E,

T.E. = KE. + P.E.= = Eq
2r

Sol. 13 (D) By Kepler's second law we use

Area Swept
Areal velocity = —

Time for one Revolution of

Earth about the sun



L
also we use Areal velocity = ^rr;

2M

L
Area Swept= 1

Time for one

Revolution ofEarth

about the sun

Area Swept =—(4.4xl0*^)(365x24x 60x 60]

=> Area Swept = 7 x 10^^

Sol.14 (A) ByLawof Conservation ofEnergy
Total surface energy = Potential energy at a heighth

1GMm GMm _ ^ GMm
2 Re Re R. + h

As velocityat maximumheight is zero
h=R^

Sol. 15 (D) Given, r =3.6xl0''m,
m = 5000 kg,

v = 4000mS"',

- ^=30°

Angularmomentum ofsatellite

I = mvrsin(t)

= 5000 X4000 X3.6 X10^ Xsin 30°

= 3.6xlOi'*J-s

Sol. 16 (D) Energyof the satellite

1 2 GMm
E=~mv

2 r

=ix500x(4000)^
. 2 .

(6.67xl0~'̂ )x(5.97xl0 '̂̂ )x50Q0
3.6x10''

•=-1.5xl0'0j

Sol.17 (C) Minimumdistance

= 6.6xl0''x (1-0.804)

= 1.29xl0^m

(for eccentricityrefer solution toQ.20)

S0LI8 (C) Maximum distMice

= ^3(1 +e) = 6.6 x 10? x (1+ 0.804)
= 11.9xl0^m

Sol.19 (A) Nowsemi-major axisa

-GMm

643

2E

6.67xl0'^^x5.97xl0^'*x5000

= 6.6 XlO^m

Sol. 20 (B) Eccentricityofthe orbit

2EU
.= 1 + -

g^mV

= 1+-
2x(-1.5xl0^°)x(3.6xl0"^)

(6.67 X10"'')^ X(5.97 XlO '̂')^ x(5000)^

= 0.804

Hence, semi-minor axis b = a

14n2

2x(-1.5xl0^®)

=6.6 X10'Vl-(0.804/
= 3.92xl0^m

Sol. 21 (B) Forstable circular orbit ofplanetweuse
mRai^ qc R~ '̂̂

Sol. 22 (D) By energyconservation we use

GMm 1 ^2 GMm
=> —+ = + 0

R 2 r

where V. =
2GM

R

R

SoL23 (A) Since T^ccr^

T?- 1
r2
'2r' 64

_

1

r2 4

r2=4x lO'km

V, = —andv,= -

27Cx10^ ^
V. and

27cr-,
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GrawtaWoiv

2;cx4xlO'*
V2 (in kmph)

^ Vj =2jrx lO'̂ kmh"'
and V2 = jcx lO^kmh"^
So, speed of^2 with respect to is;c x 10^ kmh"'. When they
are closet.

Sol.24 (B) Relative angularspeedis

d-x &
X Vm

X

fm
\M

f 4m
x = ^•Jm +yjm

{d-x) =
^yjM +yfm

...(1)

...Q)
co =

(0 =

^2 -^1

'2 -1

10\

3x10"

Q) = ~ rads"'

Sol. 25 (B) As onlymutual interaction force is there we use
concept of reduced mass.
Let m, be atrest we consider that has been replaced by p
and is moving with velocity v relative to /w,. Then by
conservation of energy we use

1 /a\2 i 2 Gmitn-, „-Wi(0)'=+-pv'^ ^-2-+0
^ 2; r

where, p isconsidered asreduced mass, given as

W]7W2

nil "^"^2

_ pG(mi+m2)

Sol. 26 (D) Already analysed thepath ofprojected bodies in
article6.14.

I

Sol. 27 (B) For a body byin a bounded path around earth its
speed must be more their orbital speed & less then escape
speed.

72
< V< Vg <Here Vq = GM .2GM

and = / >
R- ' \l R, I

Sol, 28 (D) Let gravitational field be zero at apoint lying at
distance a: from Af. Then,

• GM Gm

{d-x)'

Since,
^ Gm GM

P d-x X

Substituting (1)and(2)in (3), weget

^ d

Sol.29 (D) AsfromKepler'slaw wehave

GM

and
(Tir)-

G(py^n{r[Rf^

= Ai^
GM

Sol. 30 (C) Speed ofa satellite just above earthsurfece is

v= =7.9kms"',and

27t/? 27:6400x100
T=

7900

= 84.79 minute

is the time period of satellite revolving very close to earth's
surface. So time period ofspy satellite must be slightly greater
and so C is the appropriate answer.

Sol. 31 (B) Let us consider the shell when amass wisalready
there onit. If Vis thepotential ontheshell, then

Gm

T
V= —

To add a mass dm further work done inprocess is
dW= Vdm

^ dW= -^^dm
R

r
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fr= — \ m dm
D J

2 R

= Potential Energy ofInteraction

Sol. 32 (C) Considering an elemental shell of radius r and
width dr as shown

Ifinside mass is m then interaction energy ofshell with mass is

Gmdm
dU=-

G[ 1C47ir^£/rp)
dU=-

167i^Gp^
dU= -^rdr

net interaction energy is

\2

16 2^
U= ttG

3

U= -I yTt^G

5 R

M

-nR'
v3

Sol. 33 (A) Effective gravity at equator is

8e=SQ-R<^
=> ^(/2= go-/?a)2

co =

jrVr

5^

and

r=2, putting if = 6.4 XlO^m
gQ = 9.8 m/sec^, weobtain,
•T= 1.99hrs«2hrs

645

Sol. 34 (A) The time period ofsatellite is given by

471^ {R +{R + hy=
GM g R^

(R -f /7)^
R i g

T=

\21
2n 10

6400x10^ V 9.8

r=31360.78sec = 8.71hrs

Sol. 35 (A) Orbital speed is

GM gR'
0 \(R +h) ^(R +h)

9.8x (6400x10^)^
\0'

= 6335m/s

= 6.335 km/s

m/s

Sol. 36 (A) Work required is

Putting

and

We get

^=^final-initial

= 3
[G(m)(w)j _|G(m)(m)

r^= 0.4w, r. =0.2 mand

G = 6.67xl0-i'
N-m'

m = 0.1kg
IF=5.0x 10-12 j

kg'

Sol. 37 (B) Orbital velocity

2nr
v =

T

Hence,
1

A^cc -T
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Sol. 38 (A) It is given that

7;=29.57;;

Now, according to Kepler's third law

R:

R=R.
K^e

R= 1.5x1011

^So

So

GM^m

Po
, 2

4GM„

dJ-

29.5 r.

e y

=> 72^ = 1.43xl0i2m=1.43xl05km

Sol.39 (C) Let to theacceleration duetogravityonsur&ce,
we use

Sol.40 (A) Initial energy of the body

GMm

(R +2R)

T,. , r. , , GMm 1 2
Final energy of the body = +—mv

R 2

where m is the mass ofthe body and Mis the mass of the earth.
By conservation of energy

GMm GMm 1 7
• + -mv

3R R 2

1 , 2GMm
— m\r- ———

2 372

,2 =

v =

v =

4GM

37?

4GM

372

4G717?2 4

Sol. 41 (C) Iftime period ofsatellites are Tj and 7^2 we use
Jj =27t72/v

and T^=ln{?,R)lv^

>1'
2

-if
\j2) 9I

By Kepler's third law

\^2J

.^3

^ V

GravKation

=> v^=vlylz

Sol.42 (C) LetA/bethemassoftheplanetandwthemassof
satellite

Then mrG? =
GMm

GM= r^co^

GM

R'

Sol. 43 (A) Work done will be zero when displacement is
perpendicular to the field
The fieldmakes an angle

9.= tan-'(l] .
with positive x-axis
Whilethe liney + 4a: = 2 makesan angle

©2 = tan~i(-4) with positive A:-axis
01 + 02=90°

i.e. theline , >'+ 4a;=2 "

is perpendicular to g

Sol.44 (D) As the gravitational fieldinsidethe shellis zero,
the particle will remain stationary.

Sol.45 (B) Fromthe data givenin orbital speed
v = 2 X lO^m/s

mv GMm

r yX .

Where Mismass ofthemassive object andmismass ofparticle.

.2 ' .
rv

G
M=


